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1 Introduction

In recent few decades, researchers have developed great interest in fractional calculus
due to its wide applicability in science and engineering. Tools of fractional calculus
have been available and applicable to deal with many physical and real world problems
such as anomalous diffusion process, traffic flow, nonlinear oscillation of earthquake, real
system characterized by power laws, critical phenomena, scale free process, description
of viscoelastic materials and many others. For more details about fractional calculus we
refer to [3–5, 7, 10, 12, 13, 16, 18].

In the present paper, we study the convergence of the Faedo-Galerkin approximations
of solutions to the nonlinear fractional order Sobolev type evolution equation

dq

dtq
[u(t) + g(t, u(t))] +Au(t) = f(t, u(t)), 0 < t ≤ T ≤ ∞, 0 < q ≤ 1,

u(0) = φ, (1)
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in a separable Hilbert space (H, ‖ · ‖, (·, ·)), where A is a closed linear operator
defined on D(A) which is dense in H . We assume that linear operator −A is
the infinitesimal generator of analytic semigroup {S(t); t ≥ 0} in H . The functions
f and g are continuous functions and satisfy certain assumptions stated later in Section 2.

The Feado-Galerkin approximations of solutions of the particular case of (1) in which
g = 0, have been established by Muslim [9]. Author in [9] has discussed the convergence
of Feado-Galerkin approximation of the solution to the equation

dβ

dtβ
u(t) +Au(t) = f(t, u(t)), t ∈ [0, T ], β ∈ (0, 1), (2)

u(0) = φ. (3)

under the assumption that −A generates an analytic semigroup of bounded linear oper-
ators defined on a Banach space H and f satisfies certain conditions.

The existence and uniqueness of solution and approximation of solution of functional
differential equation

d

dt
[u(t) + g(t, u(t))] = −Au(t) + f(t, u(t)), t > 0,

u(0) = φ, (4)

have been discussed by D. Bahuguna and Reeta in [2] with the assumption that −A
generates an analytic semigroup and f and g satisfy the conditions such that f and Aβg

satisfy the Lipschitz condition on C([0, T ]×D(Aα);H).
This paper is organized as follows: we present some basic definitions, lemmas, the-

orems and assumptions required to establish the convergence result as preliminaries in
Section 2. The existence and uniqueness of the approximate solutions are proved using
semigroup theory and fixed point theorem in Section 3. In Section 4, we prove the con-
vergence of the solution to each of the approximate integral equations with the limiting
function which satisfies the associated integral equation and the convergence of the ap-
proximate Feado-Galerkin solutions will be shown in Section 5. In the last section we
consider an example as an application.

2 Preliminaries and Assumptions

In this section we provide some basic definitions, results and assumptions on f and g

which will be used in the later sections.

Definition 2.1 The fractional derivative of f : [0,∞) → R in the Caputo sense of
order q is defined as

cD
q
t f(t) =

1

Γ(m− q)

∫ t

0

(t− s)m−q−1fm(s)ds, (5)

for m− 1 ≤ q < m, m ∈ N, t > 0, with the following property:

cD
q
t f(t) = D

q
t [f(t)−

m−1∑

k=0

fk(0)gk+1(t)], (6)
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where Dq
t denotes the Riemann-Liouville fractional derivative of order q defined as

D
q
t f(t) =

dm

dtm
1

Γ(m− q)

∫ t

0

(t− s)m−q−1f(s)ds, t > 0, m− 1 < q < m (7)

Definition 2.2 [14]. A function u ∈ C([0, T ];H) is said to be a mild solution of
equation (1) if it satisfies

u(t) = Sq(t)(φ+ g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, t ∈ [0, T ],

u(0) = φ, (8)

where

Sq(t) =

∫ ∞

0

ζq(θ)S(t
qθ)dθ, Tq(t) = q

∫ ∞

0

θζq(θ)S(t
qθ)dθ.

Here ζq(θ) is a probability density function defined on the interval (0,∞), satisfying the
following properties

• ζq(θ) ≥ 0, θ ∈ (0,∞) and
∫∞

0
ζq(θ)dθ = 1;

• ζq(θ) =
1
q θ

−1− 1

q × ψq(θ
−1/q) ≥ 0, where

ψq(θ) =
1

π
Σ∞

n=1(−1)n−1θ−nq−1Γ(nq + 1)

n!
sin(nπq), θ ∈ (0,∞).

Now, we consider some assumptions on A, f and g.
Assumptions on A: We assume that linear operator A satisfies the following con-

ditions.

(A1) A is a closed, positive, self-adjoint linear operator from the domain D(A) ⊂ H into
H such that D(A) is dense in H . We assume that A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 · · · ,

where λm → ∞ as m → ∞ and a corresponding complete orthonormal system of
eigenfunctions {ui}, i.e. Aui = λiui and < ui, uj >= δij , where δij is defined as

δij =

{
0, i 6= j,

1, i = j.

These assumptions on A imply that −A generates an analytic semigroup, therefore
there exist constants M ≥ 1 and δ ≥ 0 such that

‖S(t)‖ ≤M e−δt, t ≥ 0.

So −A is an infinitesimal generator of analytic semigroup. We assume without loss
of generality that ‖S(t)‖ is uniformly bounded by M , i.e. ‖S(t)‖ ≤ M for t ≥ 0
and 0 ∈ ρ(−A), where ρ(−A) denotes the resolvent set of −A. If required, for c > 0
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large enough, we may add cI to A, then −(A + cI) is invertible and generates a
bounded analytic semigroup. Also for t > 0, we have

‖AS(t)‖ ≤ Mt−1, (9)

‖AαS(t)‖ ≤ Mαt
−α. (10)

The set of all continuous functions from [0, T ] intoX , denoted by CT = C([0, T ];X)
is a Banach space under the supremum norm given by

‖ψ‖T = sup
0≤t≤T

‖ψ(t)‖, ψ ∈ CT .

Also, it can be shown easily that Cα
T = Xα(T ) = C([0, T ];D(Aα)) is a Banach

space endowed with the supremum norm

‖ψ‖T,α = sup
0≤t≤T

‖ψ(t)‖α, ψ ∈ Cα
T .

It follows that Aα, 0 ≤ α ≤ 1, can be defined as a closed linear invertible operator
with domain D(Aα) which is dense in H . D(Aω) →֒ D(Aα), for 0 < α < ω such
that embedding is continuous. Also, it can be easily shown that D(Aα) is a Banach
space with norm ‖x‖ = ‖Aαx‖ and this norm is equivalent to the graph norm of
Aα. For more details on the fractional powers of closed linear operator, we refer to
Pazy [10].

Assumptions on f and g: We list the following assumptions on f and g:

(A2) The nonlinear map f : [0, T ]×D(Aα) → H satisfies a local Lipschitz-like condition

‖f(t, x)− f(t, y)‖ ≤ FR(t)‖x− y‖T, α (11)

and
‖f(t, x)‖ ≤ FR(t), (12)

for all t ∈ [0, T ], x, y ∈ BR(X
α(T ), φ), where BR(X

α(T ), φ) := {u ∈ Xα(T ) :
‖u− φ‖T, α ≤ R}, and FR(t) : R

+ → R
+ is a nondecreasing function depending on

R.

(A3) For (t, x) ∈ [0, T ] × D(Aα), there exist positive constants L and β, 0 < α <

β < 1 such that the function Aβg is a continuous function satisfying the following
conditions

‖Aβg(t, x)−Aβg(s, y)‖ ≤ L{‖t− s‖γ + ‖x− y‖T, α} (13)

and
L‖Aα−β‖ ≤ 1, (14)

for all t∈ [0, T ], γ ∈ (0, 1] and x, y ∈ BR(X
α(T ), φ), L is a constant.

Lemma 2.1 [ Zhou and Jiao [14]] For any fixed t ≥ 0, Sq(t) and Tq(t) are bounded

linear operators such that ‖Sq(t)x‖ ≤ M‖x‖ , ‖Tq(t)x‖ ≤ qM
Γ(1+q)‖x‖ and ‖AαTq(t)x‖ ≤

qMαΓ(2−α)
Γ(1+q(1−α)) t

−qα for all x ∈ D(Aα) , where M is a constant such that ‖S(t)‖ ≤M , for all

t ∈ [0, T ].
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3 Existence and Uniqueness

In this section, we establish the existence and uniqueness of the solution to every ap-
proximate integral equations of (1) by using Banach fixed point theorem.

LetHn denote the finite dimensional subspace of the Hilbert spaceH which is spanned
by {u0, u1, · · · , un} and let Pn : H → Hn for n = 1, 2, · · · , be the corresponding projec-
tion operators. Let 0 < T0 ≤ T < ∞ be arbitrary but fixed constant chosen is such a
way that

B = max
{0≤t≤T0}

‖Aβg(t, φ)‖, (15)

‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖ ≤
(1 − ς)R

3
, (16)

‖Aα−β‖LT γ
0 +M1+α−βC1(LR̃+B)

T
q(β−α)
0

(β − α)
+ MαFR(T )C2

T
q(1−α)
0

(1− α)

< (1− ς)
R

6
, (17)

M1+α−βLC1
T

q(β−α)
0

(β − α)
+ MαFR(T )C2

T
q(1−α)
0

(1− α)
< 1− ς, (18)

where L‖Aα−β‖ = ς < 1, R̃ =
√
R2 + ||φ2α||, C1 = Γ{1−(α−β)}

Γ{1+q(β−α)} , C2 = Γ(2−α)
Γ{1+q(1−α)} .

We define

gn : [0, T ]×D(Aα) → H, such that gn(t, u(t)) = g(t, Pnu(t)) (19)

and
fn : [0, T ]×D(Aα) → H, such that fn(t, u(t)) = f(t, Pnu(t)), (20)

for each n.
Now, we consider a map Qn on BR(X

α(T0), φ) defined by

Qn(u)(t) = Sq(t)(φ + gn(0, φ))− gn(t, (t)) +

∫ t

0

(t− s)q−1ATq(t− s)gn(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)fn(s, u(s))ds, t ∈ [0, T0], (21)

for each n = 0, 1, 2, · · · .

Theorem 3.1 Let the assumptions (A1)-(A3) hold. Then there exists a constant T0,
0 < T0 < T and a unique fixed point un ∈ BR(X

α(T0), φ) of the operator Qn for all n
i.e. un satisfies the approximate integral equations

un(t) = Sq(t)(φ + gn(0, φ))− gn(t, un(t)) +

∫ t

0

ATq(t− s)gn(s, un(s))

(t− s)1−q
ds

+

∫ t

0

Tq(t− s)fn(s, un(s))

(t− s)1−q
ds, t ∈ [0, T0], (22)

for each n = 0, 1, 2, · · · .
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Proof. First we prove the continuity of the map t→ Qnu(t) from [0, T0] into D(Aα)
with respect to norm ‖ · ‖α. For any u ∈ BR(X

α(T0), φ) and t1, t2 ∈ [0, T0] with t1 < t2,
we have

Aα[(Qnu)t2 − (Qnu)t1]

= Aα[(Sq(t2)− Sq(t1))(φ + g(0, φ))]

−Aα−β [Aβgn(t2, u)−Aβgn(t1, u)]

+

∫ t2

t1

(t2 − s)q−1Tq(t2 − s)A1+α−β [Aβgn(s, u(s))]ds

+

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]Tq(t2 − s)A1+α−β [Aβgn(s, u(s))]ds

+

∫ t1

0

(t1 − s)q−1[Tq(t2 − s)− Tq(t1 − s)]A1+α−β [Aβgn(s, u(s))]ds

+

∫ t2

t1

(t2 − s)q−1AαTq(t2 − s)fn(s, u(s))ds

+

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]AαTq(t2 − s)fn(s, u(s))ds

+

∫ t1

0

(t1 − s)q−1Aα[Tq(t2 − s)− Tq(t1 − s)]fn(s, u(s))ds,

= K1 +K2 +K3 +K4 +K5 +K6 +K7 +K8.

Hence, we have

‖(Qnu)t2 − (Qnu)t1‖ ≤

8∑

i=1

‖Ki‖. (23)

We have

K1 = Aα[(Sq(t2)− Sq(t1))(φ + g(0, φ))],

=

∫ ∞

0

ζq(θ)[

∫ t2

t1

qθtq−1AαS(tβθ)A(φ + g(0, φ))dt]dθ,

taking norm on both the sides, we get (see [7, p. 101] and [8, p. 437])

‖K1‖ ≤

∫ ∞

0

ζq(θ)[

∫ t2

t1

qθtq−1‖AαS(tβθ)‖‖A(φ+ g(0, φ))‖dt]dθ,

≤ Mα

∫ ∞

0

θ1−αζq(θ)

∫ t2

t1

tq(1−α)−1‖A(φ+ g(0, φ))‖dtdθ,

≤
C2Mα

(1− α)
‖A(φ+ g(0, φ))‖(t

q(1−α)
2 − t

q(1−α)
1 ),

≤ C2Mαq‖A(φ+ g(0, φ))‖(t1 + κ(t2 − t1))
q(1−α)−1(t2 − t1),

≤ C2Mαq‖A(φ+ g(0, φ))‖κq(1−α)−1(t2 − t1)
q(1−α), (24)

and
‖K2‖ ≤ ‖Aα−β‖‖Aβgn(t2, u)−Aβgn(t1, u)‖ ≤ L‖Aα−β‖(t1 − t2)

γ . (25)
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Further, we have

‖K3‖ ≤ C1qM1+α−β

∫ t2

t1

(t2 − s)α(β−α)−1‖Aβgn(s, u(s))‖ds,

≤ C1M1+α−β [(LR̃+B)]
(t2 − t1)

q(β−α)

(β − α)
, (26)

and

K4 =

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]A1+α−βTq(t2 − s)Aβgn(s, u(s))ds.

Taking norm on both the sides, we get

‖K4‖ ≤ C1qM1+α−β

∫ t1

0

{(t1 − s)−q(1+α−β)[(t2 − s)q−1 − (t1 − s)q−1]

×‖Aβgn(s, u(s))‖}ds,

≤ C1qM1+α−β[(LR̃+B)]

×

∫ t1

0

(t1 − s)−q(1+α−β)[(t2 − s)q−1 − (t1 − s)q−1]ds,

≤ C1qM1+α−β[(LR̃+B)]

∫ t1

0

(t1 − s)λ−1[(t2 − s)−λµ − (t1 − s)−λµ]ds,

where λ = 1− q(1 + α− β), µ = q−1
1−q(1+α−β) (see Muslim, [8] and El-Borai [9]).

Hence, after some calculations we get

‖K4‖ ≤ C1qM1+α−β [(LR̃+B)]µδµ−1(1− b)−λ(1−µ)−1(t2 − t1)
λ(1−µ), (27)

where b = (1 − (µλ )
1

λµ ) and 0 ≤ δ ≤ 1.
Similarly,

‖K5‖ ≤ C1qM1+α−β [(LR̃+B)]µ1δ
µ1−1
1 (1 − b1)

−q(1−µ1)−1(t2 − t1)
q(1−µ1), (28)

where µ1 = 1 + α− β, b1 = (1− (µ1

q )
1

qµ1 ) and 0 ≤ δ1 ≤ 1 (see [8, 9]).

‖K6‖ ≤

∫ t2

t1

(t2 − s)q−1‖AαTq(t2 − s)‖‖fn(s, u(s))‖ds,

≤ FR(T )MαC2
(t2 − t1)

q(1−α)

(1 − α)
. (29)

Also, we notice that

‖K7‖ ≤

∫ t1

0

((t2 − s)q−1 − (t1 − s)q−1)‖AαTq(t2 − s)‖‖fn(s, u(s))‖ds,

≤ MαC2q

∫ t1

0

((t2 − s)q−1 − (t1 − s)q−1)(t1 − s)−qα‖fn(s, u(s))‖ds,

≤ MαC2FR(T )q

∫ t1

0

((t2 − s)−µ2λ
′

1 − (t1 − s)−µ2λ
′

1)(t1 − s)λ
′

1
−1ds,

≤ MαC2qFR(T )µ2δ
µ2−1
2 (1 − b2)

−λ
′

1
(1−µ2)−1(t2 − t1)

λ
′

1
(1−µ2), (30)
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where λ
′

1 = 1− qα, µ2 = 1−q
1−qα , b2 = (1− (µ2

λ
′

1

)
1

µ2λ
′

1 ), 0 ≤ δ2 ≤ 1, and

‖K8‖ ≤

∫ t1

0

(t1 − s)q−1‖Aα[Tq(t2 − s)− Tq(t1 − s)]‖‖fn(s, u(s))‖ds,

≤ C2qMαFR(T )

∫ t1

0

(t1 − s)q−1[(t2 − s)−qα − (t1 − s)−qα]ds,

≤ C2qMαFR(T )αδ
α−1
3 (1− b3)

−q(1−α)−1(t2 − t1)
q(1−α), (31)

where b3 = (1 − (αq )
1

qα ) and 0 ≤ θ3 ≤ 1. Using (24)-(31) in (23), we get that (Qnu)

is Hölder continuous on [0, T0]. Hence the continuity of the map t → (Qnu)(t) is
proved. Next we show that Qn(BR(X

α(T0), φ)) ⊆ BR(X
α(T0), φ). For any element

u ∈ BR(X
α(T0), φ), we have

‖(Qnu)(t)− φ‖α ≤ ‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖

+‖Aα−β‖‖Aβgn(0, φ)−Aβgn(t, u(t))‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, u(s))‖ds

+

∫ t

0

(t− s)q−1‖Tq(t− s)‖α‖fn(s, u(s))‖ds,

≤ ‖(Sq(t)− I)Aα(φ+ gn(0, φ))‖

+‖Aα−β‖‖Aβgn(0, φ)−Aβgn(t, u(t))‖

+M1+α−βC1q

∫ t

0

(t− s)q(β−α)−1‖Aβgn(s, u(s))‖ds

+MαC2q

∫ t

0

(t− s)q(1−α)−1‖fn(s, u(s))‖ds,

≤ ‖(Sq(t)− I)(φ + gn(0, φ))‖ + ‖Aα−β‖L{T γ
0 + ‖u(t)− φ‖}

+M1+α−βC1{(LR̃+B)}
T

q(β−α)
0

(β − α)

+MαC2FR(T )
T

q(1−α)
0

(1− α)
.

≤ R.

Taking supremum over [0, T0], we get

||(Qnu)− φ||T0, α ≤ R. (32)

This implies that Qn(BR(X
α(T0), φ)) ⊆ BR(X

α(T0), φ).
In the next step, our aim is to show that Qn is a strict contraction mapping on

BR(X
α(T0), φ). Let for all t ∈ [0, T0] and u1, u2 ∈ BR(X

α(T0), φ), we have

‖(Qnu1)(t)− (Qnu2)(t)‖α ≤ ‖Aα−β‖‖Aβgn(t, u1)−Aβgn(t, u2)‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖[‖Aβgn(s, u1(s)) −Aβgn(s, u2(s))‖]ds

+

∫ t

0

(t− s)q−1‖AαTq(t− s)‖‖fn(s, u1(s))− fn(s, u2(s))‖ds, (33)
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From the assumptions (A2) - (A3), we have

‖Aβgn(t, u1)−Aβgn(t, u2)‖ ≤ L‖u1(t)− u2(t)‖α ≤ L‖u1 − u2‖T0, α, (34)

‖fn(s, u1)− fn(s, u2)‖ ≤ FR(T )‖u1(s)− u2(s)‖α ≤ FR(T )‖u1 − u2‖T0, α. (35)

Using inequalities (34) and (35) in (33), we get

‖Qnu1(t)−Qnu2(t)‖α ≤ [‖Aα−β‖ L+M1+α−βLC1
T

q(β−α)
0

(β − α)

+MαFR(T )C2
T

q(1−α)
0

(1− α)
]‖u1(t)− u2(t)‖α. (36)

Taking supremum over [0, T0], we get

‖Qnu1 −Qnu2‖T0, α ≤ [‖Aα−β‖ L+M1+α−βLC1
T

q(β−α)
0

(β − α)

+ MαFR(T )C2
T

q(1−α)
0

(1− α)
]‖u1 − u2‖T0, α. (37)

We use (15)–(18) in the inequality (37) and get that Qn is a strict contraction
on BR(X

α(T0), φ). Hence, by the fixed point theorem, there exists a unique un ∈
BR(X

α(T0), φ) such that Qnun = un. which implies that un satisfies the integral equation
(22) for each n = 1, 2, · · · . This completes the proof of the theorem.

Lemma 3.1 Suppose that assumptions (A1) − −A(3) are satisfied. If φ ∈ D(Aα),
where 0 < α < 1, then un(t) ∈ D(Aυ) for all t ∈ (0, T0] with 0 ≤ υ < 1. Furthermore, if
φ ∈ D(A) then un(t) ∈ D(Aυ) for all t ∈ [0, T0] with 0 ≤ υ < 1.

From Theorem 3.1, we have that there exists a unique un ∈ BR(X
α(T0), φ) such that

un satisfies the equation (22). Theorem 2.6.13 in Pazy [10] implies that T (t) : H →
D(Aυ) for t > 0 and 0 ≤ υ < 1 and for 0 ≤ υ ≤ η < 1, D(Aη) ⊆ D(Aυ). From the
assumption (A3) we have that the map t 7→ Aβg(t, un(t)) is Hölder continuous on [0, T0]
with the exponent ρ = min{γ, υ}. It is easy to see that Hölder continuity of un can be
established using the similar arguments from equation (23), (30)-(31). From Theorem
4.3.2 in Pazy [10], we have

∫ t

0

(t− s)q−1Tq(t− s)Aβgn(s, un)ds ∈ D(A).

Also from Theorem 1.2.4 in Pazy [10], we have that T (t)x ∈ D(A) if x ∈ D(A). The
result follows from these facts and the fact that D(A) ⊆ D(Aυ) for 0 ≤ υ ≤ 1.

Corollary 3.1 Suppose that (A1), (A2) and (A3) are satisfied. If φ ∈ D(Aα) with
0 < α < 1, then for any t0 ∈ (0, T0] there exists a constant Ut0 such that

‖Aυun(t)‖ ≤ Ut0

for all t0 ≤ t ≤ T0 independent of n, where 0 < α < υ < β.
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Proof. Let us assume that φ ∈ D(Aα). Applying Aυ on both the sides of (22) and
using (9)–(10) for t ∈ [t0, T0] and α < υ < β, we obtain

‖un(t)‖υ ≤ ‖AυSq(t)(φ + gn(0, φ))‖ + ‖Aυ−β‖‖Aβgn(t, un)‖

+

∫ t

0

(t− s)q−1‖A1+υ−βTq(t− s)‖‖Aβgn(s, un)‖ds

+

∫ t

0

(t− s)q−1‖AυTq(t− s)‖‖fn(s, un)‖ds,

≤ Mυt
−qυ
0 (‖φ‖+ ‖gn(0, φ)‖) + ‖Aυ−β‖[(LR̃+B)]

+M1+υ−β(LR̃+B)C3
T

q(β−υ)
0

(β − υ)
+MυC4FR(T )

T
q(1−υ)
0

(1− υ)

≤ Ut0 ,

where C3 = Γ(1−υ+β)
Γ1+q(−υ+β) , C4 = Γ(2−υ)

Γ1+q(1−υ) .

Again, for t ∈ [0, T0] and 0 < υ ≤ α, φ ∈ D(Aυ) and

‖un(t)‖υ ≤ M(‖Aυφ‖+ ‖gn(0, φ)‖υ) + ‖Aυ−β‖[LR+B]

+M1+υ−β(LR̃+B)C3
T

q(β−υ)
0

(β − υ)
+MυC4FR(T )

T
q(1−υ)
0

(1− υ)

≤ Ut0 .

Furthermore, we have if φ ∈ D(Aβ) then φ ∈ D(Aυ) for 0 < υ ≤ β and required result
can be proved easily.

4 Convergence of Solution

In this section we will show the convergence of the solution un ∈ Xα(T0) of the approx-
imate integral equations (22) to a unique solution u(·) ∈ Xα(T0) of the equation (8).

Theorem 4.1 Let the assumptions (A1)–(A3) hold. If φ ∈ D(Aα), then for any
t0 ∈ (0, T0],

lim
n→∞

sup
{n≥m, t0≤t≤T0}

‖un(t)− um(t)‖α = 0.

Proof. For n ≥ m, we have

Aα[un(t)− um(t)] = Sq(t)A
α(gn(0, φ)− gm(0, φ))

+

∫ t

0

(t− s)q−1 × [Aα+1Tq(t− s){gn(s, un)− gm(s, um)}]ds

+

∫ t

0

(t− s)q−1AαTq(t− s)[fn(s, un)− fm(s, um)]ds. (38)

Now, let 0 < α < ν < β, then we have

‖fn(t, un)− fm(t, um)‖ ≤ ‖fn(t, un)− fn(t, um)‖+ ‖fn(t, um)− fm(t, um)‖,

≤ FR(T )‖un(t)− um(t)‖α + ‖(Pn − Pm)um(t)‖α.
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Also,

‖(Pn − Pm)um(t)‖α ≤ ‖Aα−β(Pn − Pm)Aνum(t)‖ ≤
1

λν−α
m

‖Aνum(t)‖.

Thus, we have

‖fn(t, un)− fm(t, um)‖ ≤ FR(T )[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]. (39)

Similarly,

‖Aβgn(t, un)−Aβgm(t, um)‖ ≤ L[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]. (40)

From (38), (39) and (40) and for 0 < t
′

0 < t0, we have

‖un(t)− um(t)‖α ≤ ‖Sq(t)A
α(gn(0, φ)− gm(0, φ))‖

≤ ‖Sq(t)A
α(gn(0, φ)− gm(0, φ))‖+ ‖Aα−β‖‖Aβgn(t, un)−Aβgm(t, um)‖

+(

∫ t
′

0

0

+

∫ t

t
′

0

)(t− s)q−1‖A1+α−βTq(t− s)‖ × [‖Aβgn(s, un)− Aβgm(s, um)‖]ds

+(

∫ t
′

0

0

+

∫ t

t
′

0

)(t− s)q−1‖AαTq(t− s)‖‖fn(s, un)− fm(s, um)‖ds. (41)

The first term of (41) is estimated as

‖Sq(t)Aα(gn(0, φ)− gm(0, φ))‖ ≤ M‖Aα−β‖‖Aβg(0, Pnφ)−Aβg(0, Pmφ)‖

≤ M‖Aα−β‖L‖(Pn − Pm)Aαφ‖. (42)

We estimate the first and third integrals as

∫ t
′

0

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤ 2M1+α−βC1q(LR1 +B1)× (t0 − t
′

0)
q(β−α)−1t

′

0, (43)

∫ t
′

0

0

(t− s)q−1‖AαTq(t− s)‖ × ‖fn(s, un)− fm(s, um)‖ds

≤ 2MαC2FR(T )q(t0 − t
′

0)
q(1−α)−1t

′

0. (44)

From the second and fourth integrals, we have

∫ t

t
′

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤M1+α−βLC1q

∫ t

t
′

0

(t− s)q(β−α)−1[‖un(s)− um(s)‖α +
1

λν−α
m

‖Aνum(s)‖]ds,

≤M1+α−βLC1q(
Ut

′

0

T
q(β−α)
0

λν−α
m q(β − α)

+

∫ t

t
′

0

(t− s)q(β−α)−1‖un(s)− um(s)‖αds), (45)
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and
∫ t

t
′

0

(t− s)q−1‖AαTq(t− s)‖‖fn(s, un)− fm(s, um)‖ds

≤MαFR(T )C2q

∫ t

t
′

0

(t− s)q(1−α)−1[‖un(s)− um(s)‖α +
1

λν−α
m

‖Aνum(s)‖]ds,

≤MαFR(T )C2q(
Ut

′

0

T
q(1−α)
0

λν−α
m q(1− α)

+

∫ t

t
′

0

(t− s)q(1−α)−1‖un(s)− um(s)‖αds). (46)

Using (42)–(46) in (41), we obtain

‖un(t)− um(t)‖α ≤ M‖Aα−β‖‖(Pn − Pm)Aαφ‖

+‖Aα−β‖L[‖un(t)− um(t)‖α +
1

λν−α
m

‖Aνum(t)‖]

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2FR(T )q

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βqLC1

(t− s)q(α−β)+1
)

×[‖un(s)− um(s)‖α]ds, (47)

where

Mα,β =MαFR(T )C2
T

q(1−α)
0

(1− α)
+M1+α−βLC1

T
q(β−α)
0

(β − α)
. (48)

Also, we have ‖Aα−β‖L < 1. Therefore inequality (47) becomes

‖un(t)− um(t)‖α ≤
1

(1− ‖Aα−β‖L)
{M‖(Pn − Pm)Aαφ‖ + ‖Aα−β‖L

Ut
′

0

λν−α
m

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2qFR(T )

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βLC1q

(t− s)q(α−β)+1
)

×[‖un(s)− um(s)‖α]ds}. (49)

Taking supremum over [t0, T0], we get

sup
t∈[t0,T0]

‖un(t)− um(t)‖α

≤
1

(1− ‖Aα−β‖L)
{M‖(Pn − Pm)Aαφ‖ + ‖Aα−β‖L

Ut
′

0

λν−α
m

+2(
M1+α−βC1q(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2qFR(T )

(t0 − t
′

0)
q(α−1)−1

)t
′

0 +Mα,β

Ut
′

0

λν−α
m

+

∫ t

t
′

0

(
MαqC2FR(T )

(t− s)q(α−1)+1
+

M1+α−βLqC1

(t− s)q(α−β)+1
)‖un − um‖T0, αds}. (50)
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Applying Gronwall’s inequality to the above inequality, taking m→ ∞, we obtain

lim
m→∞

sup
{n≥m, t0≤ t ≤ T0}

‖un(t)− um(t)‖α

≤
2

(1− ‖Aα−β‖L)
[
M1+α−βC1(LR1 +B1)

(t0 − t
′

0)
q(α−β)−1

+
MαC2FR(T )

(t0 − t
′

0)
q(α−1)−1

]t
′

0 × C, (51)

where C is arbitrary constant. The right hand side of inequality (51) may be made as
small as possible by taking t

′

0 (as t
′

0 is arbitrary) sufficiently small. This completes the
proof of the theorem.

Corollary 4.1 Let assumptions (A1)− (A3) hold. If φ ∈ D(A), then

sup
{n≥m, 0≤t≤T0}

‖Aα[un(t)− um(t)]‖ → 0,

as m→ ∞.

Proof. In this case, we have

‖Sq(t)φ‖α ≤M‖φ‖α. (52)

Then from the inequality (52), Lemma (3.1) and Corollary (3.1) we get that in the proof
of Theorem (4.1), we can take t0 = 0 to get the required result.

Theorem 4.2 Suppose that (A1) − (A3) are satisfied and φ ∈ D(Aα). Then, there
exist T0, 0 < T0 ≤ T and a unique function u ∈ Xα(T0) such that un → u as n→ ∞ in
Xα(T0) and u ∈ Xα(T0) satisfies the equation (8) on [0, T0].

Proof. Let φ ∈ D(Aα). Since Aαun(t) → Aαu(t) as n → ∞, for 0 < t ≤ T0 and
un(0) = u(0) = φ for all n. Since un ∈ BR(X

α(T0), φ), it follows that u ∈ BR(X
α(T0), φ).

Further, for any 0 < t0 ≤ T0, we have

sup
{t0≤t≤T0}

‖un(t)− u(t)‖α = 0.

Also,

‖fn(t, un)− f(t, u)‖ = ‖f(t, Pnun)− f(t, u)‖,

≤ FR(T )[‖un − u‖α + ‖(Pn − I)u‖α], (53)

and

‖Aβgn(t, un)−Aβg(t, u)‖ = ‖Aβg(t, Pnun)−Aβg(t, u)‖,

≤ L[‖un − u‖α + ‖(Pn − I)u‖]. (54)

Taking supremum on [t0, T0], we get

sup
{t0≤t≤T0}

‖fn(t, un)− f(t, u)‖ ≤ FR(T )[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0,

as n→ ∞ and

sup
{t0≤t≤T0}

‖Aβgn(t, un)−Aβg(t, u)‖ ≤ L[‖un − u‖T0, α + ‖(Pn − I)u‖T0,α],

→ 0,
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as n→ ∞. Now, for 0 < t0 < t, we may rewrite (22) as

un(t) = Sq(φ+ gn(0, φ))− gn(t, un) + (

∫ t0

0

+

∫ t

t0

)(t− s)q−1ATq(t− s)gn(s, un)ds

+(

∫ t0

0

+

∫ t

t0

)(t− s)q−1Tq(t− s)fn(s, un)ds. (55)

We have

‖

∫ t0

0

(t− s)q−1ATq(t− s)gn(s, un)ds‖ ≤

∫ t0

0

(t− s)q−1‖A1−βTq(t− s)‖

×[‖Aβgn(s, un)‖]ds,

≤ M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0, (56)

and

‖

∫ t0

0

(t− s)q−1Tq(t− s)fn(s, un)ds‖ ≤

∫ t0

0

(t− s)q−1‖Tq(t− s)‖‖fn(s, un)‖ds,

≤ MC
′

1{(LR̃+B)}T qβ−1
0 t0, (57)

where C
′

1 = qΓ(1+β)
Γ(1+qβ) and C

′

2 = q
Γ(1+q) . Thus, we have

‖un(t)− Sq(t)(φ + gn(0, φ)) + gn(t, un)−

∫ t

t0

(t− s)q−1ATq(t− s)gn(s, un)ds

−

∫ t

t0

(t− s)q−1Tq(t− s)fn(s, un)ds‖

≤M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0 +MC

′

2FR(T )T
q−1
0 t0.

Let n→ ∞, in the above inequality, we get

‖u(t)− Sq(t)(φ+ g(0, φ)) + g(t, u(t))−
∫ t

t0
(t− s)q−1ATq(t− s)g(s, u(s))ds

−

∫ t

t0

(t− s)q−1Tq(t− s)f(s, u(s))ds‖

≤M1−βC
′

1{(LR̃+B)}T qβ−1
0 t0 +MC

′

2FR(T )T
q−1
0 t0. (58)

Since 0 < t0 ≤ T0 is arbitrary, we get that u satisfies the integral equation (8).
Now, let φ ∈ D(A). Corollary 4.1 implies that there exists u ∈ Xα(T0) such that

un → u in Xα(T0). Since un ∈ BR(X
α(T0), φ) for each n, u is also in BR(X

α(T0), φ).
Further, we have

sup
{0≤t≤T0}

‖fn(t, un)− f(t, u)‖ ≤ FR(T )[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0, as n→ ∞, (59)

and

sup
{0≤t≤T0}

‖Aβgn(t, un)−Aβg(t, u)‖ ≤ L[‖un − u‖T0, α + ‖(Pn − I)u‖T0, α],

→ 0, as n→ ∞. (60)
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Using (59), (60) and (22), we obtain

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds. (61)

Hence, this completes the proof of the theorem.

Now, we shall show the uniqueness of the solution to equation (61). Let u1 and u2
be the two solutions of (61). We have

u1(t)− u2(t) = −{g(t, u1(t))− g(t, u2(t))}

+

∫ t

0

(t− s)q−1ATq(t− s)[g(s, u1)− g(s, u2)]ds

+

∫ t

0

(t− s)q−1Tq(t− s)[f(s, u1)− f(s, u2)]ds,

and thus

‖Aα[u1(t)− u2(t)]‖ ≤ ‖Aα−β‖‖Aβg(t, u1(t))−Aβg(t, u2(t))‖

+

∫ t

0

(t− s)q−1‖A1+α−βTq(t− s)‖‖Aβg(s, u1)−Aβg(s, u2)‖ds

+

∫ t

0

(t− s)q−1‖AαTq(t− s)‖‖f(s, u1)− f(s, u2)‖ds,

≤ ‖Aα−β‖L‖u1(t)− u2(t)‖α

+M1+α−βC1Lq

∫ t

0

(t− s)q(β−α)−1‖u1(t)− u2(t)‖αds

+MαFR(T )C2q

∫ t

0

(t− s)q(1−α)−1‖u1(t)− u2(t)‖αds.

Since ‖Aα−β‖L < 1, therefore we obtain
‖u1(t)− u2(t)‖α

≤
1

(1− L‖Aα−β‖)
[

∫ t

0

{
M1+α−βC1qL

(t− s)1−q(β−α)
+

MαFR(T )C2q

(t− s)1−q(1−α)
}‖u1(t)− u2(t)‖αds].

Applying Gronwall’s inequality, we obtain

‖u1(t)− u2(t)‖α = 0

for all 0 ≤ t < T0. From the fact

‖u1(t)− u2(t)‖ ≤
1

λα0
‖u1(t)− u2(t)‖α,

therefore, u1 = u2 on [0, T0]. The proof of the theorem is complete.
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5 Faedo-Galerkin Approximation

In this section, we will discuss the Faedo-Galerkin approximations of solutions and prove
some convergence result for such approximations.

We know that for any 0 < T0 < T , we have a unique u ∈ Xα(T0) satisfying the
integral equation

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, (62)

Also, there is a unique solutions un ∈ Xα(T0) of the approximate integral equations

un(t) = Sq(t)(φ + gn(0, φ))− gn(t, un(t)) +

∫ t

0

(t− s)q−1ATq(t− s)gn(s, un(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)fn(s, un(s))ds. (63)

We apply the projection on the above equation, then Faedo-Galerkin approximation is
given by vn(t) = Pnun(t) satisfying

Pnun(t) = vn(t) = Sq(t)(P
nφ+ Png(0, Pnφ)) − Png(t, vn(t))

+

∫ t

0

(t− s)q−1ATq(t− s)Png(s, vn(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)Pnf(s, vn(s))ds. (64)

Let the solution u of (62) and vn of (64) have the representation

u(t) =
∞∑

i=0

αi(t)ui, αi(t) = (u(t), ui) i = 0, 1, 2, · · · , (65)

vn(t) =

n∑

i=0

αn
i (t)ui, αn

i (t) = (vn(t), ui) i = 0, 1, 2, · · · , (66)

Using (66) in (64), we obtain a system of fractional order integro-differential equation of
the form

dq

dtq
(αn

i (t) + gni (t, α
n
0 (t), α

n
1 (t)..., α

n
n)) + λiα

n
i (t) = fn

i (α
n
0 (t), α

n
1 (t)..., α

n
n), (67)

αn
i (0) = φi, (68)

where

gni (t, α
n
0 (t), α

n
1 (t)..., α

n
n)) = (g(t,

n∑

i=0

αn
i (t)ui), ui),

fn
i (α

n
0 (t), α

n
1 (t)..., α

n
n) = (f(t,

n∑

i=0

αn
i (t)ui), ui),

and φi = (φ, ui), for i = 1, 2, · · · , n. The system (67)–(68) determines the αn
i (t)’s.

As a consequence of Theorems 3.1 and 4.1, we have the following convergence result.
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Theorem 5.1 Let (A1) − (A3) hold and φ ∈ D(Aα). Then there exist functions
vn ∈ C([0, T0], D(Aα)),

vn(t) = Sq(t)(P
nφ+ Png(0, Pnφ)) − Png(t, vn(t))

+

∫ t

0

(t− s)q−1ATq(t− s)Png(s, vn(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)Pnf(s, vn(s))ds, t ∈ [0, T0]

and u ∈ C([0, T0], D(Aα)),

u(t) = Sq(t)(φ + g(0, φ))− g(t, u(t)) +

∫ t

0

(t− s)q−1ATq(t− s)g(s, u(s))ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, u(s))ds, t ∈ [0, T0]

such that vn → u in C([0, T0], D(Aα)) as n→ ∞.

Now, we show the convergence of αn
i (t) → αi(t). Consider the following

Aα[u(t)− vn(t)] = Aα[
∞∑

i=0

(αi(t)− αn
i (t))ui] =

∞∑

i=0

λαi (αi(t)− αn
i (t))ui.

Therefore, we have

‖Aα[u(t)− vn(t)]‖
2 ≥

n∑

i=0

λ2αi (αi(t)− αn
i (t))

2.

We have the following convergence theorem.

Theorem 5.2 We have the following result:
(a) If φ ∈ D(Aα) for all t0 ∈ (0, T0], then

lim
n→∞

sup
t0≤t≤T0

[
n∑

i=0

λ2αi {αi(t)− αn
i (t)}

2] = 0.

(b) If φ ∈ D(A) for all t ∈ [0, T0], then

lim
n→∞

sup
0≤t≤T0

[
n∑

i=0

λ2αi {αi(t)− αn
i (t)}

2] = 0.

The assertion of this theorem follows from the facts mentioned above and the following
result.

Proposition 5.1 Let (H1)−(H3) hold and let T0 be any number such that 0 < T0 <

T , then we have the following.

(a) If φ ∈ D(Aα) for all t0 ∈ (0, T0] then

lim
n→∞

sup
n≥m, t0≤t≤T

‖ Aα[vn(t)− vm(t)]‖ = 0. (69)
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(b) If φ ∈ D(A) for all t0 ∈ [0, T0] then

lim
n→∞

sup
n≥m, 0≤t≤T

‖ Aα[vn(t)− vm(t)]‖ = 0. (70)

Proof. For n ≥ m, we have

‖ Aα[vn(t)− vm(t)]‖ = ‖ Aα[Pnun(t)− Pmum(t)]‖,

≤ ‖ Pn[un(t)− um(t)]‖α + ‖ (Pn − Pm)um(t)‖α,

≤ ‖ [un(t)− um(t)]‖α +
1

λϑ−α
m

‖ Aϑum‖. (71)

If φ ∈ D(Aα), then the result in (a) follows from Theorem 4.1. If φ ∈ D(A), (b) follows
from Corollary 4.1.

6 Application

Consider the following partial differential equation of fractional order of the form

dq

dtq
[u(t, x)−∆u(x, t)] + ∆2u(x, t) = F (x, t, u(t, x)), 0 < q ≤ 1, (72)

u(x, 0) = u0, x ∈ Ω, (73)

with the homogenous boundary conditions. Were Ω is a bounded domain in the RN with
sufficiently smooth boundary ∂Ω and ∆ is N -dimensional Laplacian and function h is
sufficiently smooth in all arguments. We take X = L2(Ω) and let A be the operator
defined as −Au = ∆u with the domain

D(A) = H2(Ω) ∩H1
0 (Ω). (74)

Then equation (72) can be written as

dq

dtq
[v(t) +Av(t)] +A2v(t) = F (t, v(t)), (75)

v(0) = u0. (76)

It is well known that A is not invertible but (A+ cI) is invertible and ||(A+ cI)−1|| ≤ C

for large enough c > 0. Therefore equation (75) can be written of the form (1) with
g(t, v) = (1 − c)(A + cI)−1v and f(t, v) = cA(A + cI)−1v + F (t, (A + cI)−1v). It is
easy to see that operator A satisfies (A1) and f and g satisfy (A2) and (A3) respectively.
By applying the results of the earlier sections, we have the existence of Faedo-Galerkin
approximations and their convergence to the unique solution of (72)-(73).
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