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1 Introduction

For years, fixed point theory has found itself as a center of study for boundary value
problems. Many results have provided criteria for the existence of positive solutions or
multiple positive solutions using fixed points of operators. Some of these results can be
seen in the works of Guo [10], Krosnosel’skii [12], Leggett and Williams [13], and Avery
et al. [1, 3, 6].

Applications of the aforementioned fixed point theorems have been seen in works
dealing with ordinary differential equations [2,5,9] and finite difference equations [4,7,11],
and most relevant to this paper, the theorems have been utilized for results that involve
dynamic equations on time scales [8, 14, 15].

In this paper, we show an application of the recent extension of the Leggett-Williams
fixed point theorem by Avery et al. [1] to a right-focal dynamic boundary value problem
on a time scale.
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Let T be a time scale with 0, σ2(1) ∈ T. We consider the right focal dynamic boundary
value problem

x∆∆ + f(x(σ(t))) = 0, t ∈ (0, 1) ∩ T, (1)

on the time scale T with boundary conditions

x(0) = x∆(σ(1)) = 0, (2)

where f : [0,∞) → [0,∞) is continuous.

2 Definitions

In this section, we present definitions and conventions that will be used throughout the
rest of the paper.

Definition 2.1 We define the closed interval [0, 1] to mean

[0, 1] = {t ∈ T : 0 ≤ t ≤ 1}.

All other intervals are defined similarly, except for those specifying the domain or
codomain of a function.

Definition 2.2 Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone provided:

(i) x ∈ P , λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P , −x ∈ P implies x = 0.

Definition 2.3 A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if β : P → [0,∞) is continuous
and

β(tx + (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

3 The Fixed Point Theorem

We first define sets that are integral to the fixed point theorem. Let α and ψ be non-
negative continuous concave functionals on P and let δ and β be nonnegative continuous
convex functionals on P . We define the sets

A = A(α, β, a, d) = {x ∈ P : a ≤ α(x) and β(x) ≤ d},

B = B(δ, b) = {x ∈ A : δ(x) ≤ b},
and

C = C(ψ, c) = {x ∈ A : c ≤ ψ(x)}.
The following fixed point theorem is attributed to Anderson, Avery, and Henderson [1]
and is an extension of the original Leggett-Williams fixed point theorem [13].



78 J.W. LYONS AND J.T. NEUGEBAUER

Theorem 3.1 Suppose P is a cone in a real Banach space E, α and ψ are nonneg-
ative continuous concave functionals on P, δ and β are nonnegative continuous convex
functionals on P, and for nonnegative real numbers a, b, c, and d, the sets A, B, and C
are defined as above. Furthermore, suppose A is a bounded subset of P, T : A → P is a
completely continuous operator, and that the following conditions hold:

(A1) {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅, {x ∈ P : α(x) < a and d < β(x)} = ∅;

(A2) α(Tx) ≥ a for all x ∈ B;

(A3) α(Tx) ≥ a for all x ∈ A with δ(Tx) > b;

(A4) β(Tx) ≤ d for all x ∈ C; and

(A5) β(Tx) ≤ d for all x ∈ A with ψ(Tx) < C.

Then T has a fixed point x∗ ∈ A.

4 Existence of a Positive Solution of (1), (2)

In this section, we show the existence of at least one positive solution to (1), (2). To that
end, we now consider the dynamic equation

x∆∆ + f(x(σ(t))) = 0, t ∈ (0, 1),

on a time scale T with boundary conditions

x(0) = x∆(σ(1)) = 0,

where f : [0,∞) → [0,∞) is continuous. If x is a fixed point of the operator T defined
by

Tx(t) :=

∫ σ(1)

0

G(t, s)f(x(σ(s)))∆s, t ∈ [0, σ2(1)],

where G(t, s) defined on [0, σ2(1)]× [0, σ(1)] by

G(t, s) =







t, 0 ≤ t ≤ s ≤ σ(1),

σ(s), σ2(1) ≥ t ≥ σ(s) ≥ 0,

is the Green’s function for the operator L defined by

(Lx)(t) := −x∆∆,

with right focal boundary conditions

x(0) = x∆(σ(1)) = 0,

then it is well known that x is a solution of the boundary value problem (1), (2).
Throughout the remainder of the paper, we will often make use of the following

property of the preceeding Green’s function. For any y, w ∈ [0, σ2(1)] with y ≤ w,

yG(w, s) ≤ wG(y, s),
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which implies

y

∫ σ(1)

0

G(w, s)∆s ≤ w

∫ σ(1)

0

G(y, s)∆s. (3)

Let E = Crd[0, σ
2(1)] be the Banach Space composed of right-dense continuous func-

tions from [0, σ2(1)] into R with the norm

||x|| = max
t∈[0,σ2(1)]

|x(t)|.

Define the cone P ⊂ E by

P = {x ∈ E : x is nondecreasing, nonegative, and concave.}

For fixed τ, µ, ν ∈ [0, σ2(1)], define the nonnegative concave functionals α and ψ to
be

α(x) = min
t∈[τ,σ2(1)]

x(t) = x(τ),

ψ(x) = min
t∈[µ,σ2(1)]

x(t) = x(µ),

and the nonnegative, convex functionals δ and β to be

δ(x) = max
t∈[0,ν]

x(t) = x(ν),

β(x) = max
t∈[0,σ2(1)]

x(t) = x(σ2(1)).

Theorem 4.1 Let τ, µ, ν ∈ (0, σ2(1)] with 0 < τ ≤ µ < ν ≤ σ2(1). Let d and m

be positive reals with 0 < m ≤ dµ
σ2(1) and suppose f : [0,∞) → [0,∞) is continuous and

satisfies the following:

(i) f(w) ≥ d
(ν−τ)σ2(1) for τd

σ2(1) ≤ w ≤ νd
σ2(1) ;

(ii) f(w) is decreasing for 0 ≤ w ≤ m and f(m) ≥ f(w) for m ≤ w ≤ d; and

(iii)
∫ µ

0 σ(s)f
(

mσ(s)
σ(µ)

)

∆s ≤ d− f(m)σ2(1)(σ(1) − µ).

Then (1),(2) has at least one positive solution x∗ ∈ A(α, β, τd
σ2(1) , d).

Proof. Let a =
τd

σ2(1)
, b =

νd

σ2(1)
, and c =

µd

σ2(1)
. Define Tx(t) =

∫ σ(1)

0 G(t, s)f(x(σ(s)))∆s. Now by definition, A ⊂ P , and for all x ∈ A, d ≥ β(x) =

max
t∈[0,σ(1)]

x(t) = x(σ2(1)), and so A is bounded.

Now, if x ∈ A ⊂ P , then Tx(t) =
∫ σ2(1)

0 G(t, s)f(x(σ(s)))∆s, and so Tx∆∆(t) =
−f(x(σ(s))) ≤ 0 for t ∈ [0, 1], and so Tx is concave, and Tx∆(t) is nonincreasing on
[0, σ(1)]. Furthermore, Tx∆(σ(1)) = 0, and so Tx∆(t) ≥ 0 on [0, σ(1)]. So Tx is
nondecreasing on [0, σ2(1)]. Therefore, T : A→ P .
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Now we prove our first enumerated condition (A1). Let K ∈ R with
µd

σ2(1)
∫ σ(1)

0 G(µ, s)∆s
< K <

νd

σ2(1)
∫ σ(1)

0 G(ν, s)∆s
, which is well-defined by (3). Define

xK(t) = K
∫ σ(1)

0 G(t, s)∆s. So xK ∈ P ,

α(xK ) = K

∫ σ(1)

0

G(τ, s)∆s

>
µd

∫ σ(1)

0 G(τ, s)∆s

σ2(1)
∫ σ(1)

0 G(µ, s)∆s

≥ τd
∫ σ(1)

0
G(µ, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
τd

σ2(1)
= a,

and

β(xK) = K

∫ σ(1)

0

G(σ2(1), s)∆s

<
νd

∫ σ(1)

0
G(σ2(1), s)∆s

σ2(1)
∫ σ(1)

0
G(ν, s)∆s

≤ σ2(1)d
∫ σ(1)

0 G(ν, s)∆s

σ2(1)
∫ σ(1)

0
G(ν, s)∆s

= d.

So xK ∈ A. Now

ψ(xK) = K

∫ σ(1)

0

G(µ, s)∆s

>
µd

∫ σ(1)

0 G(µ, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
µd

σ2(1)
= c,

and

δ(xK) = K

∫ σ(1)

0

G(ν, s)∆s

<
νd

∫ σ(1)

0 G(ν, s)∆s

σ2(1)
∫ σ(1)

0
G(µ, s)∆s

=
νd

σ2(1)
= b.

So {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅.
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Next, let x ∈ P with β(x) > d. Then since for all y ≤ w, wx(y) ≥ yx(w), σ2(1)x(τ) ≥
τx(σ2(1)), and so

α(x) = x(τ) ≥ τ

σ2(1)
x(σ2(1)) =

τβ(x)

σ2(1)
>

τd

σ2(1)
= a.

Therefore {x ∈ P : α(x) < a and d < β(x)} = ∅.
Next, we prove (A2). Chose x ∈ B. So δ(x) ≤ b. Now by (i),

α(Tx) =

∫ σ(1)

0

G(τ, s)f(x(σ(s)))∆s

≥
∫ ν

τ

G(τ, s)f(x(σ(s)))∆s

=

∫ ν

τ

τf(x(σ(s)))∆s

≥
∫ ν

τ

τ

(

d

(ν − τ)σ2(1)

)

∆s

=
dτ

σ2(1)
= a.

Next, we prove (A3). Let x ∈ A with δ(Tx) > b. Then, by (3),

α(Tx) =

∫ σ(1)

0

G(τ, s)f(x(σ(s)))∆s

≥ τ

ν

∫ σ(1)

0

G(ν, s)f(x(σ(s)))∆s

=
τ

ν
δ(Tx)

>
τ

ν
· νd

σ2(1)
=

τd

σ2(1)
= a.

Now we prove (A4). Now, since x is concave and nondecreasing for all t ∈ [0, µ],

x(σ(t)) ≥ x(σ(µ)))σ(t)

σ(µ)
≥ cσ(t)

σ(µ)
≥ mσ(t)

σ(µ)
.

So by conditions (ii) and (iii), we have

β(Tx) =

∫ σ(1)

0

G(σ2(1), s)f(x(σ(s)))∆s

=

∫ σ(1)

0

σ(s)f(x(σ(s)))∆s

=

∫ µ

0

σ(s)f(x(σ(s)))∆s +

∫ σ(1)

µ

σ(s)f(x(σ(s)))∆s

≤
∫ µ

0

σ(s)f

(

mσ(s)

σ(µ)

)

∆s+

∫ σ(1)

µ

σ2(1)f(m)∆s

≤ d− f(m)σ2(1)(σ(1) − µ) + f(m)σ2(1)(σ(1)− µ)

= d.
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Finally, we prove our last condition, (A5). Let x ∈ A with ψ(Tx) < c. So, we have

β(Tx) =

∫ σ(1)

0

G(σ2(1), s)f(x(σ(s)))∆s ≤ σ2(1)

µ

∫ σ(1)

0

G(µ, s)f(x(σ(s)))∆s

=
σ2(1)

µ
ψ(Tx) ≤ σ2(1)c

µ
= d.

Thus T has a fixed point x∗ ∈ A, and therefore x∗ is a positive solution of (1), (2).

5 Two Nontrivial Examples

Example 5.1 Let T = [0, 12 ] ∪ [1, 32 ] and consider the boundary value problem

x∆∆ +
1

x(σ(t)) + 1
= 0, t ∈ (0, 1) ∩ T, x(0) = x∆(σ(1)) = 0.

Choose τ = 1
30 , µ = 1

2 , ν = 1, m = 1
4 , and d = 3

5 . Note that 0 < τ ≤ µ < ν ≤ σ2(1) = 1

and 0 < m < dµ
σ2(1) =

3

5
·
1

2

1 = 3
10 . Also, f(w) = 1

w+1 is continuous from the nonnegative

reals to the nonnegative reals. Lastly,

(i) for 1
50 ≤ w ≤ 3

5 , f(w) ≥ f(35 ) =
5
8 >

18
29 = d

(ν−τ)σ2(1) ,

(ii) since f ′(w) < 0 for w ≥ 0, f(w) is decreasing for 0 ≤ w ≤ 1
4 and for 1

4 ≤ w ≤
3
5 , f(m) = f(14 ) ≥ f(w), and

(iii)
∫ µ

0
σ(s)f

(

mσ(s)
σ(µ)

)

∆s =
∫ 1

2

0
sf(14s)∆s =

∫ 1

2

0
s

1
1
4s+ 1

∆s ≈ 0.115471 < 0.2 = 3
5 −

2
5 = 3

5 − f(14 )(1)
1
2 = d− f(m)σ2(1)(σ(1) − µ).

Therefore, the boundary value problem has at least one positive solution, x∗, in
A(α, β, 1

50 ,
3
5 ). That is, x

∗( 1
30 ) ≥ 1

50 and x∗(1) ≤ 3
5 .

Example 5.2 Let T = 2Z = {2n : n ∈ Z} ∪ {0}. Consider the boundary value
problem

x∆∆ +
cos2(0.2x(σ(t)))

√

(x(σ(t)))1/10 + 1
= 0, t ∈ (0, 1) ∩ T, x(0) = x∆(σ(1)) = 0.

Choose τ = 1
1024 , µ = 2, ν = 4, m = 1

5 , and d = 5
2 . Note that 0 < τ ≤ µ < ν ≤

σ2(1) = 4 and 0 < m < dµ
σ2(1) =

5

2
·2

4 = 5
4 . Also, f(w) =

cos2(0.2w)√
w1/10+1

is continuous from the

nonnegative reals to the nonnegative reals. Now,

(i) for 5
8192 ≤ w ≤ 5

2 , f(w) ≥ f(52 ) ≈ 0.531967 > 128
819 = d

(ν−τ)σ2(1) ,

(ii) since f ′(w) < 0 for 0 ≤ w ≤ 5
2 , f(w) is decreasing for 0 ≤ w ≤ 1

5 and for
1
5 ≤ w ≤ 5

2 , f(m) = f(15 ) ≥ f(w), and

(iii)
∫ µ

0 σ(s)f
(

mσ(s)
σ(µ)

)

∆s =
∞
∑

k=0

1

2k−1
f

(

1

20 · 2k−1

)

· 1

2k
≈ 2.00009 <

5

2
=

5

2
− f

(

1

5

)

·
4(2− 2) = d− f(m)σ2(1)(σ(1) − µ).

Therefore, the boundary value problem has at least one positive solution, x∗, in
A(α, β, 5

8192 ,
5
2 ). That is, x

∗( 1
1024 ) ≥ 5

8192 and x∗(4) ≤ 5
2 .
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6 Conclusion

Here it was shown how a recent Avery et al. fixed point theorem [1] that was developed
as an extension of the original Leggett-Williams fixed point theorem [13] can be applied
to show under certain conditions, the existence of a second order right focal dynamic
boundary value problem. Two nontrivial examples were then provided to show that
these conditions could be applied to specific boundary value problems.
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