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1 Introduction

In the theory of differential equations with deviating arguments, we study the differential
equations involving variables (arguments) as well as unknown functions and its deriva-
tive, generally speaking, under different values of the variables (arguments). It is a very
important and significant branch of nonlinear analysis with numerous applications to
physics, mechanics, control theory, biology, ecology, economics, theory of nuclear reac-
tors, engineering, natural sciences, and many other areas of science and technology. The
book [3] by El’sgol’ts and Norkin provides a comprehensive study of differential equa-
tions with deviated arguments. The existence, uniqueness, almost automorphic solutions
and asymptotic behaviors of differential equations with deviating arguments have been
studied by many authors like Driver [4], Obreg [5], Grimm [6], Gal [7], Haloi [8, 10, 11]
(see [12–16] and references cited therein).
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Impulsive effects are common phenomena due to short-term perturbations whose du-
ration is negligible in comparison with the total duration of the original process, such
phenomena may also be called impulsive differential equations. In recent years, there has
been a growing interest in the study of impulsive differential equations since such equa-
tions are mathematical approaches for simulation of process and phenomena observed in
control theory, physics, chemistry, population dynamics, biotechnology, economics and
so on. Chang et al. [27] have studied the existence of PC-mild solutions for first order
impulsive neutral integro-differential inclusions with nonlocal initial conditions. Ding et
al. [17] discussed a class of second-order impulsive differential equations with integral
boundary values. By using Krasnoselskii’s fixed point theorem, the existence of solutions
for the system is obtained. For more details, one can see ( [18, 20, 21, 24–26, 28]) and
references cited therein.

On the other hand, due to theoretical and practical difficulties, the study of impul-
sive differential equations with deviating arguments has been developed rather slowly.
Recently, the study of impulsive differential equations with deviating arguments has
been found in some papers. For example, in [32], Jankowski discussed the existence
of solutions for second order impulsive differential equations with deviating arguments.
Guobing et al. [29] established the existence solution of periodic boundary value problems
for a class of impulsive neutral differential equations with multi-deviation arguments (see
also [30–35] and the references therein).

The existence and uniqueness of abstract integro-differential equations have been dis-
cussed by many authors (see [9,10,19,22,23] and references cited therein). Bahuguna [2]
proved the existence, uniqueness, regularity and continuation of solutions to the following
integro-differential equations in an arbitrary Banach space H :

du(t)

dt
+Au(t) = f(t, u(t)) +K(u)(t), t > t0,

u(t0) = u0,







(1)

where

K(u)(t) =

∫ t

t0

a(t− s)g(s, u(s))ds.

Under the assumptions that −A generates an analytic semigroup S(t), t ≥ 0 on H , the
function a is real-valued and locally integrable on [0,∞), the nonlinear maps f and g are
defined on [0,∞)×H into H .

Gal [7] proved the global existence and uniqueness to the following differential equa-
tion with deviated argument in a Banach space (X, ‖.‖):

du

dt
= Au(t) + f(t, u(t), u([h(u(t), t)])), t > 0,

u(0) = u0,







(2)

where A is the infinitesimal generator of an analytic semigroup of bounded linear oper-
ators on X . He proved the results under the following assumptions on f and h:

1. f : [0,∞)×Xα ×Xα−1 → X satisfies

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf{|t− s|θ1 + ‖x− y‖α + ‖x′ − y′‖α−1} (3)

for all x, y ∈ Xα, x′, y′ ∈ Xα−1, s, t ∈ [0,∞), for some constants Lf > 0 and
0 < θ1 ≤ 1.
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2. h : Xα × [0,∞) → [0,∞) satisfies

|h(x, t)− h(y, s)| ≤ Lh{‖x− y‖α + |t− s|θ2} (4)

for all x, y ∈ Xα, s, t ∈ [0,∞), for some constants Lh > 0 and 0 < θ2 ≤ 1.

Here ‖x‖α = ‖(A)αx‖, denotes the norm on Xα, the domain of Aα, for 0 < α ≤ 1.
In this paper, we extend the Cauchy problem (1) for integro-differential equations

to the Cauchy problems for the impulsive integro-differential equations with a deviated
argument in a Banach space (H, ‖.‖):

d

dt
u(t) +Au(t) = f(t, u(t), u[w(t, u(t))]) +

∫ t

0

a(t, τ)g(τ, u(τ))dτ,

t ∈ I = [0, T0], t 6= tk,

u(tk) = Ik(u(tk)), k = 1, 2, · · · ,m,

u(0) = u0,



























(5)

where −A is the infinitesimal generator of an analytic semigroup of bounded linear op-
erators, S(t), t ≥ 0 on H . Functions f, a, g and w are suitably defined and satisfying
certain conditions to be stated later. 0 = t0 < t1 < ... < tm < tm+1 = T0, Ik ∈
C(H,H)(k = 1, 2, ...,m), are bounded functions. Ik(u(tk)) = u(t+k ) − u(t−k ), u(t−k ) and
u(t+k ) represent the left and right limits of u(t) at t = tk, respectively.

The paper is organized as follows. In “Preliminaries and Assumptions” we provide
some basic definitions, notations, lemmas and proposition which are used throughout the
paper. In “Local existence of mild solution” we will prove some existence and uniqueness
results concerning the PC-mild solutions. At last (i.e., in “Application”), we give an
example to demonstrate the application of the main results.

2 Preliminaries and Assumptions

In this section, we will introduce some basic definitions, notations, lemmas and proposi-
tion which are used throughout this paper.

It is assume that −A generates an analytic semigroup of bounded operators, denoted
by {S(t)}t≥0. It is known that there exist constants M̃ ≥ 1 and ω ≥ 0 such that

‖S(t)‖ ≤ M̃eωt, t ≥ 0.

If necessary, we may assume without loss of generality that ‖S(t)‖ is uniformly
bounded by M , i.e., ‖S(t)‖ ≤ M for t ≥ 0, and 0 ∈ ρ(−A), i.e., −A is invertible.
In this case, it is possible to define the fractional power Aα for 0 ≤ α ≤ 1 as closed
linear operator with domain D(Aα) ⊆ H . Furthermore, D(Aα) is dense in H and the
expression

‖x‖α = ‖Aαx‖

defines a norm on D(Aα). Henceforth, we denote the space D(Aα) by Hα endowed with
the norm ‖ · ‖α. Also, for each α > 0, we define H−α = (Hα)

∗, the dual space of Hα with
the norm

‖x‖−α = ‖A−αx‖.

Then H−α is a Banach space endowed with this norm. For more details, we refer to the
book by Pazy [1].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) 58–75 61

Lemma 2.1 [1, pp. 72,74,195-196] Suppose that −A is the infinitesimal generator
of an analytic semigroup S(t), t ≥ 0 with ‖S(t)‖ ≤ M for t ≥ 0 and 0 ∈ ρ(−A). Then
we have the following:

(i) Hα is a Banach space for 0 ≤ α ≤ 1;

(ii) For any 0 < δ ≤ α implies D(Aα) ⊂ D(Aδ), the embedding Hα →֒ Hδ is continu-
ous;

(iii) The operator AαS(t) is bounded for every t > 0 and

‖AαS(t)‖ ≤ Cαt
−α.

We define the following space

X = PC(Hα) = {u : [0, T0] → Hα : u ∈ C((tk, tk+1], Hα), k = 0, 1, · · · ,m,

and there exists u(t−k ), u(t
+
k ) and u(t

−
k ) = u(tk)}.

X is a Banach space endowed with the supremum norm

‖u‖PC := sup
t∈I

‖u(t)‖α.

We shall use the following conditions on f and w in its arguments:

(H1) LetW ⊂ Dom(f) be an open subset of R+×Hα×Hα−1, where 0 ≤ α < 1. For each
(t, u, v) ∈ W , there is a neighborhood V1 ⊂ W of (t, u, v), such that the nonlinear
map satisfies the following condition,

‖f(t, u, v)− f(s, u1, v1)‖ ≤ Lf{|t− s|θ1 + ‖u− u1‖α + ‖v − v1‖α−1},

for all (t, u, v), (s, u1, v1) ∈ V1, Lf = Lf (t, u, v, V1) > 0 and 0 < θ1 ≤ 1 are
constants.

(H2) Let U ⊂ Dom(w) be a open subsets of R+ × Hα−1, where 0 ≤ α < 1. For each
(t, u) ∈ U , there is a neighborhood V2 ⊂ U of (t, u), w(·, 0) = 0 such that

|w(t, u) − w(s, v)| ≤ Lw {‖u− v‖α−1 + |t− s|θ2},

for all (t, u), (s, v) ∈ V2, Lw = Lw(u, t, U) > 0 and 0 < θ2 ≤ 1 are constants.

(H3) Let W1 be an open subset of R+ ×Hα. For each (t, x) ∈ W1 there exists a neigh-
borhood V3 ⊂W1 of (t, x) and a positive constant Lg = Lg(t, x, V3) such that

‖g(t, x)− g(s, y)‖ ≤ Lg‖x− y‖α,

for all (t, x), (s, y) ∈ V3.

(H4) Let a : [0, T0] × [0, T0] → [0, T0] be a continuous function that satisfies the Holder
condition uniformly in the first variable, i.e., there exist positive constants La > 0
and 0 < θ3 ≤ 1, such that

|a(t, s)− a(τ, s)| ≤ La|t− τ |θ3 ,

for all t, τ, s ∈ [0, T0].
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(H5) The functions Ik : Hα → Hα are continuous and there exists Dk such that
‖Ik(u)‖α ≤ Dk, k = 0, 1, · · · ,m.

(H6) There exists continuous nondecreasing dk : R+ → R+ such that

‖Ik(u)− Ik(v)‖α ≤ dk‖u− v‖α, k = 1, 2, · · · ,m.

New concept of solutions. Here, we prove a new concept of solutions for the
following problem (6)







u′(t) +Au(t) = r(t) +
∫ t

0 a(t, τ)g(τ, u(τ))dτ, t ∈ [0, T0], t 6= tk,

u(0) = u0,

u(tk) = Ik(u(t
−
k )), k = 1, 2 · · · ,m,

(6)

where r ∈ PC(I,H).
Let

{

v′(t) +Av(t) = r(t) +
∫ t

0 a(t, τ)g(τ, u(τ))dτ, t ∈ [0, T0],
v(0) = v0,

(7)

and







w′(t) +Aw(t) = 0, t ∈ [0, T0], t 6= tk,

w(0) = 0,
w(tk) = Ik(u(t

−
k )), k = 1, 2, · · · ,m,

(8)

be the decomposition of u(.) = v(.)+w(.), where v is the continuous mild solution of (7)
and w is the PC mild solution of (8).

By a mild solution for (7), we mean a continuous function v : [0, T0] → H satisfying
the following integral equation (For more details we refer to [2] and [10])

v(t) = S(t)v0 +

∫ t

0

S(t− s)
[

r(s) + Υv(s)
]

ds, t ∈ [0, T0], (9)

where

Υv(t) =

∫ t

0

a(t, τ)g(τ, u(τ))dτ.

and by a PC mild solution for (8), we mean a function w ∈ PC([0, T0], D(A)) satisfying
the following integral equation (see [20, Lemma 2.3 ])

w(t) =







































−
∫ t

0 Aw(s)ds, t ∈ [0, t1],

I1(u(t
−
1 ))−

∫ t

0
Aw(s)ds, t ∈ (t1, t2],

...
∑k

i=1 Ii(u(t
−
i ))−

∫ t

0
Aw(s)ds, t ∈ (tk, tk+1],

k = 1, 2, · · · ,m.

(10)
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The above equation (10) can be expressed as

w(t) =

k
∑

i=1

χi(t)Ii(w(t
−
i ))−

∫ t

0

Aw(s)ds, (11)

for t ∈ [0, T0], where

χi(t) =

{

0, for t ∈ [0, t1],
1, for t ∈ (tk, tk+1], k = 1, 2, 3, · · · ,m.

(12)

Taking Laplace transform of (11), we obtain

w(p) =
k

∑

i=1

e−tip

p
Ii −

Aw(p)

p
,

this gives

w(p) =

k
∑

i=1

e−tip(pI +A)−1Ii, (13)

Also, we note that (pI+A)−1 =
∫∞

0
e−ptS(t)dt. Thus we can derive the mild solution

for (8)

w(t) =

k
∑

i=1

χi(t)S(t− ti)Ii(w(t
−
i )).

Hence, the mild solution for the problem (6) is given by

u(t) = S(t)u0 +

k
∑

i=1

χi(t)S(t− ti)Ii(u(t
−
i )) +

∫ t

0

S(t− s)
[

r(s) + Υu(s)
]

ds. (14)

We can rewrite (14) as

u(t) =























































S(t)u0 +
∫ t

0
S(t− s)

[

r(s) + Υu(s)
]

ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)
[

r(s) + Υu(s)
]

ds, t ∈ (t1, t2],

...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)
[

r(s) + Υu(s)
]

ds, t ∈ (tk, tk+1], k = 1, 2, · · · ,m.

(15)
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3 Local Existence of Mild Solutions

In this section, we will prove the existence and uniqueness results concerning PC-mild
solutions for system (5). For 0 ≤ α < 1, we define

X1 = {u ∈ X : ‖u(t)− u(s)‖α−1 ≤ L|t− s|, ∀ t, s ∈ (tk, tk+1], k = 0, 1, · · · ,m},

where L is a suitable positive constant to be specified later.

Definition 3.1 A continuous function u : [0, T0] → H solution of problem (5)

u(t) =























































S(t)u0 +
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],

...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0
S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],

k = 1, 2, · · · ,m.

(16)

is said to be a mild solution.

For a fixed R > 0, we define

W = {u ∈ X ∩X1 : u(0) = u0, ‖u− u0‖PC ≤ R}.

Clearly, W is a closed and bounded subset of X1 and is a Banach space.
Let

N1 = sup
0≤t≤T0

‖f(0, u0, u0)‖, (17)

N2 = sup
0≤t≤T0

‖g(0, u0)‖ (18)

and

aT0
=

∫ T0

0

|a(s)|ds. (19)

Now we define a map G : W → W by

(Gu)(t) =























































S(t)u0 +
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],
...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],
k = 1, 2, · · · ,m.

(20)
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Theorem 3.1 Let u0 ∈ Hα and the assumptions (H1) – (H4) hold. Then the problem
(5) has a mild solution provided that

Cα[(Nf + aT0
Ng)]

T 1−α
0

1− α
+M

k
∑

i=1

Di ≤
R

2
(21)

and

Cα{Lf (2 + LLw) + aT0
Lg}

T 1−α
0

(1− α)
+M

m
∑

0

di < 1, (22)

Proof. We begin with showing that Gu ∈ X1 for each u ∈ X1. Clearly, G : X → X.

Let u ∈ X1, then for each τ1, τ2 ∈ [0, t1], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤ ‖[S(τ2)− S(τ1)]u0‖α−1

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖
{

∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}

ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖
{

∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}

ds. (23)

Since f(t, u(t), u(w(u(t), t))) and g(t, u(t)) are continuous, together with the assump-
tions (H1), (H2) and (H3), there exist constants Nf and Ng, such that

‖f(t, u(t), u(w(t, u(t))))‖ ≤ Nf ,

‖g(t, u(t))‖ ≤ Ng

}

, u ∈ X, t ∈ [0, T0], (24)

where Nf = Lf

{

T θ1
0 +R(1 + LLw) + LLwT

θ2
0

}

+N1 and Nf = LgR+N2.

For the first term on the right hand side of (23), we have

‖Aα−1[S(τ2)− S(τ1)]u0‖ ≤

∫ τ2

τ1

‖Aα−1S′(s)u0‖ds

=

∫ τ2

τ1

‖AαS(s)u0‖ds

=

∫ τ2

τ1

‖S(s)‖ ‖u0‖αds

≤ M‖u0‖α(τ2 − τ1). (25)
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For the second and third term on the right hand side of (23), we have the following
estimate

‖(S(τ2 − s)− S(τ1 − s))‖α−1 ≤

∫ τ2−τ1

0

‖Aα−1S′(l)S(τ1 − s)‖dl

=

∫ τ2−τ1

0

‖S(l)AαS(τ1 − s)‖dl

≤ MCα(τ2 − τ1)(τ1 − s)−α. (26)

Then using the inequality (26), we get the following bounds for the second and third
term on the right hand side of (23) as

∫ τ1

0

‖(S(τ2 − s)− S(τ1 − s))Aα−1‖‖f(s, u(s), u(w(s, u(s))))‖ds

≤ NfMCα
T 1−α
0

1− α
(τ2 − τ1). (27)

∫ τ1

0

‖(S(τ2 − s)− S(τ1 − s))Aα−1‖
{

∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}

ds

≤MNgCαaT0

T 1−α
0

1− α
(τ2 − τ1). (28)

The fourth and fifth term on the right side of (23) are estimated as

∫ τ2

τ1

‖S(τ2 − s)Aα−1‖‖f(s, u(s), u(w(s, u(s))))‖ds

≤ ‖Aα−1‖MNf(τ2 − τ1). (29)

∫ τ2

τ1

‖S(τ2 − s)Aα−1‖
{

∫ s

0

|a(s, τ)| ‖g(τ, u(τ))‖dτ
}

ds

≤ ‖Aα−1‖aT0
MNg(τ2 − τ1). (30)

Thus from the inequalities (25) and (27)-(30), we see that

‖(Gu)(τ2)− (Gu)(τ1)‖α−1 ≤M
{

‖u0‖α + Cα(Nf + aT0
Ng)

T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}

(τ2 − τ1). (31)

For τ1, τ2 ∈ (t1, t2], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤ ‖[S(τ2)− S(τ1)]u0‖α−1 + ‖Aα−1[S(τ2 − t1)− S(τ1 − t1)]I1(u(t
−
1 ))‖

+

∫ τ1

0

‖Aα−1[S(τ2 − s)− S(τ1 − s)]‖
{

‖f(s, u(s), u(w(s, u(s)))) + Υu(s)‖
}

ds

+

∫ τ2

τ1

‖Aα−1S(τ2 − s)‖
{

‖f(s, u(s), u(w(s, u(s)))) + Υu(s)‖
}

ds. (32)
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The second term on the right side of (32) is estimated as

‖Aα−1[S(τ2 − t1)− S(τ1 − t1)]I1(u(t
−
1 ))‖ ≤

∫ τ2

τ1

‖Aα−1S′(t− t1)‖‖I1(u(t
−
1 ))‖ds

=

∫ τ2

τ1

‖AαS(t− t1)‖ ‖I1(u(t
−
1 ))‖ds

≤ M ‖I1(u(t
−
1 ))‖α(τ2 − τ1). (33)

Thus, from the inequalities (25), (27)-(30) and (33), we see that

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤M
{

‖u0‖α + ‖I1(u(t
−
1 ))‖α + Cα(Nf + aT0

Ng)
T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}

(τ2 − τ1). (34)

Similarly, for τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, 2, · · · ,m and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1

≤M
{

‖u0‖α +

k
∑

i=1

‖Ii(u(t
−
i ))‖α + Cα(Nf + aT0

Ng)
T 1−α
0

1− α

+(Nf + aT0
Ng) ‖A

α−1‖
}

(τ2 − τ1). (35)

Thus, for each τ1, τ2 ∈ [0, T0], τ1 < τ2 and 0 ≤ α < 1, we have

‖(Gu)(τ2)− (Gu)(τ1)‖α−1 ≤ L(τ2 − τ1), (36)

where L = max{M‖u0‖α,M
∑m

i=1 ‖Ii(u(t
−
i ))‖α, (Nf + aT0

Ng)MCα
T 1−α

0

1−α , (Nf +

aT0
Ng)M‖A1−α‖}.

Therefore, G is piecewise Lipschitz continuous on [0, T0] and so G : X1 → X1.

Next we will show that G : W → W .

Let u ∈ X ∩X1 and t ∈ [0, t1], we have

‖(Gu)(t)− u0‖α ≤ ‖(S(t)− I)Aαu0‖

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

0

‖S(t− s)Aα‖
[

∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
]

ds

≤
R

2
+ Cα[(Nf + aT0

Ng)]
T 1−α
0

1− α

≤ R. (37)
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Similarly, for each t ∈ (tk, tk+1], k = 1 · · · ,m, we have

‖(Gu)(t)− u0‖α ≤ ‖(S(t)− I)Aαu0‖

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

0

‖S(t− s)Aα‖
[

∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
]

ds

+

k
∑

i=1

‖AαS(t− ti)Ii(u(t
−
i ))‖

≤
R

2
+ Cα[(Nf + aT0

Ng)]
T 1−α
0

1− α
+M

k
∑

i=1

‖Ii(u(t
−
i ))‖α

≤ R. (38)

Thus, from (37), (38) and (21), it is clear that

‖Gu− u0‖PC ≤ R.

Therefore, G : W → W is well defined.

Finally, we will claim that G is a contraction on W . If [0, t1], u, v ∈ W , then we have

‖(Gu)(t)− (Gv)(t)‖α ≤

∫ t

0

‖S(t− s)Aα‖ ‖f(s, u(s), u(w(s, u(s))))

−f(s, v(s), u(v(s, v(s))))‖ds +

∫ t

0

‖S(t− s)Aα‖

[

∫ s

0

|a(s, τ)| ‖g(τ, u(τ))− g(τ, v(τ))‖dτ
]

ds. (39)

We also note that

‖f(s, u(s), u(w(s, u(s))))− f(s, v(s), u(v(s, v(s))))‖

≤ Lf

{

‖u(s)− v(s)‖α + ‖u(w(s, u(s)))− u(w(s, v(s)))‖α−1

+‖u(w(s, v(s))) − v(w(s, v(s)))‖α−1

}

≤ Lf (2 + LLw)‖u− v‖PC . (40)

and

‖g(τ, u(τ))− g(τ, v(τ))‖α ≤ Lg‖u− v‖PC . (41)

We use (40) and (41) into (39), we get

‖(Gu)(t)− (Gv)(t)‖α

≤
Cα

(1− α)

{

Lf (2 + LLw) + aT0
Lg

}

T 1−α
0 ‖u− v‖PC .
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For t ∈ (t1, t2], we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[

Cα{Lf(2 + LLw) + aT0
Lg}

T 1−α
0

(1− α)

+M‖I1(u(t
−
1 ))‖α

]

‖u− v‖PC .

For t ∈ (tk, tk+1], k = 1, 2, 3, · · · ,m, we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[

Cα{Lf(2 + LLw) + aT0
Lg}

T 1−α
0

(1− α)

+M
k
∑

i=1

‖Ii(u(t
−
i ))‖α

]

‖u− v‖PC .

Thus, for each t ∈ [0, T0], we have

‖(Gu)(t)− (Gv)(t)‖α ≤
[

Cα{Lf(2 + LLw) + aT0
Lg}

T 1−α
0

(1− α)

+M

m
∑

i=1

di

]

‖u− v‖PC . (42)

Therefore, the map G is a contraction map, hence G has a unique fixed point u ∈ W .
That is, problem (5) has a unique mild solution.

4 Further Existence Results

Theorem 3.1 can be proved if we drop the hypothesis (H1),(H2) and (H3). In that case
the proof is based on the idea of Wang et al. [21].

Theorem 4.1 Assume the conditions (H4)-(H6) hold. The semigroup {S(t)}t≥0 is
compact, f : I × H × H → H and g : I ×H → H are continuous. Let u0 ∈ Hα there
exists a constant r > 0 such that

M
{

‖u0‖α +

k
∑

i=1

‖Ii(u(t
−
i ))‖α

}

+ Cα(Mf + aT0
Mg)

T 1−α
0

1− α
≤ r, (43)

where

Mf = sup
s∈I,u∈Ω

‖f(s, u(s), u(w(s, u(s))))‖, Mg = sup
s∈I,u∈Ω

‖g(s, u(s))‖ (44)

and

Ω = {v ∈ PC(Hα) : ‖v‖PC ≤ r}.

Then there exists a mild solution u ∈ PC(Hα) of the problem (5).
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Proof. Let us define a map F : PC(Hα) → PC(Hα), by

(Fu)(t) =























































S(t)u0 +
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ [0, t1],

S(t)u0 + S(t− t1)I1(u(t
−
1 ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (t1, t2],
...

S(t)u0 +
∑k

i=1 S(t− ti)Ii(u(t
−
i ))

+
∫ t

0 S(t− s)[f(s, u(s), u(w(s, u(s)))) + Υu(s)]ds, t ∈ (tk, tk+1],
k = 1, 2, · · · ,m.

Step 1. First we show that F is continuous. It follows from the continuity of f and g
that

‖f(s, un(s), un(w(s, un(s)))) − f(s, u(s), u(w(s, u(s))))‖ ≤ ǫ, as n→ ∞,

‖g(s, un(s)) − g(s, u(s))‖ ≤ ǫ, as n→ ∞,

for s ∈ [0, t], t ∈ [0, T0].
Now, for each t ∈ [0, t1], we have

‖(Fun)(t)− (Fu)(t)‖α ≤ Cα(1 + aT0
)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞. (45)

For, t ∈ (t1, t2], we have

‖(Fun)(t)− (Fu)(t)‖α

≤M‖I1(un(t
−
1 ))− I1(u(t

−
1 ))‖α + Cα(1 + aT0

)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞. (46)

Similarly, for each t ∈ (tk, tk+1], k = 1, 2, · · · ,m,

‖(Fun)(t)− (Fu)(t)‖α

≤M

k
∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖α + Cα(1 + aT0

)
T 1−α
0

1− α
ǫ→ 0, as n→ ∞.

(47)

Thus, from the inequalities (45)-(47), we see that F is continuous.
Step 2. Next we show that F maps bounded sets into bounded sets in PC(Hα).
Let u ∈ Ω, then for t ∈ [0, t1], we have

‖(Fu)(t)‖α ≤M‖u0‖α + Cα(Mf + aT0
Mg)

T 1−α
0

1− α
. (48)

For each t ∈ (t1, t2], we have

‖(Fu)(t)‖α ≤M
{

‖u0‖α + ‖I1(u(t
−
1 ))‖α

}

+ Cα(Mf + aT0
Mg)

T 1−α
0

1− α
. (49)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) 58–75 71

Similarly, for each t ∈ (tk, tk+1], k = 1, 2, · · · ,m, we have

‖(Fu)(t)‖α ≤M
{

‖u0‖α +

k
∑

i=1

‖Ii(u(t
−
i ))‖α

}

+ Cα(Mf + aT0
Mg)

T 1−α
0

1− α
. (50)

Thus, from inequalities (43) and (48)-(50), we see that F : Ω → Ω.
Step 3. In this step, we show that F maps bounded sets into equicontinuous sets in

PC(Hα). Let τ1, τ2 ∈ [0, t1], τ1 < τ2, we have

‖(Fu)(τ2)− (Fu)(τ1)‖α

≤M
{

‖u0‖α + Cα(Mf + aT0
Mg)

T 1−α
0

1− α

+‖Aα−1‖(Mf + aT0
Mg)

}

(τ2 − τ1). (51)

Similarly, for each τ1, τ2 ∈ (tk, tk+1], τ1 < τ2, k = 1, 2, · · · ,m, we have

‖(Fu)(τ2)− (Fu)(τ1)‖α

≤M
{

‖u0‖α +
k

∑

i=1

‖Ii(u(t
−
i ))‖α + Cα(Mf + aT0

Mg)
T 1−α
0

1− α

+‖Aα−1‖(Mf + aT0
Mg)

}

(τ2 − τ1).

(52)

The right hand side of (52) tends to zero as τ2 → τ1. Hence, F(Ω) is equicontinuous.
Step 4. F maps Ω into a compact set in Hα.

For this purpose, we decompose F by F = F1 + F2,
where

(F1u)(t) = S(t)u0 +

∫ t

0

S(t− s)
[

f(s, u(s), u(w(s, u(s)))) + Υu(s)
]

ds,

t ∈ I\ {t1, · · · , tm},

and

(F2u)(t) =







0, t ∈ [0, t1],

∑k
i=1 S(t− ti)Ii(u(t

−
i )), t ∈ (tk, tk+1], k = 1, 2, · · · ,m.

Since F2 is a constant map and hence compact.
Finally, we need to prove that (F1u)(t) is relatively compact in Ω for 0 ≤ t ≤ T0.

The set {S(t)u0} is precompact in Hα for each t ∈ [0, T0], since {S(t), t ≥ 0} is compact.
For t ∈ (0, T0], and ǫ > 0 sufficiently small, we define

(F ǫ
1u)(t) = S(ǫ)

∫ t−ǫ

0

S(t− ǫ− s)
[

f(s, u(s), u(w(s, u(s)))) + Υu(s)
]

ds, u ∈ Ω.
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The set {(F ǫ
1u)(t) : u ∈ Ω} is precompact in Hα since S(ǫ) is compact. Moreover, for

any u ∈ Ω, we have

‖(F1u)(t)− (F ǫ
1u)(t)‖α ≤

∫ t

t−ǫ

‖AαS(t− s)‖ ‖f(s, u(s), u(w(s, u(s))))‖ds

+

∫ t

t−ǫ

‖AαS(t− s)‖
{

∫ s

0

|a(s, τ)| ‖g(s, u(s))‖dτ
}

ds

≤ M(Mf + aT0
Mg)ǫ.

Therefore, {(F ǫ
1u)(t) : u ∈ Ω} is arbitrarily close to the set {(F1u)(t) : u ∈ Ω}, t > 0.

Hence the set {(F1u)(t) : u ∈ Ω} is precompact in Hα.
Thus, F1 is a compact operator by Arzela-Ascoli theorem, and hence F is a compact

operator. Then Schauder fixed point theorem ensures that F has a fixed point, which
gives rise to a PC-mild solution.

5 Application

Consider the following semi-linear heat equation with a deviating argument

∂u

∂t
=

∂2u

∂x2
+ H̃(x, u(x, t)) +G(t, x, u(x, t)),

+
∫ t

0 a(t, τ)
∂
∂x [ξ(x, τ, u(x, τ),

∂
∂xu(x, τ))]dτ

x ∈ (0, 1) , t ∈ (0, 12 ) ∪ (12 , 1),

∆u|t= 1

2

=
u( 1

2
)−

1+u( 1

2
)−
,

u(0, t) = u(1, t) = 0,
u(x, 0) = u0(x), x ∈ (0, 1),











































(53)

where

H̃(x, u(x, t)) =

∫ x

0

K(x, y)u(y, g(t)|u(y, t)|)dy,

and the function G : R+× [0, 1]×R → R is measurable in x, locally Hölder continuous in
t, locally Lipschitz continuous in u, uniformly in x. Assume that ψ : R+ → R+ is locally
Hölder continuous in t with ψ(0) = 0 and K ∈ C1([0, 1]× [0, 1];R).

Let X = L2((0, 1);R). We define an operator A as follows,

Au = −
∂2u

∂x2
, D(A) = H1

0 (0, 1) ∩H
2(0, 1), (54)

where X1/2 = D(A1/2) = H1
0 (0, 1) and X−1/2 = (H1

0 (0, 1))
∗ = H−1(0, 1) = H2(0, 1).

Here clearly the operator A is self-adjoint with compact resolvent and is the infinitesimal
generator of an analytic semigroup S(t).

Let us define g : [0,∞)×D(A) → X by

g(t, φ)(x) =
∂

∂x
[φ(x, t, φ(x, t),

∂

∂x
φ(x, t))], (55)

and the function f : R+ ×X1/2 ×X−1/2 → X , is given by

f(t, φ, ψ)(x) = H̃(x, ψ) +G(t, x, φ), (56)
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where H̃ : [0, 1]×X → H1
0 (0, 1) is given by

H̃(t, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy (57)

with ψ(x, t) = φ(x,w(t, φ(x, t))) and w(t, φ(x, t)) = g(t)|φ(x, t)| , G : R
+ × [0, 1] ×

H2(0, 1) → H1
0 (0, 1) satisfies the following

‖G(t, x, φ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1)) (58)

with Q(., t) ∈ X and Q is continuous in its second argument. Then, we can easily verify
that the assumptions (H1)-(H6) hold. For more details, we refer the reader to [7].

6 Conclusion

The sufficient conditions of the existence and uniqueness of PC-mild solutions to the
integro-differential equations with a deviating argument are established.
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