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1 Introduction

The Lotka–Volterra type differential and difference equations systems are extensively
used in modeling of population dynamics [6, 7, 9, 12, 14, 15]. A very important ecolog-
ical problem associated with multispecies population interactions is the following one:
whether or not the densities of all species are bounded [5, 7, 9, 15]. Of particular interest
is the situation when there exists a bounded region in the phase space of the system,
such that every solution enters this region for finite time and remains within it thereafter.
Solutions of systems possessing this property are called ultimately bounded [6, 7].
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It is worth mentioning that, in the analysis of population models, it is important not
only to check the ultimate boundedness, but also to verify whether or not the considered
system is permanent [5, 7, 12, 17]. The permanence property, in addition to the ultimate
boundedness of densities of all species, implies that if initially all species are present,
even in very small quantities, then after a certain time some sizeable amount of each of
them will be present.

Conditions of ultimate boundedness and permanence are well investigated for Lotka–
Volterra type models with constant parameters, see, for example, [5–7, 9] and the refer-
ences cited therein. However, owing to many natural and man-made factors, such as fire,
drought, raining season, changing in nutrition, deforestation, radiation, etc., the intrinsic
discipline of biological species or ecological environment usually undergoes some discrete
changes of relatively short duration at some fixed times. For more adequate modeling
of such processes, stochastic, switched or impulsive systems are used [4, 8, 13, 17, 18].
The problem of ultimate boundedness and permanence analysis for these models is much
more complicated than that one for differential and difference systems with constant
parameters.

In the present paper, a discrete-time switched Lotka–Volterra type system is studied.
The system consists of a family of subsystems of difference equations and a switching law
determining at each time instant which subsystem is active. We will look for conditions
providing the ultimate boundedness or permanence of the considered system for an ar-
bitrary switching law. A general approach to the problem is based on the construction
of a common Lyapunov function (CLF) for the family of subsystems corresponding to
the switched system. This approach has been effectively used for the analysis of stability
and boundedness for many classes of switched systems, see, for instance, [1–3, 10, 11,
16], and the references therein. However, the problem of the existence of a CLF has not
got a constructive solution even for the case of family of linear time-invariant systems
[11].

In [3], for the investigated switched system, a special form of Lyapunov function
has been used. The sufficient condition in terms of linear inequalities was obtained to
guarantee the existence of a CLF in the prescribed form, and thereby to ensure that
solutions of the switched system are ultimately bounded or permanent for an arbitrary
switching signal. In the present paper, two different approaches for the constructing
of a CLF are proposed. The usage of these approaches permits to relax the ultimate
boundedness and the permanence conditions found in [3].

2 Statement of the Problem

Consider the switched difference system

xi(k + 1) = xi(k) exp



h



c
(σ)
i +

n∑

j=1

p
(σ)
ij fj(xj(k))







 , i = 1, . . . , n. (1)

The system describes interaction of n species in a biological community. Here xi(k)
is the density of population i at the kth generation; functions fi(zi) are defined for

zi ∈ [0,+∞); σ = σ(k), k = 0, 1, . . ., with σ(k) ∈ {1, . . . , N} defines a switching law; c
(s)
i

and p
(s)
ij , s = 1, . . . , N , i, j = 1, . . . , n, are constant coefficients; h is a positive parameter

characterizing the transient time between two consecutive generations. Thus, at each
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time instant, the dynamics of (1) is described by one of the subsystems

xi(k + 1) = xi(k) exp


h


c

(s)
i +

n∑

j=1

p
(s)
ij fj(xj(k))




 , i = 1, . . . , n, s = 1, . . . , N. (2)

Subsystems of the form (2) are discrete counterparts of the continuous generalized Lotka–
Volterra ecosystem models [5–7, 12, 15]. It is known [6, 7, 12] that if the populations have
non-overlapping generations, then discrete time models are more appropriate than the
continuous ones. Moreover, they provide efficient schemes for the numerical simulation
of continuous processes.

In (1), coefficients c
(s)
i characterize the intrinsic growth rate of the ith population; the

introduction of self-interaction terms p
(s)
ii fi(zi) with p

(s)
ii < 0 is justified by the natural

limitation of resources in the environment, the terms p
(s)
ij fj(zj) for j 6= imeasure influence

of population j on population i. It is supposed that environment fluctuations provoke
switching of the system parameters.

According to standard assumptions [6, 7, 15], we assume that functions fi(zi), i =
1, . . . , n, possess the following properties:

(i) fi(zi) are continuous for zi ∈ [0,+∞);
(ii) fi(0) = 0, and for zi > 0 the inequality fi(zi) > 0 holds, and
(iii) fi(zi) → +∞ as zi → +∞.
By Rn

+ we denote the non-negative orthant of Rn; intRn
+ being the interior of Rn

+;

x(k,x(0), k0) denotes the solution of (1) starting from x(0) at k = k0; Ps =
(
p
(s)
ij

)n
i,j=1

,

s = 1, . . . , N , are given matrices; and BQ = {z : z ∈ intRn
+, ‖z‖ ≤ Q} for a given

positive number Q. For biological reasons, we will consider (1) in intRn
+ which is an

invariant set for this system.

Definition 2.1 System (1) is called ultimately bounded in intRn
+ with the ultimate

bound R > 0 if, for any x(0) ∈ intRn
+ and k0 ≥ 0, there exists T > 0, such that

‖x(k,x(0), k0)‖ ≤ R for k ≥ k0 + T .

Definition 2.2 System (1) is called uniformly ultimately bounded in intRn
+ with

the ultimate bound R > 0 if, for any Q > 0, there exists T = T (Q) > 0, such that
‖x(k,x(0), k0)‖ ≤ R for all k0 ≥ 0, x(0) ∈ BQ, k ≥ k0 + T .

Definition 2.3 System (1) is called permanent if there exists a compact set D ⊂
intRn

+, such that, for any x(0) ∈ intRn
+ and k0 ≥ 0, the solution x(k,x(0), k0) of (1)

ultimately remains in D.

Definition 2.4 System (1) is called uniformly permanent if there exist numbers ∆1

and ∆2, 0 < ∆1 < ∆2, such that, for any δ1 and δ2, 0 < δ1 < δ2, one can choose T > 0
satisfying the following condition: if for the initial values of a solution x(k,x(0), k0) the

inequalities k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i = 1, . . . , n, hold, then ∆1 ≤ xi(k,x

(0), k0) ≤ ∆2,
i = 1, . . . , n, for k ≥ k0 + T .

Conditions of the ultimate boundedness and the permanence are well investigated
for individual subsystems from (2) without switching [5–7, 12]. The goal of the present
paper is the ultimate boundedness and the permanence analysis for switched system (1).
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3 Ultimate Boundedness Conditions

Sufficient conditions of uniform ultimate boundedness for switched system (1) have been
obtained in [3]. The case was considered when, for the functions f1(z1), . . . , fn(zn), in
addition to the properties (i)–(iii), the following assumptions are fulfilled.

Assumption 3.1 Let
∫ 1

0
fi(τ)
τ dτ < +∞, i = 1, . . . , n.

Assumption 3.2 The functions f̃i(zi) = fi(exp(zi)) satisfy the Lipschitz condition
with constant L for all zi ∈ (−∞,+∞), i = 1, . . . , n.

For example, the properties (i)–(iii) and Assumptions 3.1 and 3.2 are fulfilled for
functions fi(zi) = log(zi + 1), i = 1, . . . , n.

Let us introduce the auxiliary matrices Ps =
(
p̄
(s)
ij

)n
i,j=1

whose entries are defined by

the formulae p̄
(s)
ii = p

(s)
ii , and p̄

(s)
ij = max

{
p
(s)
ij ; 0

}
for j 6= i; i, j = 1, . . . , n; s = 1, . . . , N .

Thus, the matrices P1, . . . ,PN are Metzler ones [9, 10].
Consider the two families of linear inequalities systems

Psθ < 0, s = 1, . . . , N, (3)

Ps
T
b < 0, s = 1, . . . , N, (4)

where θ = (θ1, . . . , θn)
T , b = (b1, . . . , bn)

T . These inequalities in vector form are under-
stood to be component-wise. That is to say, a vector is less than zero if and only if so
is each component of the vector. For convenience, one can call a vector to be negative
(respectively, positive) if it is less (respectively, greater) than zero.

In [3], a CLF for (2) has been chosen in the form

V1(z) =

n∑

i=1

λi

∫ zi

1

fi(τ)

τ
dτ, (5)

where λ1, . . . , λn are positive coefficients. By the usage of function (5), the following
theorem was proved.

Theorem 3.1 Let Assumptions 3.1 and 3.2 be fulfilled. If systems (3) and (4) admit

positive solutions, then there exists h0 > 0 such that system (1) is uniformly ultimately

bounded in intRn
+ for any h ∈ (0, h0) and for arbitrary switching law.

Remark 3.1 Necessary and sufficient conditions of solvability for inequality systems
of the form (3) and (4) with Metzler matrices have been found in [2, 10]. Furthermore,
in [2], an effective algorithm based on a modification of Gaussian elimination procedure
for the construction of positive solutions of such systems was suggested.

Remark 3.2 It is known [9] that if a matrix P is Metzler one, then the system of
inequalities Pθ < 0 possesses a positive solution if and only if the system of inequalities
PTb < 0 possesses a positive solution as well. However, it is not true for the families
of inequalities (3), (4) [2, 3]. Generally, from the existence of a positive solution for
the inequalities (3) with Metzler matrices P1, . . . ,PN , it does not follow that a positive
solution also exists for the corresponding inequalities (4).
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In the present section, we shall suggest another approach for the constructing of a CLF
for family (2). The usage of this approach permits to relax the conditions of Theorem
3.1. In particular, we will prove that in the case when for functions f1(z1), . . . , fn(zn),
instead of Assumptions 3.1 and 3.2, an additional assumption is fulfilled, the existence of
a positive solution for (3) is sufficient to ensure that (1) is uniform ultimately bounded
for sufficiently small values of h and for any switching law. Thus, another condition of
Theorem 3.1, i.e., the condition of the existence of a positive solution for (4), can be
dropped.

Assumption 3.3 The functions f̃i(zi) = fi(exp(zi)) are continuously differentiable
for zi ∈ (−∞,+∞), and 0 < f̃ ′

i(zi) ≤ L, i = 1, . . . , n, where L is a positive constant.

Theorem 3.2 Let Assumption 3.3 be fulfilled. If system (3) admits a positive solu-

tion, then there exists h0 > 0 such that system (1) is uniformly ultimately bounded in

intRn
+ for any h ∈ (0, h0) and for arbitrary switching law.

Proof. Let a positive vector θ = (θ1, . . . , θn)
T satisfy the inequalities (3). Then there

exists a number γ > 0, such that
∑n

j=1 p̄
(s)
ij θj ≤ −γ, i = 1, . . . , n, s = 1, . . . , N .

Construct a CLF for (2) in the form

V2(z) = max
i=1,...,n

fi(zi)

θi
. (6)

Function V2(z) is continuous for z ∈ Rn
+, and V2(z) → +∞ as ‖z‖ → ∞.

For some s in {1, . . . , N}, consider the difference of the function (6) with respect to
the sth subsystem from (2). Let x̂ ∈ intRn

+, and x(k) = (x1(k), . . . , xn(k))
T be the

solution of the sth subsystem starting from x̂ at k = 0. For every k = 0, 1, . . ., find

Bk = max
i=1,...,n

fi(xi(k))

θi
.

Denote by Ak a subset of {1, . . . , n} such that fi(xi(k))/θi = Bk for i ∈ Ak, and
fi(xi(k))/θi < Bk for i /∈ Ak.

Choose a nonnegative integer k. Let r ∈ Ak, i ∈ Ak+1. We obtain

∆V2

∣∣
(s)

= V2(x(k + 1))− V2(x(k)) =
fi(xi(k + 1))

θi
−

fr(xr(k))

θr

=

(
fi(xi(k + 1))

θi
−

fi(xi(k))

θi

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

=

(
f̃i(yi(k + 1))

θi
−

f̃i(yi(k))

θi

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h


c

(s)
i +

n∑

j=1

p̄
(s)
ij fj(xj(k))


−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h


c

(s)
i + p̄

(s)
ii fi(xi(k))+

n∑

j=1

p̄
(s)
ij θj

fr(xr(k))

θr
− p̄

(s)
ii θi

fr(xr(k))

θr



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−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

≤
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h

(
c
(s)
i − γBk − p̄

(s)
ii θi

(
fr(xr(k))

θr
−

fi(xi(k))

θi

))

−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)

=
f̃ ′
i(yi(k) + ξik∆yi(k))

θi
h
(
c
(s)
i − γBk

)
−

(
fr(xr(k))

θr
−

fi(xi(k))

θi

)(
1 + Lhp̄

(s)
ii

)
.

Here yi(k) = log xi(k), ∆yi(k) = yi(k + 1)− yi(k), ξik ∈ (0, 1).

Let D = max
s=1,...,N

max
i=1,...,n

|p̄
(s)
ii |,

0 < h0 <
1

LD
, (7)

and h ∈ (0, h0). Then there exists a positive number H , such that ∆V2

∣∣
(s)

< 0 for

‖x(k)‖ > H and for all s = 1, . . . , N .
Define the constants M and M1 by the following formulae:

M = max
z∈Rn

+
, ‖z‖≤H

V2(z), M1 > M + hL max
s=1,...,N

max
i=1,...,n

∣∣∣∣∣
c
(s)
i

θi

∣∣∣∣∣ .

Consider the regionG = {z : z ∈ intRn
+, V2(z) ≤ M1}.We obtain that V2(x(k+1)) ≤ M1

if ‖x(k))‖ ≤ H , and V2(x(k + 1)) < V2(x(k)) if ‖x(k))‖ > H . Hence, once a solution
x(k,x(0), k0) of (1) enters into G at k = k1 ≥ k0, it remains within the region for k ≥ k1.

Choose a positive number Q. We will show that there exists T = T (Q) ≥ 0 such that
V2(x(k,x

(0), k0)) ≤ M1 for all k0 ≥ 0, x(0) ∈ BQ and k ≥ k0 + T (Q).
Let U = maxz∈Rn

+
, ‖z‖≤Q V2(z). If U ≤ M1, then we can take T (Q) = 0.

Now consider the case when U > M1. If V2(x(k,x
(0), k0)) > M1 for k = k0, k0 +

1, . . . , k̃, then the inequalities

M1 < V2(x(k̃,x
(0), k0)) ≤ V2(x

(0))− ρ(k̃ − k0) ≤ U − ρ(k̃ − k0)

hold, where
ρ = − max

s=1,...,N
max

z∈Rn
+
, M1≤V2(z)≤U

∆V2

∣∣
(s)

> 0.

Hence, k̃ < k0+(U−M1)/ρ. By taking T (Q) = (U−M1)/ρ, one gets V2(x(k,x
(0), k0)) ≤

M1 for k ≥ k0 + T (Q). Thus, system (1) is uniformly ultimately bounded in intRn
+.

Corollary 3.1 Let c
(s)
i ≤ 0, i = 1, . . . , n; s = 1, . . . , N , and Assumption 3.3 be

fulfilled. If system (3) admits a positive solution, then there exists h0 > 0 such that the

zero solution of (1) is globally asymptotically stable in intRn
+ for any h ∈ (0, h0) and for

any switching law.

Remark 3.3 In the case when all the coefficients c
(s)
i are negative, instead of (3), it

is sufficient to consider the nonstrict inequalities

Psθ ≤ 0, s = 1, . . . , N. (8)
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Corollary 3.2 Let c
(s)
i < 0, i = 1, . . . , n; s = 1, . . . , N , and Assumption 3.3 be

fulfilled. If system (8) admits a positive solution, then there exists h0 > 0 such that the

zero solution of (1) is globally asymptotically stable in intRn
+ for any h ∈ (0, h0) and for

any switching law.

4 Permanence Conditions

In this section, we consider the case when, in system (1), parameters c
(s)
i and p

(s)
ij satisfy

an additional restriction.

Assumption 4.1 The following inequalities are valid c
(s)
i > 0, and p

(s)
ij ≥ 0 for j 6= i;

i, j = 1, . . . , n; s = 1, . . . , N .

Theorem 4.1 Let Assumptions 3.3 and 4.1 be fulfilled. If system (3) admits a pos-

itive solution, then there exists h0 > 0 such that system (1) is uniformly permanent for

any h ∈ (0, h0) and for arbitrary switching law.

Proof. Let for a constant h0 the condition (7) be valid. Choose a number h ∈ (0, h0),
and consider the corresponding switched system (1).

According to the proof of Theorem 3.2, there exists ∆2 > 0, and for given positive
numbers δ1 and δ2, 0 < δ1 < δ2, one can find η > 0 and T > 0, such that if the initial

values of a solution x(k,x(0), k0) of (1) satisfy the conditions k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i =

1, . . . , n, then 0 < xi(k,x
(0), k0) ≤ η, i = 1, . . . , n, for k ≥ k0, and 0 < xi(k,x

(0), k0) ≤
∆2, i = 1, . . . , n, for k ≥ k0 + T .

The fulfilment of the Assumption 4.1 implies the existence of positive numbers δ and

β, such that c
(s)
i + p

(s)
ii fi(zi) ≥ β for 0 < zi ≤ δ, i = 1, . . . , n; s = 1, . . . , N . Hence, if 0 <

xi(k,x
(0), k0) < δ for some i ∈ {1, . . . , n}, then xi(k+1,x(0), k0) ≥ xi(k,x

(0), k0) exp(hβ).
Let

ω = min
s=1,...,N

min
i=1,...,n

min
0≤zi≤η

(
c
(s)
i + p

(s)
ii fi(zi)

)
,

ω̃ = min
s=1,...,N

min
i=1,...,n

min
0≤zi≤∆2

(
c
(s)
i + p

(s)
ii fi(zi)

)
.

We obtain that xi(k+1,x(0), k0) ≥ δ exp(hω) for k ≥ k0, xi(k,x
(0), k0) ≥ δ, i = 1, . . . , n,

and xi(k + 1,x(0), k0) ≥ δ exp(hω̃) for k ≥ k0 + T , xi(k,x
(0), k0) ≥ δ, i = 1, . . . , n.

Therefore, there exists T̃ ≥ T , such that ∆1 ≤ xi(k,x
(0), k0) ≤ ∆2, i = 1, . . . , n, for

k ≥ k0 + T̃ , where ∆1 = δ min {1; exp(hω̃)}. This completes the proof.

Consider one more approach for a Lyapunov function constructing which permits to
use for the verification of the permanence property system (4) instead of system (3).

Theorem 4.2 Let Assumptions 3.2 and 4.1 be fulfilled. If system (4) admits a pos-

itive solution, then there exists h0 > 0 such that system (1) is uniformly permanent for

any h ∈ (0, h0) and for arbitrary switching law.

Proof. For a constant h0, let the condition (7) be valid, and h ∈ (0, h0). Consider
the corresponding switched system (1).

Choose a positive vector b = (b1, . . . , bn)
T satisfying the inequalities (4). There exists

a number γ > 0, such that
∑n

i=1 p̄
(s)
ij bi ≤ −γ, j = 1, . . . , n, s = 1, . . . , N .
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Construct a CLF for (2) in the form

V3(z) =

n∑

i=1

bi log zi. (9)

Function V3(z) is defined and continuous for z ∈ intRn
+.

For some s in {1, . . . , N}, consider the difference of the function (9) with respect to
the sth subsystem from (2). Let x̂ ∈ intRn

+, and x(k) = (x1(k), . . . , xn(k))
T be the

solution of the sth subsystem starting from x̂ at k = 0. We obtain

∆V3

∣∣
(s)

= V3(x(k + 1))− V3(x(k)) =

n∑

i=1

bi (log xi(k + 1)− log xi(k))

= h

n∑

i=1

bi


c

(s)
i +

n∑

j=1

p
(s)
ij fj(xj(k))


 = h

n∑

i=1

bic
(s)
i + h

n∑

j=1

(
n∑

i=1

bip
(s)
ij

)
fj(xj(k))

≤ h

n∑

i=1

bic
(s)
i − hγ

n∑

j=1

fj(xj(k)).

Hence, there exists a positive number H , such that ∆V3

∣∣
(s)

< 0 for ‖x(k)‖ > H and for

all s = 1, . . . , N .

Let

A = H max
s=1,...,N

max
i=1,...,n

max
‖z‖≤H

exp



h



c
(s)
i +

n∑

j=1

p
(s)
ij fj(zj)







 ,

M1 = max
0<zi≤A, i=1,...,n

V3(z) = logA
n∑

i=1

bi.

In a similar way as in the proof of Theorem 3.2, it can be shown that for any Q > 0
there exists T = T (Q) ≥ 0, such that if the initial values of a solution x(k,x(0), k0) of
(1) satisfy the conditions k0 ≥ 0, x(0) ∈ BQ, then V3(x(k,x

(0), k0)) ≤ M1 for k ≥ k0+T .
The fulfilment of the Assumption 4.1 implies the existence of positive numbers δ and

β, such that c
(s)
i + p

(s)
ii fi(zi) ≥ β for 0 < zi ≤ δ, i = 1, . . . , n; s = 1, . . . , N . Hence, if

0 < xi(k) < δ for some i ∈ {1, . . . , n}, then xi(k + 1) ≥ xi(k) exp(hβ). Without loss of
generality, we assume that δ < 1.

In the case when xi(k) ≥ δ, the following estimates hold

xi(k + 1) ≥ xi(k) exp
(
h
(
p
(s)
ii fi(xi(k))

))
≥ xi(k) exp

(
−hDf̃i(yi(k))

)

≥ xi(k) exp
(
−hD(L|yi(k)|+ f̃i(0))

)
≥ λδ1+hLD.

Here yi(k) = log xi(k), λ = exp(−hDmaxi=1,...,n fi(1)).

Let positive numbers δ1 and δ2, δ1 < δ2, be given. Choose the numbers T1 =

T1(δ1) > 0 and T2 = T2(δ2) > 0, such that if k0 ≥ 0, δ1 ≤ x
(0)
i ≤ δ2, i = 1, . . . , n,

then xi(k,x
(0), k0) ≥ λδ1+hLD, i = 1, . . . , n, for k ≥ k0 +T1, and V3(x(k,x

(0), k0)) ≤ M1
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for k ≥ k0 + T2. By taking T̂ = max{T1;T2}, we obtain ∆1 ≤ xi(k,x
(0), k0) ≤ ∆2,

i = 1, . . . , n, for k ≥ k0 + T̂ . Here ∆1 = λδ1+hLD, and

∆2 = max
i=1,...,n

(
exp(M1)/∆

∑

j 6=i

bj

1

)1/bi

.

This completes the proof.

Remark 4.1 The fulfilment of Assumption 3.2 (Assumption 3.3) with a single con-
stant L for all zi ∈ (−∞,+∞), i = 1, . . . , n, is quite severe constraint on the admissible
functions f1(z1), . . . , fn(zn). It is worth mentioning that in a similar way the conditions
of permanence can be obtained in the case when, for every r > 0, functions f̃i(zi) satisfy
Assumption 3.2 (Assumption 3.3) for zi ∈ (−∞, r), i = 1, . . . , n, with the constant L(r),
and L(r) → +∞ as r → +∞. However, in this case, we can not guarantee the perma-
nence property for all solutions of (1). For any Q > 0, there exists a number h0 > 0,
such that for any h ∈ (0, h0) the conditions of Definition 2.4 are fulfilled only for δ2 < Q.

5 Example

In (1) let n = 3, and the family (2) consists of two subsystems with the matrices

P1 =



−1 a 0
0 −2 1
1 0 −3


 , P2 =



−3 1 0
0 −1 1
d 0 −4


 .

Here a and d are positive parameters. In this case, P1 = P1, P2 = P2.
On the one hand, it is easy to verify that the system P1θ < 0, P2θ < 0 admits a

positive solution if and only if

a < 3, d < 12, ad < 4. (10)

On the other hand, for the existence of a positive solution for the system P
T

1 b < 0,

P
T

2 b < 0 it is necessary and sufficient the fulfilment of the inequalities

a < 6, d < 9, ad < 18. (11)

The regions (10) and (11) in the parameter space are nonoverlapping. Thus, this
example shows that Theorems 4.1 and 4.2 complement each other.

6 Conclusion

In this paper, a discrete-time Lotka–Volterra type system with switching of parame-
ter values is studied. The conditions are determined under which the system is ulti-
mately bounded or permanent for any admissible switching law. Two new approaches
for Lyapunov functions constructing are proposed. By the usage of these approaches,
the theorems on the ultimate boundedness and permanence conditions are proved. These
theorems complement each other and relax the known ultimate boundedness conditions
found in [3]. The interesting direction for further research is the extension of the obtained
results to switched biological models of more general form.



10 A.Yu. ALEKSANDROV, Y. CHEN AND A.V. PLATONOV

Acknowledgment

The reported study was supported by the St. Petersburg State University, project
no. 9.38.674.2013, by the Russian Foundation of Basic Researches, grant nos. 13-01-
00376-a and 13-08-00948-a, and by the National Natural Science Foundation of China,
grant no. 61273006.

References

[1] Aleksandrov, A.Yu., Chen, Y., Kosov, A.A. and Zhang, L. Stability of hybrid mechanical
systems with switching linear force fields. Nonlinear Dynamics and Systems Theory 11 (1)
(2011) 53–64.

[2] Aleksandrov, A.Yu., Chen, Y., Platonov, A.V. and Zhang, L. Stability analysis for a class
of switched nonlinear systems. Automatica 47 (10) (2011) 2286–2291.

[3] Aleksandrov, A.Yu., Chen, Y., Platonov, A.V. and Zhang, L. Stability analysis and uniform
ultimate boundedness control synthesis for a class of nonlinear switched difference systems.
J. of Difference Equations and Applications 18 (9) (2012) 1545–1561.

[4] Bao, J., Mao, X., Yin, G. and Yuan, C. Competitive Lotka–Volterra population dynamics
with jumps. Nonlinear Analysis 74 ( 2011) 6601–6616.

[5] Chen, F.D. Permanence and global attractivity of a discrete multispecies Lotka–Volterra
competition predator-prey systems. Appl. Math. Comput. 182 (1) (2006) 3–12.

[6] Hofbauer, J., Hutson, V. and Jansen, W. Coexistence for systems governed by difference
equations of Lotka–Volterra type. J. Math. Biol. 25 (1987) 553–570.

[7] Hofbauer, J. and Sigmund, K. Evolutionary Games and Population Dynamics. Cambridge
University Press, Cambridge, 1998.

[8] Hu, H., Wang, K. and Wu, D. Permanence and global stability for nonautonomous N-
species Lotka–Volterra competitive system with impulses and infinite delays. J. Math. Anal.

Appl. 377 (2011) 145–160.

[9] Kazkurewicz, E. and Bhaya, A. Matrix Diagonal Stability in Systems and Computation.

Birkhauser, Boston, 1999.

[10] Knorn, F., Mason, O. and Shorten, R. On linear co-positive Lyapunov functions for sets
of linear positive systems. Automatica 45 (8) (2009) 1943–1947.

[11] Liberzon, D. and Morse, A.S. Basic problems in stability and design of switched systems.
IEEE Control Syst. Magazin 19 (15) (1999) 59–70.

[12] Lu, Z. and Wang, W. Permanence and global attractivity for Lotka–Volterra difference
systems. J. Math. Biol. 39 (1999) 269–282.

[13] Martynyuk, A.A. Stability in the models of real world phenomena. Nonlinear Dynamics

and Systems Theory 11 (1) (2011) 7–52.

[14] R. Precup, R., Serban, M-A. and Trif, D. Asymptotic stability for a model of cell dynamics
after allogeneic bone barrow transplantation. Nonlinear Dynamics and Systems Theory 13
(1) (2013) 79–92.

[15] Redheffer, R. and Walter, W. Solution of the stability problem for a class of generalized
Volterra prey-predator systems. J. of Differential Equations 52 (2) (1984) 245–263.

[16] Shorten, R., Wirth, F., Mason, O., Wulf, K., and King, C. Stability criteria for switched
and hybrid systems. SIAM Rev. 49 (4) (2007) 545–592.

[17] Zhu, C. and Yin, G. On competitive Lotka–Volterra model in random environments. J.
Math. Anal. Appl. 357 (2009) 154–170.

[18] Zhu, C. and Yin, G. On hybrid competitive Lotka–Volterra ecosystems. Nonlinear Analysis

71 (2009) 1370–1379.


	Introduction
	Statement of the Problem
	Ultimate Boundedness Conditions
	Permanence Conditions
	Example
	Conclusion

