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Abstract: In this paper, we have achieved adaptive hybrid function projective
synchronization between two identical chaotic space-tether systems with uncertain
time-varying parameters and with each system evolving from different initial condi-
tions by applying adaptive control technique. Based on Lyapunov stability theory,
adaptive control laws and parameter update laws for estimating the uncertain, time-
varying parameters are derived to make the states of the two identical chaotic systems
asymptotically synchronized. Complete synchronization, antisynchronization, hybrid
projective synchronization are obtained as special cases from the above synchroniza-
tion method. The control techniques and the proposed update laws are verified by
numerical simulation results.
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1 Introduction

Two identical chaotic systems with different initial conditions were first made to synchro-
nize in 1990 by Pecora and Carroll [25]. Since then, chaos synchronization has attracted
a great deal of attention from various scientific fields. The idea of synchronization is to
use the output of the master system to control the slave system so that the output of the
response system follows the output of the master system asymptotically. Many meth-
ods and techniques for handling chaos control and synchronization of various chaotic
systems have been developed such as PC method [25], OGY method [19], time-delay
feedback approach [24], feedback approach [9, 14], backstepping design technique [29],
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adaptive method [5, 7, 15, 21, 27, 28], linear control method [16, 22], nonlinear control
scheme [21, 23].

Till now, different types of synchronization phenomenon have been presented such as
complete synchronization (CS) [11], generalized synchronization (GS) [8], lag synchro-
nization [26], anticipated synchronization [18], phase synchronization [2], hybrid syn-
chronization (HS) [6] and antiphase synchronization [13], etc. Among all kinds of chaos
synchronization schemes, projective synchronization characterized by a scaling factor
that two systems synchronize proportionally has been of recent interest as it can be used
to obtain faster communication with its proportional feature. Recently, a new kind of
synchronization, Function Projective Synchronization (FPS) was introduced [4]. FPS
is a more general definition of Projective Synchronization where the drive system and
the response system can be synchronized upto a scaling function which is not a con-
stant. Another synchronization phenomenon called a Hybrid Projective Synchronization
(HPS) has also been investigated where the different state variables of the two systems
synchronize up to different state factors [10]. Combining these two, we have a new
kind of synchronization phenomenon called a Hybrid Function Projective Synchroniza-
tion (HFPS) which is of latest interest [12, 20, 30]. Here, the different state vectors of
the drive and response system synchronize up to different scaling functions which are not
scalars. Thus, it is the most modified and generalised form of Projective Synchronization.

Motivated by the aforementioned research, we have formulated Hybrid Function Pro-
jective Synchronization (HFPS) of two identical chaotic systems with different initial
conditions using adaptive control scheme where the response system has uncertain time-
varying parameters. Based on Lyapunov stability theory, adaptive control law and the
parameter update law are derived using which HFPS between the two systems is achieved.

Application of chaos synchronization is varied. We consider its application in the field
of celestial mechanics. In the recent decades, this field has slowly gained interest and
some work has followed [1,3,17,31]. The model we choose in this manuscript as identical
chaotic systems is that of a space-tether system. The dynamics of space-tether system
has recently been of great interest due to its vast applicability in the field of celestial
mechanics. A tether is a long cable used to couple spacecrafts to each other or to other
masses such as rocket, space station etc., so that their dynamics can be connected. So, a
space-craft together with a tether forms a space-tether system and depending upon the
objective and mission, there always arise problems of synchronizing its motion with other
spacecrafts using a tether itself or with another space-tether system altogether. Here,
in this manuscript, we consider the problem where there is a need to synchronize two
identical space-tether systems. A space-tether system can have numerous applications
like creation of artificial gravitation on board of the spacecraft, maintainance of spacecraft
with electric power, study of upper atmosphere, in research of distant space and many
more. Thus, the study of dynamics of a space-tether system is an important topic in
celestial mechanics.

Consequently, the paper is organized as follows. In Section 2, model of the space-
tether system is explained, in Section 3, adaptive HFPS (AHFPS) between the aforemen-
tioned two systems is studied in details. In Section 4, numerical simulations are presented
following which observations are made. Finally, in Section 5, conclusion is drawn.
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2 Model Explaination

The dynamics of a space-tether system can be developed using different kinds of math-
ematical models which describe its motion. In this paper, we have chosen the model
where tether is considered as massless rod. It is given by equation (1).

Figure 1: The space-tether problem where tether is considered a massless rod.
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where the parameters are defined as follows:
A,B,C= principal of moments of inertia of the spacecraft;
lo = length of unstrained tether;
α= angle which the line joining the centres of mass of earth and spacecraft makes with
a fixed axis through the center of mass of earth;
l= variable length of the strained tether;



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (1) (2014) 44–57 47

ϕ= inclination of the oscillating plane of the orbit of the center of mass of the system
with the plane of ecliptic;
α= angle which the line joining centers of mass of earth and spacecraft makes with the
tether;
∆= distance between the center of mass of the spacecraft and the position on the space-
craft to which the tether is attached;
m= mass of the spacecraft;
ω= angular velocity of the carrying spacecraft in circular orbit.

3 Adaptive Control Scheme for AHFPS

For the applicability of the adaptive control scheme, the system is identified in the form
of first order differential equations. For this, we make the following substitution:

α(t) = x1(t),
dα

dt
= x2(t), l(t) = x3(t),

dl

dt
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Based on these substitutions, the system of equations is given as:
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The system of equations (2) is considered as our master system. Then the identical
slave system is given by:
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where xi, yi stand for the state variables of the master system and slave system re-
spectively, a1, b1, d1, e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are the uncertain time-varying
parameters of the slave system which are to be estimated and u1, u2, u3, u4, u5, u6 are
the time-dependent non-linear controls which are also to be determined.

Let us now suppose that that the time-varying scaling function matrix be given by
A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) where αi(t) 6= 0; i = 1, 6. The syn-
chronization errors are defined by

er(t) = xr(t)− αr(t)yr(t), r = 1, 6. (4)

AHFPS between the two systems (2) and (3) will be achieved up to the desired scaling
function matrix A(t) if limt→∞ ||er(t)|| = 0, r = 1, 6. Following these, the error dynamics
is given by:
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de4
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When we have two identical chaotic systems without controls (i.e. ui = 0), if they
evolve from different initial conditions, the trajectories of the two systems eventually
separate from each other and become unindentifiable and irrelevant. But when we have
two controlled chaotic systems, the two systems will approach synchronization for any
initial condition by appropriate control gain and update laws for uncertain time-varying
parameters. So, taking [ki; i = 1, 20] as control gains which are positive constants and
letting ea = a1−a, eb = b1− b, ed = d1−d, ee = e0−e, ef = f1−f, eg = g1−g, eh = h1−
h, ej = j1−j, ek = k1−k, en = n1−n, ep = p1−p, eq = q1−q, e∆ = ∆1−∆, eω = ω1−ω,the
following adaptive control laws and parameter update laws are proposed:

Adaptive control laws:
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While, parameter update laws are:
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dn1
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= −
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Now we have the following theorem which shows the stability and control performance
of the adaptive control scheme:

Theorem 3.1 For a given scaling function matrix

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)),

where αi(t) 6= 0, i = 1, 6, and any initial conditions xi(0), yi(0), i = 1, 6, the adaptive
control law (6) and parameter update law (7) warrant that the error functions ei(t) are
asymptotically convergent to zero, i.e. limt→∞ ||ei(t)|| = 0, i = 1, 6.

Proof. We choose a Lyapunov function as follows:

V =
1

2
[e21 + e22 + e23 + e24 + e25 + e26 + e2a + e2b + e2d + e2e + e2f +

e2g + e2h + e2j + e2k + e2n + e2p + e2q + e2∆ + e2ω].

We substitute the values of the controls ui using adaptive control laws (6) into error
dynamical system (5) and also note that for each uncertain parameter say, a1, ėa = ȧ1
(where (·) represents differentiation with respect to t) and its value is given by the first
equation of parameter update laws (7). Similarly, it follows for the other parameters.
Using all these values, it can be shown that the time derivative of the Lyapunov function
along the trajectory of the error system (5) is given by:

dV

dt
= eT

de

dt
= −eTQe. (8)

where e = (e1, e2, e3, e4, e5, e6, ea, eb, ed, ee, ef , eg, eh, ej , ek, en, ep, eq, e∆, eω)
T and

Q = diag (ki; i = 1, 20).
Clearly, Q is a positive definite matrix and hence, V (t) is negative definite. Based

on the Lyapunov stability theory, the error dynamical system (5) is globally and asymp-
totically stable at the origin and we have limt→∞ ||er(t)|| = 0; r = 1, 6. Thus, AHFPS
between the master system (2) and slave system (3) is achieved. This proves the theorem.
✷

4 Numerical Simulation Results and Discussions

In this section, we verify and demonstrate the effectiveness of the proposed method by
displaying and discussing the simulation results. We find by simulating that the sys-
tem given by (2) shows chaotic behavior for the following sets of values : a = 0, b =
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10−10, d = 10−11, e = 10−6, f = 5 × 10−20, g = 5 × 10−21, h = 0.03, j = 3. × 10−9, k =
2.×10−8, n = 1.5×10−10, p = 0, q = 10−7,∆ = 0.0000001,Ω = 0.1 with initial conditions
chosen as x1(0) = 0.8, x2(0) = 1.09, x3(0) = 0.8, x4(0) = 1.9, x5(0) = 0.8, x6(0) = 1.9.
With these values, we take the resulting system as the master system (2) (see Fi-
gure 2(a)). Now, we take the initial values of the unknown estimated parameters as
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(a) Master system.
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(b) Slave system (without controls).

Figure 2: Poincare map showing chaotic master and slave systems.

a1(0) = −0.00136336, b1(0) = 9.× 10−7, d1(0) = 4.5× 10−6, e1(0) = 0.00130435, f1(0) =
4.5 × 10−11, g1(0) = 2.25 × 10−10, h1(0) = 0.030603, j1(0) = 3.0603 × 10−6, k1(0) =
0.0000202, n1(0) = 1.53015×10−6, p1(0) = −1.36336×10−7, q1(0) = 0.00652174,∆1(0) =
0.0001,Ω1(0) = 0.101 with initial conditions chosen as y1(0) = 1.3, y2(0) = 0.5, y3(0) =
0.8, y4(0) = 3.01, y5(0) = −0.8, y6(0) = 1.1. We find that when the system is considered
with these values, without the controls, then the system again is chaotic. Thus, this is
chosen as our slave system (3) which is to be controlled using the adaptive controllers
ui(t); i = 1, 6 (see Figure 2(b)). Also, we choose the control gains as ki = 1; i = 1, 20.
With these values, we now test AHFPS between systems (2) and (3). We can have nu-
merous cases of AHFPS, to test, let us as an example, choose the scaling function matrix
as A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (5 sin t − 6, 2, 5, 0.9e−t, 1, 10).
Clearly, αi(t) 6= 0; i = 1, 6; for all t. Accordingly, the initial values of the error variables
are: e1(0) = 8.6, e2(0) = 0.09, e3(0) = −3.2, e4(0) = −0.809, e5(0) = 1.6, e6(0) = −9.1.
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(a) Figure 3: Time Series Analysis of e1(t).
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(b) Figure 4: Time Series Analysis of e2(t).

The time-evolution graphs of the error variables ei(t), i = 1, 6, are plot-
ted in Figures 3 to 8 while time-evolution graphs of the estimated parameters
a1, b1, d1, e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are presented in Figures 9 to 22. It is clear
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(c) Figure 5: Time Series Analysis of e3(t).
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(d) Figure 6: Time Series Analysis of e4(t).
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(e) Figure 7: Time Series Analysis of e5(t).
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(f) Figure 8: Time Series Analysis of e6(t).
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(g) Figure 9: Time Series Analysis of
a1(t)(a1 → a = 0).
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(h) Figure 10: Time Series Analysis of
b1(t)(b1 → b = 10−10).

from time-evolution graphs of all error variables in Figures 3 to 8 that they converge
to zero asymptotically while Figures 9 to 22 show that a1 → a, b1 → b, d1 → d, e0 →
e, f1 → f, g1 → g, h1 → h, j1 → j, k1 → k, n1 → n, p1 → p, q1 → q,∆1 → ∆, ω1 → ω,
respectively. Hence parameter update law is verified. All these graphs together indicate
the achievement of AHFPS between systems (2) and (3).

By choosing different scaling function matrices A(t), we can obtain different synchro-
nization phenomenon between the systems (2) and (3) as special cases:
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d1(t)(d1 → d = 10−11).

0 10 20 30 40

-0.00001

-5.´10-6

0

5.´10-6

0.00001

(j) Figure 12: Time Series Analysis of
e0(t)(e0 → e = 10−6).
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(k) Figure 13: Time Series Analysis of
f1(t)(f1 → f = 5× 10−20).
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(l) Figure 14: Time Series Analysis of
g1(t)(g1 → g = 5× 10−21).
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(m) Figure 15: Time Series Analysis of
h1(t)(h1 → h = 0.03).
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(n) Figure 16: Time Series Analysis of
j1(t)(j1 → j = 3.× 10−9).

4.1 Complete Synchronization

We choose A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (1, 1, 1, 1, 1, 1).
Accordingly, the initial values of the error variables are: e1(0) = −0.5, e2(0) =
0.59, e3(0) = 0, e4(0) = −1.11, e5(0) = 1.6, e6(0) = 0.8.

4.2 Antisynchronization

We choose

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (−1,−1,−1,−1,−1,−1).
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(o) Figure 17: Time Series Analysis of
k1(t)(k1 → k = 2.× 10−8).
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(p) Figure 18: Time Series Analysis of
n1(t)(n1 → n = 1.5× 10−10).
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(q) Figure 19: Time Series Analysis of
p1(t)(p1 → p = 0).
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q1(t)(q1 → q = 10−7).
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(s) Figure 21: Time Series Analysis of
∆1(t)(∆1 → ∆ = 0.0000001).
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(t) Figure 22: Time Series Analysis of
ω1(t)(ω1 → ω = 0.1).

Accordingly, the initial values of the error variables are: e1(0) = 2.1, e2(0) = 1.59, e3(0) =
1.6, e4(0) = 4.91, e5(0) = 0, e6(0) = 3.0.

4.3 Hybrid Projective Synchronization (HPS)

We can have numerous cases of HPS, as an example let us choose

A(t) = diag (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)) = (1, 2, 5, 90, 10, 0.1).

Accordingly, the initial values of the error variables are: e1(0) = 0.7935, e2(0) =
1.0875, e3(0) = 0.796, e4(0) = 1.88495, e5(0) = 0.804, e6(0) = 1.8945. When
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the time-evolution graphs of ei(t); i = 1, 6 and the uncertain parameters a1, b1, d1,

e0, f1, g1, h1, j1, k1, n1, p1, q1,∆1, ω1 are plotted in each of the above cases, we find they
are similar to those plotted in Figures 3 to 22. Clearly, then, complete synchronization,
antisynchronization, hybrid projective synchronization, all can be achieved as special
cases of AHFPS.

5 Conclusion

In this paper, we have presented an application of adaptive control technique in the field
of celestial mechanics. The control method has been applied to two identical chaotic
space-tether systems, where each system starts from different initial conditions and the
response system contains uncertain parameters so that AHFPS is achieved between them.
Based on Lyapunov stability theory, adaptive control laws and parameter update laws
are designed to make the states between the drive and response systems synchronized
asymptotically and they have also been used to estimate the uncertain time-varying
parameters. Both theoretical analysis and numerical simulation confirm the effectiveness
of our proposed method.
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