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S. Bentouati, A. Tlemçani, M.S. Boucherit and L. Barazane

Design of an Optimal Stabilizing Control Law for Discrete-Time

Nonlinear Systems Based on Passivity Characteristic . . . . . . . . . . . . . . . . . 359

T. Binazadeh and M.H. Shafiei

Formal Trigonometric Series, Almost Periodicity and Oscillatory

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

C. Corduneanu

Existence and Uniqueness of a Nontrivial Solution for Second Order

Nonlinear m-Point Eigenvalue Problems on Time Scales . . . . . . . . . . . . . . 389

A. Denk and S. Topal

Infinitely Many Solutions for a Discrete Fourth Order Boundary Value

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

J. R. Graef, L. Kong and Q. Kong

Design of Robust PID Controller for Power System Stabilization using

Bacterial Foraging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

K. Abdul Hameed and S. Palani

Synchronization Between a Fractional Order Chaotic System and an

Integer Order Chaotic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Ayub Khan and Priyamvada Tripathi

Contents of Volume 13, 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Founded by A.A. Martynyuk in 2001.

Registered in Ukraine Number: KB 5267 / 04.07.2001.



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Impact Factor from SCOPUS for 2011: SNIP – 0.84, RIP – 0.77

Nonlinear Dynamics and Systems Theory (ISSN 1562–8353 (Print), ISSN 1813–
7385 (Online)) is an international journal published under the auspices of the S.P. Timo-
shenko Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin
University of Technology (Perth, Australia). It aims to publish high quality original
scientific papers and surveys in areas of nonlinear dynamics and systems theory and
their real world applications.

AIMS AND SCOPE

Nonlinear Dynamics and Systems Theory is a multidisciplinary journal. It pub-
lishes papers focusing on proofs of important theorems as well as papers presenting new
ideas and new theory, conjectures, numerical algorithms and physical experiments in
areas related to nonlinear dynamics and systems theory. Papers that deal with theo-
retical aspects of nonlinear dynamics and/or systems theory should contain significant
mathematical results with an indication of their possible applications. Papers that em-
phasize applications should contain new mathematical models of real world phenomena
and/or description of engineering problems. They should include rigorous analysis of
data used and results obtained. Papers that integrate and interrelate ideas and methods
of nonlinear dynamics and systems theory will be particularly welcomed. This journal
and the individual contributions published therein are protected under the copyright by
International InforMath Publishing Group.

PUBLICATION AND SUBSCRIPTION INFORMATION

Nonlinear Dynamics and Systems Theory will have 4 issues in 2014,
printed in hard copy (ISSN 1562–8353) and available online (ISSN 1813–7385),
by InforMath Publishing Group, Nesterov str., 3, Institute of Mechanics, Kiev,
MSP 680, Ukraine, 03057. Subscription prices are available upon request from
the Publisher (mailto:anmart@stability.kiev.ua), SWETS Information Services
B.V. (mailto:Operation-Academic@nl.swets.com), EBSCO Information Services
(mailto:journals@ebsco.com), or website of the Journal: http://e-ndst.kiev.ua.
Subscriptions are accepted on a calendar year basis. Issues are sent by airmail to all
countries of the world. Claims for missing issues should be made within six months of
the date of dispatch.

ABSTRACTING AND INDEXING SERVICES

Papers published in this journal are indexed or abstracted in: Mathematical Reviews /
MathSciNet, Zentralblatt MATH / Mathematics Abstracts, PASCAL database (INIST–
CNRS) and SCOPUS.

mailto:anmart@stability.kiev.ua
mailto:Operation-Academic@nl.swets.com
mailto:journals@ebsco.com
http://e-ndst.kiev.ua


Nonlinear Dynamics and Systems Theory, 13 (4) (2013) 325–331

PERSONAGE IN SCIENCE

Academician V.M. Matrosov

In Memoriam

S.N. Vassilyev 1, A.A. Martynyuk 2∗ and D.D. Siljak 3

1 V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya Str. 65, Moscow, 117997, Russia

2 Institute of Mechanics of the National Academy of Science of Ukraine,
Nesterov Str. 3, Kiev, 03057, Ukraine

3 School of Engineering, Santa Clara University, Santa Clara, California, 95053, USA

This paper is dedicated to the memory of V.M. Matrosov in recognition of the signifi-

cance of his results in the development of stability theory, his remarkable and versatile

talent in research on dynamic systems, as well as the novelty and depth of his contri-

bution to mathematics and world science.

1 Short Biography

V.M. MATROSOV was born on May 8, 1932 in Shipunovo village on the Altay, USSR
(now Russian Federation). In 1956, he graduated with distinction from the Kazan Avi-
ation Institute (KAI), the Aircraft Engineering Faculty, and entered the post-graduate
studies under the supervision of Professor P.A. Kuzmin at the Chair of Theoretical Me-
chanics of KAI. He began working at the Institute as a junior professor and advanced
to the position of an assistant professor of the Chair of Theoretical Mechanics. In 1959,
Matrosov defended his Candidate Thesis (PhD) on the stability of gyroscopic systems.
In 1968, Matrosov defended his Doctoral Thesis on the development of new methods of
Lyapunov functions in the stability theory of motion. In the same year he became the
Head of the Chair of Mathematics, and in 1972 he founded the Chair of Cybernetics
which was training mainly the specialists in applied mathematics. At the same time he
ran research laboratory at KAI where he carried out his first investigations in applied
mathematics.

In 1975, Matrosov and several of his associates were invited by academician
G.I. Marchuk, the president of the Siberian Division of the Academy of Sciences of
USSR, to move to Irkutsk with the purpose of founding a new academic institute. The
institute was formed and Matrosov was its director-organizer.

In 1976, Matrosov was elected the corresponding member, and in 1987 he became the
member of the Academy of Sciences of USSR. In 1991, he established and headed the

∗ Corresponding author: mailto:center@inmech.kiev.ua
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Moscow Division of the Institute of Transport Problems of the Academy of Sciences of
USSR. In 1996, he founded the Research Center for Stability and Nonlinear Dynamics
Research at the A.A. Blagonravov Institute of Machine Building of the Russian Academy
of Sciences (RAS) and was at its head until the end of his life (on April 17, 2011). While
doing scientific research Matrosov was vigorously engaged in pedagogical activity. He was
a professor of Sociology Faculty of M.V. Lomonosov Moscow State University (1998–
2003) and held the Chair of Mathematical Cybernetics at Moscow Aviation Institute
(2000–2007).

Matrosov passed away on April 17, 2011, at the age of 79. He is survived by his wife
Nina, son Ivan, daughter Claudia, and grand children Ivan and Alexander.

2 Scientific Work

2.1 Gyroscopic systems

At the beginning of his academic career Matrosov focused on stability of gyroscopic
systems. Using refined modifications of Lyapunov theorems he managed to establish a
series of important criteria of equilibrium stability and instability, which are now applied
in the theory of gyroscopic and electromechanical systems.

At that time, he also carried out investigations on stability of solutions to nonau-
tonomous differential equations [1]. He showed impossibility of extending to these equa-
tions the known Barbashin–Krasovsky theorem on asymptotic stability of motion in
terms of Lyapunov function with sign-constant derivative. The obtained results have
been applied in many areas of modern nonlinear dynamics.

2.2 Vector Lyapunov functions

Matrosov’s investigations on development of the method of Lyapunov functions proved to
be of importance for weakening the requirements on Lyapunov functions. At one and the
same time as R. Bellman (USA) he introduced the notion of Vector Lyapunov Function
(VLF) [2] satisfying the system of differential inequalities of Chaplygin-Wazhevsky type.
Matrosov formulated first theorems on stability using VLF [2-4], which provided general
criteria for stability of motion. The characteristic features of these results are that the
requirements placed on classical Lyapunov functions are replaced by a totality of less
strict conditions imposed on some components of VLF.

The new idea of VLF was further developed and applied by numerous researchers in
USSR (in present-day Russia, Ukraine, and Kazakhstan), USA, France, Italy, Belgium,
Japan, etc. In his turn, Matrosov conducted a profound and versatile investigation of this
idea for ordinary differential equations in Banach space with discontinuous unbounded
operators (see [5-7] and bibliography therein).

2.3 Mathematical theory of systems

In 1970, Matrosov and his collaborators initiated new models in mathematical system
theory (system of processes, generalized structures, etc.). Having analyzed thoroughly
the structure of proofs of comparison theorems for differential equations, Matrosov es-
tablished and proved, in a unique algorithmic form, the principle of comparison for
deduction of comparison theorems on dynamic properties of systems of processes [8].
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The new results paved the way for comparison theorems involving VLF to be estab-
lished algorithmically by formulas of the considered dynamic properties of a wide class
of systems (see [9–11] and bibliography therein). The development of these algorithms
and their computer realizations have provided many new and useful results for study of
various models in dynamical systems and control theory [12, 13].

2.4 Methods of construction of vector Lyapunov functions

Matrosov and his associates [14–16] developed three groups of methods of VLF construc-
tion. The first group embraces the methods associated with exact exponential estimates
based on decomposition-aggregation of multi-interconnected systems. This group also
includes a combined method representing a finite iteration process of complex system
decomposition and VLF refinement which is associated with the hierarchy of subsystems
and VLF as well.

The second group of methods consists of decompositions and further estimation of
aggregation of multi-interconnected systems with the application of VLF, which is related
to the F.N. Baileys approach (1966).

And finally, the third group of methods is a construction of sub-linear VLF. This
construction has turned out to be the most efficient in applications.

2.5 Dynamics and control of aerospace structures

Among numerous applications of Matrosov’s scientific results to real engineering systems
the investigations of dynamics and control of aerospace structures were of particular im-
portance. The employment of finite iteration process of VLF construction resulted in
significant applications. Among them, stability investigations of the first Soviet strato-
spheric observatory (1975) and orbital astronomic observatory with sub-millimeter tele-
scope BST-1 installed in the space station Salut-6 (1977), which were used successfully
for the investigations of thin structure of photosphere of the Sun and other space objects.
On the basis of VLF method and other methods of nonlinear analysis these and many
other problems of dynamics and control have been studied (see [15, 17–22] and bibliog-
raphy therein). Under academic supervision of Matrosov a unique complex of packages
of applied programs for BESM-6, MVK Elbrus-1K2 and ES EVM was developed to solve
the problems of nonlinear dynamics and control theory. This research carried out by Ma-
trosov, his colleagues and research assistants allowed the method of VLF to evolve into
a practical tool for scientific and engineering calculations of system dynamics. For the
series of investigations on the development of VLF method Matrosov and his associates
were given the State Prize in the field of science and technology in 1984.

2.6 Research on multi-package methods

In the late 1970s Matrosov initiated research on multi-package methods of solving the
problems of modeling, analysis and optimization of complex systems [23]. Such research
was induced by the results on intellectualization of computer systems in terms of the
methods of logical generation of alternative solutions to the problems (including com-
putation plans) and multi-criterion estimation of solution preferability. In addition to
the logical-and-heuristic approach to the automation of synthesis of theorems of the type
of VLF method theorems [9, 12] the other methods were used. They are: the methods
of solution of logical equations, automation of logical deduction and automatic proof of
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theorems, as well as the methods of multi-criterion decision-making. At that period of
time a concept and components of intellectualization of a research prototype of the soft-
ware system EVROLOG-1 with professional artificial intelligence [24] were developed.
With Matrosov as its director, the Irkutsk Computing Center of the Siberian Division of
Academy of Sciences of USSR became a leader in constructing software for automation
of design and research of control systems for complex moving objects [25–27].

2.7 Mathematical modeling of national economy

As early as the end of the 1960s Matrosov extended his interests to the electric power
industry and other fields of national economy, as well as the economic, medical, biological
and other systems. In particular, the method of VLF was used for the analysis of electric
power systems, immunological models, etc. Under Matrosov’s supervision a wide range
of problems were studied in creating an automation system for solution of problems
in modeling and optimization of the fuel and energy complex of USSR. Experimental
automation systems were worked out for modeling the development of regional areas [28,
29] including branches of industry, medicine and ecological stability and safe development
of these regions. Investigations were carried out on estimation of after-effects of possible
technological disasters at oil and chemical facilities. In the 1990s Matrosov arranged the
work on creating a social, ecological and economical model of interactions of Russian
regional areas allowing for the population migration, production and redistribution of
income.

2.8 Problems of global security and stable development

Motivated by the well-known problem of reduction of the strategic offensive weapons,
Matrosov initiated investigations of stability of military strategic balance (MSB) of a
multi-polar world. In this regard a program system was developed allowing for variation
of parameters and characteristics of the weapons and construction of areas of MSB for
different scenarios of development of the strategic weapons of Russia and USA. An ap-
proach was proposed for the analysis of stable weapon dynamics and stability of MSB
based on the method of comparison using VLF for estimating the strategy of defense
sufficiency as well as other strategies [30–33].

As early as the 1980s, Matrosov deeply feeled that the popular model of a consumer
society, which was universally promoted, is futile. Such a society may cause irreversible
changes in the ecosphere and, finally, lead to a global disaster. Under Matrosov’s super-
vision a large body of work was carried out on modifications of the well known model
of world dynamics by G. Forrester (USA). Together with Professor A. Onishi (Japan)
Matrosov proposed a concept of the international project “Methods and Program Tools
for the Analysis of Global Development Stability” (1991).

3 Matrosov’s Public Activity

Apart from his intensive scientific activity Matrosov took an active role in public activ-
ity. In particular, for several years he participated in the projects realized by the V.I.
Vernadsky Foundation and worked at the Commission on Problems of Sustainable De-
velopment of The State Duma (Council) of Federal Assembly of The Russian Federation.
As the Head of the Center for Modeling of the Sustainable Development of Society at the



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13(4) (2013) 325–331 329

Institute of Social and Political Investigations of RAS (1984–2001), Matrosov delivered
lectures on stable development of society to the students of Moscow State University [34].

This sketch of Matrosov’s accomplishments does not exhaust by any means his versa-
tile and fruitful scientific, professional and public activity. He was a great scientist and a
gifted organizer of scientific projects and pursuits. His untethered energy and ability not
to spare himself in what he was doing have always impressed those who used to know him
closely. His absolute devotion to science has served as an example to others. Matrosov’s
kindness, collegiality, generosity of a scholar and superb command of the knowledge in
his field guaranteed success of his work and work of his collaborators.

Matrosov’s organizational, pedagogical and public activities were honored by many
state awards and scientific prizes. The abundant scientific legacy of academician Ma-
trosov produced a profound intellectual and humanitarian effect on his readers and had
a significant influence on the future generations of researchers.
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totic stability of the zero solutions of the corresponding averaged systems implies
the local uniform asymptotic stability of the zero solutions for original nonstationary
systems. We treat both cases of delay free and time delay systems. Furthermore, it
is shown that the proposed approaches can be used as well for the stability analysis
of some classes of nonlinear systems with nontrivial linear approximation.

Keywords: asymptotic stability; Lyapunov function; averaging technique; nonsta-
tionary systems; time delay.

Mathematics Subject Classification (2010): 34D20, 39B72, 34C29.

1 Introduction

A general approach for the stability analysis of nonlinear systems is the Lyapunov direct
method (the Lyapunov functions method). By means of this approach, the stability
conditions for many types of systems were obtained, see, for example, [9, 11, 17–19,
26] and the references cited therein. However, it should be noted that until now there
are no general constructive methods for the finding of Lyapunov functions for nonlinear
systems.
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This problem is especially complicated for nonstationary systems [8, 10, 11, 17, 26].
An effective approach for the investigation of dynamical properties of such systems is the
averaging technique [10, 11, 13, 17]. This technique allows to reduce stability analysis of
time-varying differential equations to the analysis of time-invariant differential equations,
possibly resulting in an important simplification. However, it is worth mentioning that
the application of the averaging technique is well developed only in the case when original
systems are fast time-varying.

In [1, 2], nonlinear nonstationary systems with homogeneous with respect to phase
variables right-hand sides have been studied. For such systems, the approach for the
Lyapunov functions constructing was proposed. Its application permits to show that if
the order of the homogeneity of right-hand sides of the considered time-varying system is
greater than one, then the asymptotic stability of the zero solution of the corresponding
averaged system implies the same property for the zero solution of the original system.
These results have got a further development in [3, 21, 23, 24, 27]. In particular, in [27],
a modification of the approach for the Lyapunov functions constructing was suggested.
Another techniques for the determination of similar asymptotic stability conditions for
time-varying homogeneous systems have been developed in [21, 23]. Recently, these
approaches have been extended to nonlinear nonstationary systems with time delay [4–
6]. The delay independent asymptotic stability conditions were found on the basis of the
stability analysis of corresponding averaged delay free systems.

The principal novelty of the results of the papers [1–6, 21, 23, 24, 27], as compared
to the known stability conditions obtained by the application of averaging technique,
is that, to guarantee the asymptotic stability for a nonstationary homogeneous system,
right-hand sides of the system need not be fast time-varying. It is shown that in the
averaging technique, instead of a small parameter providing the fast time-variation of a
vector field, the orders of homogeneity can be used.

In the present paper, a class of nonlinear nonstationary systems of Persidskii type
[16] is studied. The right-hand sides of the systems are represented in the form of linear
combinations of sector nonlinearities with time-varying coefficients. It is assumed that
the coefficients possess mean values. By means of the Lyapunov direct method, it is
proved that if the investigated systems are essentially nonlinear, i.e. the right-hand sides
of the systems do not contain linear terms with respect to phase variables, then the
asymptotic stability of the zero solutions of the corresponding averaged systems implies
the local uniform asymptotic stability of the zero solutions for original nonstationary
systems. We treat both cases of delay free and time delay systems. Furthermore, it is
shown that the proposed approaches can be used as well for the stability analysis of some
classes of nonlinear systems with nontrivial linear approximation.

2 Statement of the Problem

Consider the ordinary differential equations system

ẋi(t) =

n∑

j=1

pij(t)fj(xj(t)), i = 1, . . . , n. (1)

Here the functions fj(xj) are continuous for |xj | < H , 0 < H ≤ +∞, and belong to a
sector-like constrained set defined as follows: xjfj(xj) > 0 for xj 6= 0; the coefficients
pij(t) are continuous and bounded for t ≥ 0. Such systems are widely used in both
automatic control [9, 16, 17] and neural networks [15, 16].
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We assume that the functions pij(t) possess mean values p̄ij , and the tendencies

1

T

∫ t+T

t

pij(s)ds → p̄ij as T → +∞, i, j = 1, . . . , n,

are uniform with respect to t ≥ 0. Hence, the coefficients pij(t) can be represented in
the form pij(t) = p̄ij + p̃ij(t), with the mean values of the functions p̃ij(t) equal to zero,
i, j = 1, . . . , n.

Thus,

ẋi(t) =

n∑

j=1

p̄ijfj(xj(t)), i = 1, . . . , n, (2)

is the averaged system for (1).
It follows from the properties of functions f1(x1), . . . , fn(xn) that systems (1) and

(2) admit the zero solution. We will look for the conditions under which the asymptotic
stability of the zero solution of the averaged system implies the same property for the
zero solution of original system.

In what follows, we impose some additional restrictions on the right-hand sides in
(1).

Assumption 2.1 The matrix P = {p̄ij}
n
i,j=1 is diagonally stable [16], i.e. there exist

positive numbers λ1, . . . , λn such that the quadratic form

W (x) = xT
(
P

T
Λ+ΛP

)
x

is negative definite. Here x = (x1, . . . , xn)
T , Λ = diag{λ1, . . . , λn}.

Remark 2.1 The problem of matrix diagonal stability is well investigated, see, for
example, [16] and references therein.

Remark 2.2 If Assumption 2.1 is fulfilled, then the zero solution of (2) is asymp-
totically stable, and, for this system, a Lapunov function can be chosen in the form

V (x) =

n∑

i=1

λi

∫ xi

0

fi(s)ds. (3)

Remark 2.3 It is well known [28] that if system (1) is linear (fj(xj) = xj , j =
1, . . . , n), it may be unstable, despite of the asymptotic stability of the corresponding
averaged system.

In view of Remark 2.3, hereinafter we consider only the case when the following
assumption is fulfilled.

Assumption 2.2 Functions fj(xj) can be represented in the form

fj(xj) = βjx
µj

j + gj(xj), j = 1, . . . , n,

where βj are positive constants, µj > 1 are rational numbers with odd numerators and
denominators, and gj(xj)/x

µj

j → 0 as xj → 0.
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Remark 2.4 Without loss of generality, we assume that βj = 1, j = 1, . . . , n, and
µ1 ≤ . . . ≤ µn.

Thus, the investigated equations are essentially nonlinear, and the systems

ẋi(t) =
n∑

j=1

(p̄ij + p̃ij(t)) x
µj

j (t), i = 1, . . . , n, (4)

ẋi(t) =

n∑

j=1

p̄ijx
µj

j (t), i = 1, . . . , n, (5)

can be considered as systems of the first, in a broad sense, approximation for (1) and (2)
respectively.

Let Assumption 2.1 be fulfilled. Then the zero solution of (5) is globally asymptoti-
cally stable, and, for this system, the Lyapunov function (3) takes the form

V (x) =

n∑

i=1

λi
xµi+1
i

µi + 1
.

First, we will show that the zero solution of (4) is locally asymptotically stable. Next,
we will determine the stability conditions for a perturbed system, and, on the basis of
these conditions, the asymptotic stability of the zero solution of (1) will be proved.
Furthermore, along with (1), we will consider the corresponding time-delay system

ẋi(t) =

n∑

j=1

pij(t)fj(xj(t− τ)), i = 1, . . . , n, τ = const ≥ 0. (6)

By the usage of the Lyapunov direct method and the Razumikhin approach [25], for (6),
delay independent stability conditions will be found.

3 Sufficient Conditions of Asymptotic Stability

In [3], it was shown that if Assumption 2.1 is fulfilled, and the integrals

∫ t

0

p̃ij(s)ds, i, j = 1, . . . , n, (7)

are bounded for t ∈ [0,+∞), then the zero solution of (4) is asymptotically stable.
In the present paper, we consider the case when

1

T

∫ t+T

t

p̃ij(s)ds → 0 as T → +∞, i, j = 1, . . . , n,

uniformly with respect to t ≥ 0. It is well known [11], that, in this case, integrals (7)
may be unbounded.

Theorem 3.1 Let Assumption 2.1 be fulfilled. Then the zero solution of (4) is uni-
formly asymptotically stable.
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Proof. By means of the approaches proposed in [1, 2, 27], construct a Lyapunov
function for (4) in the form

Ṽ (t,x) =

n∑

i=1

λi
xµi+1
i

µi + 1
−

n∑

i,j=1

λiLij(t, ε) x
µi

i x
µj

j . (8)

Here positive numbers λ1, . . . , λn are chosen in accordance with Assumption 2.1,

Lij(t, ε) =

∫ t

0

exp(ε(s− t)) p̃ij(s)ds, i, j = 1, . . . , n,

and ε is a positive parameter.
Differentiating Ṽ (t,x) with respect to system (4), we obtain

˙̃
V
∣∣
(4)

=
n∑

i,j=1

λip̄ijx
µi

i x
µj

j + ε
n∑

i,j=1

λiLij(t, ε) x
µi

i x
µj

j

−
n∑

i,j=1

λiµiLij(t, ε) x
µi−1
i x

µj

j

n∑

k=1

pik(t)x
µk

k

−

n∑

i,j=1

λiµjLij(t, ε) x
µi

i x
µj−1
j

n∑

k=1

pjk(t)x
µk

k .

Hence, the estimates

a1

n∑

i=1

xµi+1
i −

a3
ε

n∑

i=1

x2µi

i ≤ Ṽ (t,x) ≤ a2

n∑

i=1

xµi+1
i +

a3
ε

n∑

i=1

x2µi

i ,

˙̃
V
∣∣
(4)

≤ −a4

n∑

i=1

x2µi

i + a5ψ(t, ε)

n∑

i=1

x2µi

i +
a6
ε

n∑

i,j=1

x2µi

i x
µj−1
j

are valid for t ≥ 0, x ∈ R
n. Here a1, . . . , a6 are positive constants independent of chosen

value of ε, and
ψ(t, ε) = max

i,j=1,...,n
ε |Lij(t, ε)| . (9)

With the aid of the results of [10], it is easy to verify that ψ(t, ε) → 0 as ε →
0 uniformly with respect to t ≥ 0. Therefore, we can find and fix ε > 0 such that
a5ψ(t, ε) < a4/3.

Then, for chosen ε and sufficiently small values of δ > 0, the inequalities

a1
2

n∑

i=1

xµi+1
i ≤ Ṽ (t,x) ≤ 2a2

n∑

i=1

xµi+1
i ,

˙̃
V
∣∣
(4)

≤ −
a4
2

n∑

i=1

x2µi

i

hold for t ≥ 0 and ‖x‖ < δ (hereinafter ‖ · ‖ denotes the Euclidean norm of a vector).
Thus, the Lyapunov function (8) satisfies all the assumptions of the Lyapunov asymptotic
stability theorem [9, 26]. This completes the proof. ✷

Consider now, along with (4), the perturbed system

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t))x
µj

j (t) + qi(t,x(t)), i = 1, . . . , n. (10)
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Here functions q1(t,x), . . . , qn(t,x) are defined and continuous in the region t ≥ 0, ‖x‖ <
H , and, for any H̃ ∈ (0, H), the estimates

|qi(t,x)| ≤ c(H̃)
n∑

j=1

|xj |
µj , i = 1, . . . , n,

are valid for t ≥ 0, ‖x‖ < H̃, with c(H̃) → 0 as H̃ → 0. Thus, system (10) admits the
solution x(t) ≡ 0, as well.

Theorem 3.2 Let Assumption 2.1 be fulfilled. Then the zero solution of (10) is
uniformly asymptotically stable.

Proof. Consider the derivative of the Lyapunov function (8) with respect to the
perturbed equations. We obtain

˙̃
V
∣∣
(10)

≤ −ā1

n∑

i=1

x2µi

i + ā2

(
ψ(t, ε) +

c(H̃)

ε

)
n∑

i=1

x2µi

i +
ā3
ε
(1 + c(H̃))

n∑

i,j=1

x2µi

i x
µj−1
j

for t ≥ 0, ‖x‖ < H̃ . Here ā1, ā2, ā3 are positive constants independent of chosen values
of ε and H̃ , and the function ψ(t, ε) is determined by the formula (9).

In a similar way as in the proof of Theorem 3.1, it is easy to show that if ε and H̃
are sufficiently small, then the estimate

˙̃
V
∣∣
(10)

≤ −
ā1
2

n∑

i=1

x2µi

i

holds for t ≥ 0 and ‖x‖ < H̃ . This completes the proof. ✷

Corollary 3.1 Let Assumptions 2.1 and 2.2 be fulfilled. Then the zero solution of
(1) is uniformly asymptotically stable.

4 Delay-Independent Stability Conditions

In this section, we will show that the results of Section 3 can be extended to the case of
time-delay systems.

Consider the system (6), where τ ≥ 0 is a constant delay. Let PC([−τ, 0],Rn)
be the space of piece-wise continuous functions ϕ(θ) : [−τ, 0] → R

n with the uni-
form (supremum) norm ‖ϕ‖τ = supθ∈[−τ,0] ‖ϕ(θ)‖, and ΩH be the set of functions
ϕ(θ) ∈ PC([−τ, 0],Rn) satisfying the inequality ‖ϕ‖τ < H .

By x(t, t0, ϕ) we denote a solution of system (6) with the initial conditions t0 ≥ 0,
ϕ(θ) ∈ ΩH , while xt(t0, ϕ) is the restriction of the solution to the segment [t − τ, t], i.e.
xt(t0, ϕ) : θ → x(t + θ, t0, ϕ), θ ∈ [−τ, 0]. In some cases, when the initial conditions
are not important, or well defined from the context, we write x(t) and xt, instead of
x(t, t0, ϕ) and xt(t0, ϕ), respectively. We will study the impact of delay on the stability
of the zero solution of (6).

Consider the averaged system

ẋi(t) =

n∑

j=1

p̄ijfj(xj(t− τ)), i = 1, . . . , n. (11)
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Under Assumption 2.1, the zero solution of the corresponding delay free system (2) is
asymptotically stable. In [4], it was proved that if no additional restrictions are imposed
on the right-hand sides of (11), then an arbitrary small delay may destroy the stability.

In many applications, it is important to have stability conditions under which a system
remains stable for any nonnegative value of delay [14, 22]. Such conditions are known as
delay-independent ones.

Let Assumption 2.2 be fulfilled. Then the systems

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t)) x
µj

j (t− τ), i = 1, . . . , n, (12)

ẋi(t) =

n∑

j=1

p̄ijx
µj

j (t− τ), i = 1, . . . , n, (13)

are the systems of the first approximation for (6) and (11) respectively.
Delay-independent stability conditions for systems (12) and (13) have been studied in

[4]. It was shown that, under Assumption 2.1, the zero solution of (12) is asymptotically
stable for any τ ≥ 0. Furthermore, if, in addition to Assumption 2.1, the integrals (7)
are bounded for t ∈ [0,+∞), then the zero solution of (13) is asymptotically stable for
any τ ≥ 0 as well.

As it was mentioned in Section 3, in the present paper, we consider the case when
integrals (7) may be unbounded.

Theorem 4.1 Let Assumption 2.1 be fulfilled. Then the zero solution of (12) is
uniformly asymptotically stable for any τ ≥ 0.

Proof. Choose a Lyapunov function for (12) in the form (8) where positive coefficients
λ1, . . . , λn are determined in accordance with Assumption 2.1.

Consider the derivative of the function with respect to system (12). We obtain

˙̃
V
∣∣
(12)

=

n∑

i,j=1

λip̄ijx
µi

i (t)x
µj

j (t) + ε

n∑

i,j=1

λiLij(t, ε) x
µi

i (t)x
µj

j (t)

−

n∑

i,j=1

λiµiLij(t, ε) x
µi−1
i (t)x

µj

j (t)

n∑

k=1

pik(t)x
µk

k (t− τ)

−
n∑

i,j=1

λiµjLij(t, ε) x
µi

i (t)x
µj−1
j (t)

n∑

k=1

pjk(t)x
µk

k (t− τ)

+

n∑

i,j=1

λipij(t) x
µi

i (t)
(
x
µj

j (t− τ)− x
µj

j (t)
)
.

Hence, if a solution x(t) of (12) is defined on an interval [t0, t̂], 0 ≤ t0 < t̂, then the
estimates

a1

n∑

i=1

xµi+1
i (t)−

a3
ε

n∑

i=1

x2µi

i (t) ≤ Ṽ (t,x(t)) ≤ a2

n∑

i=1

xµi+1
i (t) +

a3
ε

n∑

i=1

x2µi

i (t),
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˙̃
V
∣∣
(12)

≤ −a4

n∑

i=1

x2µi

i (t) + a5ψ(t, ε)
n∑

i=1

x2µi

i (t)

+
a6
ε

n∑

i,j,k=1

∣∣∣xµi

i (t)x
µj−1
j (t)xµk

k (t− τ)
∣∣∣+ a7

n∑

i,j=1

|xµi

i (t)|
∣∣xµj

j (t− τ) − x
µj

j (t)
∣∣

hold for t ∈ [t0, t̂]. Here a1, . . . , a7 are positive constants independent of the value of ε,
and the function ψ(t, ε) is defined by the formula (9).

Choose and fix ε > 0 for which the inequality a5ψ(t, ε) < a4/3 is valid. Let us prove
that, for such ε, the Lyapunov function (8) satisfies all the conditions of Theorem 4.2 in
[14].

Assume that, for a solution x(t) of (12), the estimate ‖x(ξ)‖ < δ, and the Razumikhin

condition Ṽ (ξ,x(ξ)) ≤ 2Ṽ (t,x(t)) are fulfilled for ξ ∈ [t−(m+1)τ, t]. Here δ = const > 0,
and m is a positive integer such that

(m(µ1 − 1) + µ1)(µn + 1)

(µ1 + 1)µn

> 1.

If the value of δ is sufficiently small, then

xµi+1
i (ξ) < 8

a2
a1

n∑

j=1

x
µj+1
j (t), i = 1, . . . , n, (14)

for ξ ∈ [t− (m+ 1)τ, t].
With the aid of inequalities (14), it is easy to show that

|x
µj

j (t− τ)− x
µj

j (t)| = τµj x
µj−1
j (t− ηjτ)

∣∣∣∣∣

n∑

l=1

pjlx
µl

l (t− ηjτ − τ)

∣∣∣∣∣

≤ b1

(
n∑

l=1

xµl+1
l (t)

) µj−1

µj+1
(

n∑

l=1

|xµl

l (t)|+

n∑

l=1

|xµl

l (t− ηjτ − τ)− xµl

l (t)|

)

≤ b2

(
n∑

l=1

|xµl

l (t)|

) (µ1−1)(µn+1)

(µ1+1)µn
(

n∑

l=1

|xµl

l (t)| +

n∑

l=1

|xµl

l (t− ηjτ − τ)− xµl

l (t)|

)
,

where b1 > 0, b2 > 0, 0 < ηj < 1, j = 1, . . . , n.
Further, for the functions |xµl

l (t− ηjτ − τ)− xµl

l (t)|, l = 1, . . . , n, the similar esti-
mates can be found.

Successively applying this procedure m times, we obtain

∣∣xµj

j (t− τ) − x
µj

j (t)
∣∣

≤ b3

(
n∑

s=1

|xµs
s (t)|

)1+
(µ1−1)(µn+1)

(µ1+1)µn

+ b4

(
n∑

s=1

|xµs
s (t)|

) (m(µ1−1)+µ1)(µn+1)

(µ1+1)µn

,

where b3 and b4 are positive constants, j = 1, . . . , n.
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Thus, for sufficiently small values of δ, the inequality

˙̃
V (t,x(t)) ≤ −

a4
2

n∑

i=1

x2µi

i (t)

holds. Hence [14], the zero solution of (12) is uniformly asymptotically stable. This
completes the proof. ✷

Consider now the perturbed system

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t))x
µj

j (t− τ) + qi(t,x(t),x(t − τ)), i = 1, . . . , n. (15)

Here functions q1(t,x,y), . . . , qn(t,x,y) are defined and continuous in the region t ≥ 0,
‖x‖ < H , ‖y‖ < H , and, for any H̃ ∈ (0, H), the estimates

|qi(t,x,y)| ≤ c(H̃)
n∑

j=1

(|xj |
µj + |yj|

µj ) , i = 1, . . . , n,

are valid for t ≥ 0, ‖x‖ < H̃ , ‖y‖ < H̃ , with c(H̃) → 0 as H̃ → 0.

Theorem 4.2 Let Assumption 2.1 be fulfilled. Then the zero solution of (15) is
uniformly asymptotically stable for any τ ≥ 0.

The proof of the theorem is similar to that of Theorem 4.1.

Corollary 4.1 Let Assumptions 2.1 and 2.2 be fulfilled. Then the zero solution of
(6) is uniformly asymptotically stable for any τ ≥ 0.

5 Stability Conditions for an Automatic Control System

In Sections 3 and 4, it was assumed that the considered systems are essentially nonlinear,
i.e. the right-hand sides of the systems do not contain linear terms with respect to phase
variables. In this section, we will show that the approaches proposed in the present paper
can be used as well for the stability analysis of some classes of nonlinear time-varying
systems with nontrivial linear approximations. Right-hand sides of such systems may
include linear terms, but linear approximations are critical in the Lyapunov sense [9, 17].

Let the dynamic nonlinear feedback system [17, 26]

{
ẋ(t) = Ax(t) + b f(σ(t)),

σ̇(t) = cTx(t)− f(σ(t)),
(16)

be given. Here x(t) ∈ R
n and σ(t) ∈ R, A is a constant Hurwitz matrix, b and c

are constant vectors, f(σ) is a sector nonlinearity, which is continuous for |σ| < H ,
0 < H ≤ +∞, and satisfies the condition σf(σ) > 0 for σ 6= 0.

Assume that, for system (16), there exists a Lyapunov function of the form

V (x, σ) = xTDx +

∫ σ

0

f(s) ds,
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where D is a constant symmetric positive definite matrix, such that the estimate

V̇
∣∣
(16)

≤ −b
(
‖x(t)‖2 + f2(σ(t))

)
, b = const > 0,

holds. The conditions for the existence of the Lyapunov function are well known, see,
for instance, [17, 26]. The fulfilment of this assumption implies the asymptotic stability
of the zero solution of (16).

Consider now the case when the control law includes a delay and a nonstationary
perturbation. Let the system be of the form

{
ẋ(t) = Ax(t) + b f(σ(t− τ)),

σ̇(t) = cTx(t) − (1 + p̃(t))f(σ(t − τ)).
(17)

Here τ ≥ 0 is a constant delay, while the perturbation p̃(t) is continuous and bounded
for t ∈ [0,+∞) function, such that

1

T

∫ t+T

t

p̃(s)ds → 0 as T → +∞

uniformly with respect to t ≥ 0.
Furthermore, we assume that the nonlinearity f(σ) can be represented as follows

f(σ) = βσµ + g(σ), where µ > 1 is a rational number with odd numerator and denomi-
nator, β is a positive constant, and g(σ)/σµ → 0 as σ → 0.

It is worth mentioning that essentially nonlinear control laws were considered in [7,
12, 20]. In particular, in [20], controls of such type were used for solving the problem of
angular stabilization of an airplane, whereas, in [12], they were applied for the developing
of seismic mitigation devices.

Theorem 5.1 The zero solution of (17) is uniformly asymptotically stable for any
value of τ ≥ 0.

Proof. Construct a Lyapunov function for (17) in the form

Ṽ (t,x, σ) = xTDx+ β
σµ+1

µ+ 1
+ β2σ2µ

∫ t

0

exp(ε(s− t)) p̃(s)ds,

where ε is a positive parameter. With the aid of this function the subsequent proof is
similar to that of Theorem 4.1. ✷

6 Conclusion

In this paper, for a special class of nonlinear nonstationary systems, new sufficient asymp-
totic stability conditions of the trivial solution are obtained via the averaging technique.
It is proved that, for the considered essentially nonlinear systems, this technique can
be applied without requirement of fast time-varying vector field – typical for averaging
results.

It is easy to verify that the results obtained for time delay systems remain valid
when the systems delays are continuous nonnegative and bounded functions of the time
variable. Moreover, these results can be extended to systems with distributed delays as
well.

An important direction of future research is application of the developed approaches
for the stability analysis of nonlinear nonstationary complex (multiconnected) systems.
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1 Introduction

The use of the PMSM always continues to extend. The technological development made it
possible that the permanent magnet synchronous machines are more essential in the field
applications of a very high static and dynamic performances demands, especially in the
embedded systems fields (aeronautical and aerospace) because of its high power/weight
ratio. A noiseless linear process with a constant parameters concept can be controlled
accurately by traditional PID regulators; these regulators proved to be sufficient, however
the process is subjected to disturbances and its parameters variations are relatively less,
especially if the requirements on the precision of adjustment and the dynamic response
of the system are not strict. In the contrary case one can have recourse to an auto
adaptative solution, which by readjustment of the parameters of the regulators, allows
preserving performances fixed in advance in the presence of the disturbances and variation
of parameters. Nevertheless, this solution presents the disadvantage of often complex
implementation. It is thus possible to solve this problem by using the method of robust
commands and neurofuzzy control.

In this paper we apply the neurofuzzy control by the method of Sugeno to the speed
regulation of a Permanent Magnet Synchronous Machine. The objective is to synthesize
neurofuzzy regulator of Sugeno to three fuzzy sets for each one of: torque, flux and
position of the flux vector and whose consequences of the rules are the polynomials
of order one. This neurofuzzy regulator is thus deduced by recopying the data inputs
outputs provided by a fuzzy regulator of Mamdani to 132 fuzzy rules [1]. The method of
copy is based on the approach by extended Kalman filter. In [1], the authors introduce a
fuzzy logic controller in conjunction with direct torque control strategy for a permanent
magnet synchronous machine. In this controller there are three inputs, which are the error
of stator flux, the error of torque and the stator flux angle. The total rule number used is
132 rules. The rules base of the proposed approach contains only 27 rules. Consequently,
this approach requires less computing time for its execution compared with the method
that is proposed in [1].

2 Mathematical Model of a Permanent Magnet Synchronous Motor

The PMSM model is considered under the following assumptions.

1. The spatial distribution of stator winding is sinusoidal.

2. The saturation is neglected.

3. The damping effect is neglected.

Thus, in the synchronous d− q reference form, the dynamics of PMSM is represented as
follows [1, 4]

Vd = RsId + Ld

dId
dt

− wrLqIq,

Vq = RsIq + Lq

dIq
dt

− wrLdId + wrϕf , (1)

Tem = p(ϕdIq − ϕqId),
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with

ϕd = LdId + ϕf ,

ϕq = LqIq ,

Ld : direct stator inductance,
Lq : stator inductance in squaring,
ϕf : flux of the permanents magnets.

The total mathematical model is given in the form of space of following state:

dId
dt

=
Vd

Ld

−
Rs

Ld

Id +
Lq

Ld

wrIqp,

dIq
dt

=
Vq

Lq

−
Rs

Lq

Iq − p
Ld

Lq

wrId −
ϕf

Lq

wrp, (2)

dwr

dt
= p2Iq

ϕf

j
+

1

j

[
p2(Ld − Lq)IdIqfm

]
− p

cr
j
,

dθr
dt

= pwr.

3 General Principal of DTC

The direct torque control of the permanent magnet synchronous machine is based on
the determination “direct” sequence of order applied to the switches of an inverter of
tension. First, we use a fuzzy regulator. Secondly, we replace the latter by a neurofuzzy
regulator, whose function is to control the state of the system (the amplitude of stator
flux and electromagnetic torque).

3.1 Selection of the voltage vector Vs

The voltage vector Vs is delivered by a three-phase of the voltage source inverter and is
given by [5, 6]:

Vs =

√
2

3

(
a0Va + aVb + a2Vc

)
(3)

with

a = exp(j
2π

3
).

By using the logical variables representing the state of the switches, the voltage vector
can be written in the form:

Vs =

√
2

3
U0

(
Sa + aSb + a2Sc

)
. (4)

As shown in Figure 2 the combinations of the three sizes (Sa, Sb, Sc) allow to generate
8 fixed positions of the vector Vs, two correspond to the null vectors:

(Sa, Sb, Sc) = (0, 0, 0) and (Sa, Sb, Sc) = (1, 1, 1). (5)

Generally, the space of evolution of stator flux ϕs is delimited in the fixed reference frame
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Figure 1: Scheme of the voltage source inverter.

Figure 2: Development of the 8 vectors Vs (αβ) Stationary reference frame.

V0 (1 1 1)
V1 (1 0 0)
V2 (1 1 0)
V3 (0 1 0)
V4 (0 1 1)
V5 (0 0 1)
V6 (1 0 1)
V7 (0 0 0)

Table 1: Development of the 8 possible configurations of the vectors Vs.

(stator) by breaking it up into 6 symmetrical zones compared to the directions of the
nonnull voltage vectors. The position of the flux vector in these zones is determined from
these components.

When the stator flux vector ϕs is in a numbered zone N , the control of flux and
torque can be ensured by selecting one of the nonnull voltage vectors:
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N 1 2 3 4 5 6
Tcont 1 flxC 1 V2 V3 V4 V5 V6 V1

0 V3 V4 V5 V6 V1 V2

Tcont 0 flxC 1 V0 V7 V7 V0 V7 V0

0 V7 V0 V0 V7 V0 V7

Tcont: Torque Control. flxC: flux Control.

Table 2: Table of commutation for the selection of the voltage vector.

4 Fuzzy Controller

In the hysteresis direct torque control, the errors of torque and flux are directly used to
select the switching state of switches of the inverter voltage with any distinction between
large or relatively small error. The large or small terms are vague terms containing the
concept of fuzzy logic control which allows using a fuzzy controller [1–3]. On the other
hand, the torque ripples will be reduced (Figure 3).

Figure 3: Synoptic scheme of the fuzzy controller of the PMSM.

The studied fuzzy controller has 3 state variables of input and one variable of com-
mand in output.

Each variable is represented by fuzzy set. The number of the fuzzy set for each
variable is selected to obtain a powerful command with a minimal number of fuzzy rules.

The first fuzzy state variable is the difference between the reference stator flux ϕ∗

s (in
Webers) and the estimated stator flux magnitude ϕs given by:

Eϕs
= ϕ∗

s − |ϕs|. (6)

The grade of membership distribution is shown in Figure 4(a) which uses a triangular
distribution.

The second fuzzy state variable is the difference between the command electromag-
netic torque Tem and the estimated electromagnetic torque T ∗

em (error in torque ETem
)

given by:
ETem

= T ∗

em − Tem. (7)
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The electromagnetic torque is estimated from the flux and current information which are
given in [1]. The grade of membership distribution is shown in Figure 4(b).

The third fuzzy state variable is the angle between stator flux and their reference axis
(stator flux angle θ) which is determined by the following relation

θ = tan−1

(
ϕβ

ϕα

)
. (8)

The universe of discourse of this fuzzy variable is divided into 12 fuzzy sets (θ1 to θ12).
The membership distribution of fuzzy variables is shown in Figure 4(c).

θ1 θ2 θ3
Etor�Eϕs

P Z N Etor�Eϕs
P Z N Etor�Eϕs

P Z N
PL V1 V2 V2 PL V2 V2 V3 PL V2 V3 V3

PS V1 V2 V3 PS V2 V3 V3 PS V2 V3 V4

ZE 0 0 0 ZE 0 0 0 ZE 0 0 0
NS V6 0 V4 NS V6 V0 V5 NS V1 0 V5

NL V6 V5 V5 NL V6 V6 V5 NL V1 V6 V6

θ4 θ5 θ6
Etor�Eϕs

P Z N Etor�Eϕs
P Z N Etor�Eϕs

P Z N
PL V3 V3 V4 PL V3 V4 V4 PL V5 V4 V4

PS V3 V4 V4 PS V3 V4 V5 PS V4 V5 V5

ZE 0 0 0 ZE 0 0 0 ZE 0 0 0
NS V1 0 V6 NS V2 0 V6 NS V2 0 V1

NL V1 V1 V6 NL V2 V1 V1 NL V2 V2 V1

θ7 θ8 θ9
Etor�Eϕs

P Z N Etor�Eϕs
P Z N Etor�Eϕs

P Z N
PL V4 V5 V5 PL V5 V5 V6 PL V5 V6 V6

PS V4 V5 V6 PS V5 V6 V6 PS V5 V6 V1

ZE 0 0 0 ZE 0 0 0 ZE 0 0 0
NS V3 0 V1 NS V3 0 V2 NS V4 0 V2

NL V3 V2 V2 NL V3 V3 V2 NL V4 V3 V3

θ10 θ11 θ12
Etor�Eϕs

P Z N Etor�Eϕs
P Z N Etor�Eϕs

P Z N
PL V6 V6 V1 PL V6 V1 V1 PL V1 V1 V2

PS V6 V1 V1 PS V6 V1 V2 PS V1 V2 V2

ZE 0 0 0 ZE 0 0 0 ZE 0 0 0
NS V4 0 V3 NS V5 0 V3 NS V5 0 V4

NL V4 V4 V3 NL V5 V4 V4 NL V5 V5 V4

Table 3: Set of fuzzy rules for control of PMSM (Eϕs : error of the stator flux, Etor: torque
error).

In Figure 5, the output has only one variable of command which is the state of
ordering of the switch when the voltage vectors are discrete values.
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Figure 4: Membership distribution of fuzzy variables for fuzzy controller.

Figure 5: Membership functions variables of fuzzy output.

5 The Sugeno Method

The Sugeno fuzzy logic controller is proposed by Takagi and Sugeno [8], who develops
a systematic method of generation of the fuzzy rules starting from a whole of data
input-output. In this case, the consequences of the rules are numerical functions, which
depend on the current values of the variables of inputs. Being given that each rule
has a numerical conclusion, the total output of neurofuzzy controller is obtained by
the calculation of a weighted average, and in this manner the time consuming by the
procedure of defuzzification is avoided.

Let us designate by e, ∆e and δ inputs of the neurofuzzy controller, and by ∆u its
output. The rules base of the neurofuzzy controller has: M = m1 ×m2 ×m3 fuzzy rules
of the form:
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Rl : If e is Fe and ∆e is F∆e and δ is Fδ, then

∆u = fl[e,∆e, δ]

= ple+ ql∆e + rlδ + zl (9)

with l = 1, 2, . . . ,M , where m1, m2 and m3 are the numbers of fuzzy set associate with
e, ∆e and δ, respectively. Thus, the output of the neurofuzzy controller is given by the
following relation:

∆u =

M∑
l=1

αlfl

M∑
l=1

αl

, (10)

where αl represents the confidence degree or activation of the rule Rl, and is given by:

αl = µFe
µF∆e

µFδ
. (11)

In our case and for the Sugeno method, the input variables e, ∆e and δ are characterized
by neurofuzzy set of Gaussian type defined by the relation:

µ(x) = exp
[
−0.5(vi(x− ci))

2
]
, (12)

where ci is the average and vi is the reverse of the variance. Initially, the problem is to
determine the parameters: pl , ql, rl and zl.

6 Determination by Training of the Parameters Sugeno Regulator

The determination of the parameters of neurofuzzy controller of Sugeno constitutes the
most difficult phase in the design, taking into account a significant number of parameters
to be determined (parameters of the premises and the consequences).

Methods of training, applied specially in neural networks, are more developed for the
approximation of an application input output according to a criterion of training. For our
case we use an algorithm of training based on Extended Kalman Filter which is usually
used to estimate the neural networks parameters. Let us consider a neurofuzzy controller
of Sugeno characterized by a vector of parameters θ. Let data set of input-output be
(x(k), d(k)). Our objective is to find the vectors θ so that the output of neurofuzzy
regulator approachs the best possible desired output d(k), i.e. to have ∆u [x(k), θ] = d(k).
Extended Kalman filter approach consists in linearizing the output ∆u at any time around
the estimated vector θ̂. This amounts to writing:

d(k) = ∆u
[
x(k); θ̂(k − 1)

]
+ΨT (k)

[
θ − θ̂(k − 1)

]
,

Ψ(k) =
∂∆u [x(k); θ]

∂θ
/θ̂(k − 1). (13)

The well-known form of the relation (13) is:

θ̂(k) = θ̂(k − 1) + p(k)Ψ(k)e(k),

e(k) = d(k)−∆u
[
x(k); θ̂(k − 1)

]
, (14)
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where p(k) is the gain of the algorithm of estimate. In the method of the modified
gradient, the gain p(k) is selected as a variable. It is given by the following relation [9]:

p(k) =
α1I

α2ΨT (k)Ψ(k)
; α1 > 0, α2 > 0. (15)

We notice as well that this method requires the calculation of the gradient Ψ = ∂∆u
∂θ

,
this gradient is calculated by the method of the retropropagation used in the artificial
neural network.

For our case, the vector of the parameters is θ = [c v p q r z]
T
. Consequently, we

have:
∂∆u

∂θ
=

[
∂∆u

∂c

∂∆u

∂v

∂∆u

∂p

∂∆u

∂q

∂∆u

∂r

∂∆u

∂z

]
, (16)

where

∂∆u

∆ci
=

v2i (xi − ci)
∑
k∈I

αk(fk −∆u)

M∑
l=1

αl

, (17)

∂∆u

∆vi
=

vi(xi − ci)
2
∑
k∈I

αk(fk −∆u)

M∑
l=1

αl

, (18)

∂∆u

∆pi
=

αie
M∑
l=1

αl

,
∂∆u

∆qi
=

αi∆e
M∑
l=1

αl

,
∂∆u

∆ri
=

αiδ
M∑
l=1

αl

, (19)

∂∆u

∆zi
=

αi

M∑
l=1

αl

, (20)

with xi ∈ {e,∆e, δ} and I represents the whole of the indices of the fuzzy rules of which
appears the parameter. In our case, the input-output data are obtained by synthesizing a
neurofuzzy regulator, while at exploiting the method of Mamdani the linguistic variables
of inputs e, ∆e, δ and the output variable ∆u are described respectively in Figure 4 and
Figure 5.

7 Control Algorithm

For the method of Sugeno, the input variables e, ∆e, δ are characterized by three fuzzy
set Gaussian type:

e: is the input of the electromagnetic torque,
∆e: is the input of the flux,
δ : is the input angles (position) of the stator flux vector.
The fuzzy rules, being used to induce the order for the case of the Sugeno neurofuzzy

regulator, are grouped as follows:

if e is NB and ∆e is NB and δ is NG, then ∆u is f1;

if e is PB and ∆e is PG and δ is PB, then ∆u is f27.
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Figure 6: Membership functions of fuzzy input variables.

The training is carried out for the electromagnetic torque control and for speed control.
The gains parameters of adaptation are fixed as follows:

α1 = 0.8, α2 = 1. (21)

Parameters of consequences and premises are gathered in Tables 4 and 5.

8 Simulation Results

In order to test the effectiveness of the training algorithm, we carried out the following
sets of control-machines simulation
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Figure 7: Dynamic behavior of the PMSM controlled by a fuzzy regulator (case of Mamdani).

In Figure 7 we use the following test with Mamdani fuzzy controler:
— No-load start of the process with a reference speed of 157rd/s. We applied load

torque of (zero) O N.m. The waveforms obtained in this case show clearly that the
revolutions of the machine are followed closely by their references. Both, torque Tem and
stator current is cancel after the transient. And the magnetic flux remains stable by
keeping its value with 0.314 Webes.
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p q r z
f1 −0.001787 −8.62 ∗ 10−5 0.0005546 0.0009657
f2 −0.0001574 −7.894 ∗ 10−6 0.0007904 0.0001191
f3 −4.157 ∗ 10−5 −4.286 ∗ 10−6 0.002469 8.91 ∗ 10−5

f4 −0.739 −0.05672 0.149 3.921
f5 0.5889 −0.02495 0.2139 0.3412
f6 0.01215 −0.009218 0.1277 −0.02831
f7 −0.4112 0.01933 0.6928 2.881
f8 −0.215 0.02486 0.268 0.03967
f9 −0.01169 0.01212 0.1612 0.01257
f10 −0.0001059 −7.292 ∗ 10−6 0.0001513 0.000111
f11 −9.837 ∗ 10−6 −1.218 ∗ 10−6 0.0004298 3.403 ∗ 10− 5
f12 −6.92 ∗ 10−6 −2.245 ∗ 10−6 0.001392 5.019 ∗ 10−5

f13 −0.9648 −0.1822 0.2086 3.159
f14 −0.3653 −0.1021 0.1006 0.9569
f15 0.1277 9.767 ∗ 10−5 0.07375 −0.2289
f16 0.1187 −0.03402 −0.03536 0.5158
f17 0.1603 −0.0358 0.003331 0.496
f18 −0.2666 −0.05353 0.03755 −0.0825
f19 9.041 ∗ 10−7 −1.105 ∗ 10−8 1.19e− 006 4.109 ∗ 10−7

f20 1.644 ∗ 10−6 −6.729 ∗ 10−9 5.699e− 006 4.074 ∗ 10−7

f21 3.106 ∗ 10−7 −7.119e− 009 5.613e− 006 2.154 ∗ 10−7

f22 0.406 −0.00212 0.1018 0.1133
f23 0.1034 −0.0006938 0.08979 0.01391
f24 0.02006 3.082 ∗ 10−5 0.06282 0.002271
f25 0.2008 −0.000487 −0.05291 0.0424
f26 0.04644 −0.0004289 0.05497 0.001026
f27 0.01833 −0.0001224 0.09209 0.003566

Table 4: The consequences values.

e ∆e δ
NG Z PG NG Z PG NG Z PG

c -2.152 2.403 6.785 c -0.1066 -0.01417 0.00829 c -0.2462 14.53 29.76
v 0.2337 0.2652 0.6746 v 0.00132 0.012 0.01495 v 6.608 6.102 6.604

(a) (b) (c)

Table 5: The premises values.

By using the following test with Sugeno neurofuzzy controller in Figure 8:
— We obtain practically the same reponses of Figure 7.
By using the following test with Mamdani fuzzy controller in Figure 9:
— No-load start of the process with a reference speed of 157rd/s. Both, torque Tem

and stator current is cancel after the transient. But from t = 0.5s to t = 1s, it applied
a nominal load torque of 3.5N.m. The waveforms obtained in this case show clearly by
that the revolutions of the machine are followed closely their references.
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Figure 8: Dynamic behavior of the PMSM controlled by a neurofuzzy regulator (case of
Sugeno).
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Figure 9: Dynamic behavior of the PMSM controlled by a fuzzy regulator (case of Mamdani).

Each one of torque Tem, stator flux and stator current is.

By using the following test with Sugeno neurofuzzy controller in Figure 10:

— We obtain practically the same reponses as in Figure 9.

In Figures 11 and 12, we carried out the inversion of direction speed of the PMSM
in the two cases (fuzzy and neurofuzzy), with starting the reference of nominal speed
of 157rd/s without a load torque at t = 2s, it’s reversed the reference with -157rd/s.
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Figure 10: Dynamic behavior of the PMSM controlled by a neurofuzzy regulator (case of
Sugeno).
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Figure 11: Inversion of direction speed of PMSM controlled by a fuzzy regulator (case of
Mamdani).

We notice that the answers on the currents are almost identical too, this shows the
effectiveness of the algorithm of training suggested. Learning has been made to keep the
same dynamic speed regardless of the dynamics of the electromagnetic torque. Ideally
the two results should be identical, but because of the error of learning the results appear
different.
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Figure 12: Inversion of direction speed of PMSM controlled by a neurofuzzy regulator (case of
Sugeno).

9 Conclusion

In this paper we developed the adjustment of DTC neurofuzzy concept by exploiting
the Sugeno methods applied to the PMSM. The DTC strategy is motivated by direct
choosing the stators voltage vectors according to the differences between the references
of the electromagnetic torque and the stators flux and their reels values calculated and
related only on the actual-sizes of the stators. The Sugeno regulator is defined as a
polynomial of order one, and the outputs of the regulator depend on its inputs. The
Parameters of the premises and the consequences of the neurofuzzy rules of Sugeno are
given by re-writing the input-output data obtained by a Mamdani regulator; and the
linguistic variables of the inputs, by 3 fuzzy sets. e, ∆e and δ are described by 5, 3 and
12 fuzzy sets, respectively. The re-writing concept is obtained by the training while using
the extended Kalman filter shows better performance than Mamdani, and got a reduced
algorithm tasks. The defuzzification time is less for Sugeno regulator, which is designed
only with three membership functions.
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Abstract: This paper proposes a passivity-based static output feedback law which
stabilizes a broad class of nonlinear discrete time systems. This control law is designed
in such a way that an arbitrary cost function is also minimized. A general structure
with adjustable parameters is considered for the static feedback law. In order to find
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1 Introduction

The concept of passivity provides a useful tool for the analysis of nonlinear systems [1,2].
The main motivation for studying passivity in the system theory is its connection
with stability [3–5]. A very important result in this field is the well known Kalman-
Yakubovich-Popov (KYP) Lemma or Positive Real Lemma (PR) which has been specif-
ically developed in the papers ( [6, 7]). Also, Byrnes and Isidori [8] have shown that
a number of stabilization theorems can be derived from the basic stability property of
passive systems.
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The study of dissipative discrete-time systems, first was presented in [9] for linear
systems. The motivation of studying dissipative discrete-time systems stems from the fact
that passivity properties can simplify the system analysis. In [10, 11] nonlinear discrete-
time systems which are affine in the control input, have been studied and some theorems
on passivity-based control design were presented. Another approach to passivity in the
nonlinear discrete-time case is presented by Monaco and Normand-Cyrot in [12, 13].
They obtained KYP conditions for single-input multiple-output general non-affine-in-
input systems. Another problem treated is the action of making a system passive by
means of a static state feedback, which is known as feedback passivity (passification).
Sufficient conditions to convert MIMO non-passive systems to passive ones have been
proposed in the series of papers [14]– [17].

The problem of stabilization is of high importance in the field of control. If a nonlinear
discrete-time system is zero-state detectable and passive (with a positive definite and
proper storage function) then the origin can be globally stabilized by u = −ϕ(y), where
ϕ is any locally Lipschitz function such that ϕ(0) = 0 and yTϕ(y) > 0 for all y 6= 0
( [11]). There is a great freedom in choosing the function ϕ(y). The purpose of this paper
is to use this freedom in such a manner that a given cost function be also minimized.
Therefore, a general structure is considered for ϕ(y) (which satisfies the above conditions)
and adjustable coefficients in the proposed structure are found by a genetic optimization
algorithm. This is worth noting that this idea can also be used for passive continuous-
time systems.

The remainder of this paper is organized as follows. In the next section, the basic
definitions and theorem about passive nonlinear discrete-time systems are presented.
Section 3 presents the stabilizing controller design for passive systems in such a way
that to minimize an appropriate cost function. A design example is given in Section 4.
Finally, conclusions are presented in Section 5.

2 Preliminaries

In this section some basic definitions about the concept of passivity in the discrete-time
systems are introduced.

A general class of discrete-time systems can be described by the nonlinear ordinary
difference equation in the following discrete-time state space form:

x(k + 1) = F (x(k), u(k)),
y(k) = H(x(k), u(k)),

(1)

where x ∈ D ⊆ Rn is the state vector, u ∈ U ⊆ Rm is the control input, and y ∈ Rm is
the system output. Suppose that F and H are both smooth mappings of the appropriate
dimensions. Moreover, assume that F (0, 0) = 0 and H(0, 0) = 0. In this situation, a
positive definite scalar function V (x(k)) : D → R (where V (0) = 0 ) is addressed as
storage function and system (1) is said to be locally passive if there exists a storage
function V (x(k)) such that:

V (F (x, u))− V (x) ≤ yTu ∀(x, u) ∈ D×U, (2)

where D×U is a neighborhood of x=0, u=0.

Definition 2.1 [11] The zero dynamics of system (1) is defined by F ∗ = F (x, u∗),
where (x, u∗) = {(x, u) : s.t. H(x, u) = 0}. A system of the form (1) has a locally
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passive zero dynamics if there exists a positive definite function V (x(k)) : D → R such
that:

V (F (x, u∗)) ≤ V (x) ∀x ∈ D. (3)

Definition 2.2 [11] A system (1) has local relative degree zero at x=0, if

∂H(x, u)

∂u

∣∣∣∣ x = 0
u = 0

(4)

is nonsingular.

Now, assume that the nonlinear discrete-time system (1) is affine in the control input:

x(k + 1) = f(x(k)) + g(x(k))u(k),
y(k) = h(x(k)) + J(x(k))u(k).

(5)

The system (5) has local relative degree zero if J (0) is nonsingular and it has uniform
relative degree zero if J (x ) is nonsingular for all x ∈ D. Additionally, the system (5) is
locally zero-state observable if for all x ∈ D,

y(k)|u(k)=0 = h(φ(k, x, 0)) = 0 ∀k ∈ Z+ ⇒ x = 0, (6)

where φ(k, x, 0) = fk(x) = f(fk−1(x)), ∀k > 1, and f0(x) = x. Also, fk(x) is the
trajectory of the unforced dynamics x(k + 1) = f(x(k)) from x (0)=x. If D = Rn,
the system is globally zero-state observable. Moreover, system (5) is locally zero-state
detectable if for all x ∈ D, y(k)|u(k)=0 = h(φ(k, x, 0)) = 0 and also for all k ∈ Z+ implies

lim
k→∞

φ(k, x, 0) = 0. Also, if D = Rn, the system is globally zero-state detectable.

Another important asset of passive systems is their highly desirable stability prop-
erties which may simplify system analysis and controller design procedure. Therefore,
transformation of a non-passive system into a passive one is desirable. The use of feedback
to transform a non-passive system into a passive one is known as feedback passivation [12].

Definition 2.3 Let α(x) and β(x) be smooth functions. Consider a static state
feedback control law of the following form:

u(x) = α(x) + β(x)w(k). (7)

A feedback control law of the form (9) is regular if for all x ∈ D, it follows that β(x)
is invertible. In order to analyze feedback passivation, the following theorem is taken
from [16].

Theorem 2.1 Consider a system of the form (5). Suppose h(0) = 0 and there exists
a storage function V, which is positive definite C2 function (i.e., the storage function
and its first and second derivation is continuous). Also, V (0) = 0 and V (f(x) + g(x)u)
is quadratic in u. Then, system (5) is locally feedback equivalent to a passive system with
V as storage function by a regular feedback control law of the form (7) if and only if the
system has local relative degree zero at x = 0 and its zero dynamic is locally passive in a
neighborhood of x = 0.



362 T. BINAZADEH AND M.H. SHAFIEI

Proof. See [11]. ✷

It is shown in [16] that control law of the form (7) with:

α(x) = −J−1(x)h(x) + J−1(x)h̄(x), (8)

β(x) = J−1(x)J̄(x), (9)

converts the non-passive nonlinear discrete-system (5) to a new passive dynamic given
by:

x(k + 1) = f∗(x(k)) + g∗(x(k))h̄(x(k)) + g∗(x(k))J̄ (x)w(k),

y(k) = h̄(x(k)) + J̄(x)w(k),
(10)

where
f∗(x) = f(x)− g(x)J−1(x)h(x), (11)

g∗(x) = g(x)J−1(x), (12)

J̄(x) = (
1

2
g∗T

∂2V

∂z2

∣∣∣∣
z=f∗(x)

g∗(x))−1, (13)

h̄(x) = −J̄(x)(
∂V

∂z

∣∣∣∣
z=f∗(x)

g∗(x))−1. (14)

3 Passivity-Based Optimal Control

Suppose that a system of the form (5) is passive with a positive definite storage function
V. Let ϕ be any smooth mapping such that ϕ(0) = 0 and yTϕ(y) > 0 for all y 6= 0. The
basic idea of passivity-based control is illustrated in the following theorem [11].

Theorem 3.1 If system (5) is zero-state detectable and passive with storage function
V which is proper on Rn, then the smooth output feedback control law (15) globally
asymptotically stabilizes the equilibrium x=0,

u = −ϕ(y), u, y ∈ Rm. (15)

Proof. See [11]. ✷

There is a freedom in selection of vector function ϕ(y). In this paper, by use of
this freedom we want to design ϕ(y) such that in addition to globally asymptotically
stabilizing of the nonlinear system (5) a given cost function be also minimized.

For this purpose, the following general structure for vector function ϕ(y) =

[ϕ1(y1), ϕ2(y2), ..., ϕm(ym)]
T

is assumed. It has the structure of a vector function be-
longing to the first-third quadrant sector, which yTϕ(y) > 0 for all y 6= 0 and also
ϕ(0) = 0.

ϕi(yi) = ai0yi + ai1y
3
i + ...+ aily

2l+1
i for i = 1, ...,m, (16)

where ai0, ai1, ai2, ..., ail belong to R+and the suitable l ∈ z+ ≥ 0 may be set by the de-
signer. The task is to find these unknown coefficients such that the proposed static output
feedback minimizes an appropriate cost function in the form I(k) =

∑k

k̄=0 L(x(k̄);u(k̄)).

In order to obtain the minimum value of the considered cost function, the optimization
procedure based on the theory of genetic algorithms is used. The genetic algorithms
constitute a class of search and optimization methods, which imitate the principles of
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natural evolution. A pseudo-code outline of genetic algorithms is shown below. The
population of chromosomes at time t is represented by the time-dependent variable P (t),
with the initial population of random estimates P (0) [18].

procedure GA
begin
t=0;
initialize P(t) = P(0);
evaluate P(t);
while not finished do
begin
t=t+1;
select P(t) from P (t -1);
reproduce pairs in P(t) by
begin
crossover;
mutation;
reinsertion;
end
evaluate P(t);
end
end

Therefore, by utilization of the GA optimization process, the best coefficients of the
proposed structure (Equation (16)) of output feedback control law may be found in
such a way that to minimize the given cost function. In the optimization process, the
corresponding cost function is considered as the fitness function of genetic algorithm.

4 Design Example

Consider the following nonlinear discrete-time system:

x1(k + 1) = (x2
1(k) + x2

2(k) + u(k)) cos(x2(k)),
x2(k + 1) = (x2

1(k) + x2
2(k) + u(k)) sin(x2(k)),

y(k) = (x2
1(k) + x2

2(k)) +
1

x2
1(k)+x2

2(k)−0.25
u(k).

(17)

The system (17) is not passive. Considering V = 1
2 (x

2
1(k)+x2

2(k)) as storage function,
the system can be rendered passive by means of a static state feedback control law, due
to the fact that J(x(k)) = 1

x2
1(k)+x2

2(k)−0.25
is invertible and the zero dynamics of system

(17) is passive [16]. Therefore, the passifying control scheme, i.e. u = α(x) + β(x)w,
proposed by equations (8) and (9) is applied to (17). The passiefied system has the
conditions of Theorem 3.1. Consequently, it can be locally asymptotically stabilized by
output feedback w = −ϕ(y), where w is the new input of passified system. The goal is
finding a proper function ϕ(y) in order to minimize the following cost function of the
passified system:

I =
1

2

∞∑

k=0

(w2(k) + x(k)Tx(k) + y(k)2).

The proposed optimization process has been done for three cases.
Case 1: Only first term of (16) is considered (ϕ1(y) = a0y).
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Case 2: First two terms of (16) are considered (ϕ2(y) = a0y + a1y
3).

Case 3: First three terms of (16) are considered (ϕ3(y) = a0y + a1y
3 + a2y

5).
The nonlinear static functions, resulting from GA optimization procedure are:

ϕ1(y) = 0.02755y,
ϕ2(y) = 0.0245y+ 0.0451y3,
ϕ3(y) = 0.021413y+ 0.0296y3 + 0.0258y5.

(18)

The passified dynamic is simulated for the initial conditions x0=[-1, +1] and the
three different control inputs: w = −ϕ1(y), w = −ϕ2(y) and w = −ϕ3(y). Figures 1,
2 and 3, present the responses of output, first and second states of passified dynamic,
respectively. The simulation results show that by regulating the adjustable coefficients in
(16) a suitable performance may be achieved. Additionally, comparison of results is given
in Table 1. As seen, considering more terms of (16) may lead to a better performance.

Figure 1: Time response of output y(k).

w = −ϕ1(y) w = −ϕ2(y) w = −ϕ3(y)
max |y| 0.6178 0.5155 0.6028

I 2.619 2.6097 2.6027

Table 1: The cost functions (I) of control inputs, w = −ϕ1(y), w = −ϕ2(y) and w = −ϕ3(y).

5 Conclusion

In this paper, some properties of nonlinear discrete-time passive systems were studied.
Based on the approach of passivity-based control, the output feedback u=-ϕ(y), (where
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Figure 2: Time response of the first state x1(k).

Figure 3: Time response of the second state x2(k).

ϕ(y) is a smooth function belonging to a first-third quadrant sector) stabilizes the pas-
sive system. Having a freedom in choosing ϕ(y), in addition to stabilization, one may
consider optimization of the performance of the closed-loop system with respect to an
appropriate index. Therefore, an extension (according to a general first-third quadrant
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sector function) with unknown coefficients was considered for ϕ(y) and these coefficients
were found based on the genetic optimization algorithm to minimize an appropriate cost
function. Effectiveness of the proposed procedure was illustrated by an example.
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Abstract: This paper is the second, in a cycle dedicated to the new approach in
constructing new oscillatory functions spaces, taking as primary object the formal
trigonometric series and their generalizations, whose terms are of the form exp if(t),
with f(t) functions that belong to various classes. The linear case being considered in
the first part of the paper leads to the classical cases of periodicity and almost period-
icity, while the generalized case is aimed to obtain more general spaces of oscillatory
functions, including those already known, due to V.F. Osipov and Ch. Zhang.
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1 Introduction

The periodic and, more general, the oscillatory functions/motions appeared in Science
and Engineering and other fields of knowledge, have conducted to the development of
classical Fourier Analysis of periodic functions and their associated series. While the
first traces of this branch of classical analysis can be found in the Mathematics of the
XVIII-th century (Euler, for instance), it is the XIX-th century that contains significant
results, which stimulated substantially the birth of new theories, contributing vigorously
to the new concepts of Modern Analysis (Set Theory, Real variables including Measure
and Integral). The Fourier Analysis, as developed until the third decade of the XX-th
century, has known a strong impulse due to the emerging of the concept of Almost
Periodicity, due to H. Bohr (1923-25), and successfully continued to the present day.
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It is also true that the topics of classical Fourier Analysis have also kept the attention of
many leading mathematicians, after the birth of almost periodic functions.

The well known treatises of N.K. Bary (Pergamon, 1964) and A. Zygmund (Cambridge
Univ. Press, 2002) contain a wealth of results and information about the periodic func-
tions and their Fourier series, specially obtained before the introduction of the methods
of Functional Analysis. More recent publications, due to J.P. Kahane [20], R.E. Ed-
wards [16], G. Folland [19], have brought new ideas and results from this classical, but
prolific field.

The concept of almost periodicity had several leading contributors to its beginning
period. In his famous treatise Nouvelles Méthodes de la Mécanique Céleste (1893),
H. Poincaré considered the problem of developing a function in a series of sine func-
tions, namely

f(t) =

∞∑

k=1

fk sinλkt, t ∈ R, (1)

where λk are arbitrary real numbers, not necessarily like λk = kω, k ∈ N , ω > 0.
Poincaré has succeeded to obtain the coefficients fk, k ≥ 1, simultaneously introducing
the mean value of a function on the whole real line.

Using the complex notations, which became common with the new concept of almost
periodicity, formula (1) can be rewritten as

f(t) =
∞∑

k=1

fk exp(iλkt), t ∈ R, (2)

with fk ∈ C and λk ∈ R, k ≥ 1. The coefficients fk are determined by the formulas

fk = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp(−iλkt)dt, (3)

in which the Poincaré’s mean value (i.e., on an infinite interval) appears:

M(g) = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

g(t)dt, (4)

g ∈ Lloc(R+, R), under the assumption that the limit exists as a finite number.
It is known that most concepts related to almost periodicity, including the Fourier

exponents and coefficients (see (3) above) are based on the mean value defined in (4).
Other early contributors, preceding the period initiated by H. Bohr, include P. Bohl

(1893) and E. Esclangon (1919) who dealt with what was later called quasiperiodic func-
tions, a special case of almost periodicity. They have investigated oscillatory functions
with a finite number of frequencies, the periodic case being concerned with only one basic
frequency (2π/ω), ω-period. Some methods encountered to P. Bohl, but particularly to
E. Esclangon, have been adapted to the general case of almost periodicity by H. Bohr.

H. Bohr (1887–1951) was the first to create a theory of almost periodicity, in a
series of papers (1922–1925) which contained most of the fundamental results of the
new theory (Generalized Fourier Analysis). The new theory is marking the beginning
of a second stage in the study of oscillatory functions, aiming at global behavior of its
elements. The theory of almost periodic functions has attracted, in short time, the
interest of many mathematicians, including V.V. Stepanov (1925), H. Weyl (1926), A.S.
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Besicovitch (1926-1932), S. Bochner (1925-), J. Favard (1926-), J. von Neumann (1934-),
B.M. Lewitan (1939-), N.N. Bogoliubov (1930-).

The definition of H. Bohr, for almost periodic functions, is showing the fact that these
new functions are direct generalizations of the periodic ones:

A continuous function f : R → R (or C) is called almost periodic if the following
property holds: to each ε > 0, there corresponds a number ℓ = ℓ(ε) > 0, such that each
interval (a, a+ ℓ) ⊂ R contains a number τ with |f(t+ τ) − f(t)| < ε, t ∈ R.

The number τ is called an ε-almost period of the functions f and one says that all
numbers τ , with the above property, form a relatively dense set on R.

This terminology has been present in all the generalizations the almost periodic func-
tions have known so far.

The following two properties of almost periodic functions, in the sense of Bohr, have
been readily discovered by Bohr himself, Bochner and Bogoliubov.

A. Approximation property: for each ε > 0, there exists a complex trigonometric
polynomial

T (t) = Tε(t) =

n∑

j=1

aj exp(iλjt), t ∈ R, (5)

with λj ∈ R, aj ∈ C, such that

|f(t)− Tε(t)| < ε, t ∈ R. (6)

Rephrasing the above property, one may say that any almost periodic function (Bohr)
can be uniformly approximated on R by trigonometric polynomials of the form (5).

B. Bochner property: the set of translates of an almost periodic function (Bohr),
say F = {f(t+h); h ∈ R}, is relatively compact in the sense of uniform convergence
on R.

Each of properties A and B can be taken as definition for the almost periodic functions
in the sense of Bohr. Bogoliubov has given a direct proof of the equivalence between the
definition of Bohr and the approximation property, making possible the constructive
presentation of the theory.

In what follows, by AP (R,R) or AP (R, C), we will understand the almost periodic
set of functions in the sense of Bohr. These sets are actually Banach function spaces,
the norm being given by the formula |f |AP = sup{|f(t)|; t ∈ R}, which makes sense for
each almost periodic function (Bohr), because each function in AP (R,R) or AP (R, C) is
bounded on R and uniformly continuous.

The three equivalent properties for the space of almost periodic functions, i.e., the
Bohr’s definition and A, B, constitute the core of the classical theory and numerous
applications to various types of functional equations. See the books by H. Bohr [6],
A.S. Besicovitch [5], J. Favard [17], B.M. Levitan [21], C. Corduneanu [9,10], L. Amerio
and G. Prouse [2], A.M. Fink [18], S. Zaidman [32], Ch. Zhang [33], W. Maak [23],
B.M. Levitan and V.V. Zhikov [22], for most of the evolution of the theory of almost
periodic functions, until recently. These references contain a large number of sources in
the field, with varied applications in Mathematics and other areas.

Currently, we assist at the beginning of a third stage in the development of mathema-
tical concepts and theories to advance the study of various types of vibratory motions,
encountered in the description of phenomena examined in Science or Engineering.
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We shall touch partially this aspect in the following pages of this paper. It has been
realized, by both users and designers of the new tools for investigation of oscillatory
phenomena, that periodicity (first stage) and almost periodicity (seconde stage) cannot
describe the wide variety of oscillatory or wave-like phenomena that one encounters in
science or in the real world.

2 A Remark and Its Consequences

A new approach to build up spaces/classes of oscillatory functions, applicable also to
the classical ones (periodic or almost periodic) consists in starting with formal/generic
trigonometric series of the form:

∞∑

k=1

ak exp(iλkt), t ∈ R, (7)

where ak ∈ C, λk ∈ R, k ≥ 1, the assumption λk 6= λj for k 6= j, k, j ≥ 1, being accepted
throughout the paper.

The main idea leading to the new approach, in this paper, partially illustrated in
our previous paper [11], is to start with formal trigonometric series, of the form (7), as
primary material, and identify conditions on the two sequences {ak; k ≥ 1} ⊂ C and
{λk; k ≥ 1} ⊂ R, such that (7) ”characterizes” a certain type of oscillatory function,
either in the classical category (periodic or almost periodic), or in the new classes of
oscillatory functions (e.g., pseudo-almost periodic, to begin with in the third stage of
development, or new types, as those investigated by Ch. Zhang [33, 34, 36]).

As we shall see, this new approach works for classes/spaces of classical type, but as
well for introducing new spaces of oscillatory (or vibrating?) functions. The answer is
not always simple, and to illustrate the situation we will start with the question:

Under what conditions does the series (7) characterize the space AP (R, C) of Bohr
almost periodic function?

Based on the theory of almost periodic functions, the answer has a simple formulation,
which is:

Theorem 2.1 The necessary and sufficient condition, for the series (7), to charac-
terize an almost periodic function of the space AP (R, C) is the summability of this series,
in the sense of Cesaró-Fejér-Bochner, with respect to the uniform convergence on R.

Proof. The condition is necessary, because it is well known (see, for instance, Cor-
duneanu [9], [10]) that for a function f ∈ AP (R, C), whose Fourier series has the form
(7), the sequence of trigonometric polynomials

σm(t) =

n∑

k=1

akrk,m exp(iλkt), t ∈ R, (8)

n = n(m), with rk,m rationals depending on λk and m, but independent of {ak; k ≥ 1},
converges uniformly on R to f(t).

The summability condition is also sufficient, because if (7) is summable with respect
to the uniform convergence on R, the limit function will belong to AP (R, C).

Let us point out that any linear method of summability, not necessarily the one
described by (8), leads to the same conclusion. This ends the proof of Theorem 2.1, which
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characterizes the formal trigonometric series of the form (7), representing functions in
AP (R, C), the first space of almost periodic functions (Bohr).

Remark 2.1 Based on the uniqueness of the Fourier series corresponding to a func-
tion from AP (R, C), in case of convergence on R of the series (7), there results that it is
the Fourier series of its sum. This case takes place, obviously, when the convergence of
(7) is uniform on R, and we can write

f(t) =

∞∑

k=1

ak exp(iλkt), t ∈ R. (9)

Otherwise, we have to be content with the relationship

lim
m→∞

σm(t) = f(t), t ∈ R, (10)

uniformly, the {σm(t), m ≥ 1} being the summability sequence consisting of trigono-
metric polynomials (e.g., like in (8)). Of course, any trigonometric polynomial
n∑

k=1

ak exp(iλkt), when regarded as a formal series, is summable, hence Bohr’s almost

periodic.

In order to establish Theorem 2.1, we needed to rely on Bohr’s properties of almost
periodic functions.

What if we start with the new definition for AP (R, C), a fact made possible by
Theorem 2.1?

It turns out that the most basic properties can be routinely derived from the new
definition. We shall list a few of them, leaving the task of proof to the reader.

a) An almost periodic function in Bohr’s sense is bounded on R.

b) An almost periodic function in Bohr’s sense is uniformly continuous on R.

c) If f ∈ AP (R, C) and c ∈ C, then cf ∈ AP (R, C), as well as f̄ .

d) If f, g ∈ AP (R, C), then f + g ∈ AP (R, C) also fg.

e) If f ∈ AP (R, C) and h ∈ R, then f(t + h) = fh(t) and f(ht) = fh(t) both belong
to AP (R, C).

More basic properties of Bohr’s almost periodic functions can be ”rediscovered” if we
introduce a topology/convergence in the set of all formal trigonometric series (7). We
shall not proceed on this way, preferring instead on relying on every fact in the existing
theory of almost periodicity, as soon as essential connections are established.

Let us give one more example to illustrate the fact that, starting from trigonometric
series, one can proceed successfully to the construction of various spaces of almost perio-
dic functions. On behalf of Theorem 2.1 (and even of the new definition of AP -space),
the approximation is assured by the summability assumption. This means that, for any
f ∈ AP (R, C), one can construct a sequence of trigonometric polynomials, say {fn;n ≥ 1}
⊂ AP (R, C), such that lim fn(t) = f(t), uniformly on R, as n → ∞.

Starting from A, the space AP (R, C) has been constructed by Bogoliubov in 1930’s.
This direct approach is discussed in detail in the book by Corduneanu [9].
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The new approach, starting from trigonometric series as background material, in-
stead of trigonometric polynomials, is not meant to be a substitute for other existing
approaches. It has been shown in Corduneanu [9] or Shubin [27] that various applica-
tions make sense in this approach, and properties can be emphasized that were unknown
before, in case of the spaces we have denoted by APr(R, C), 1 ≤ r ≤ 2, obtained by
the procedure of completion of the linear space of trigonometric polynomials. Briefly,
the space APr(R, C) is defined as consisting of all series (7), satisfying the convergence
condition

∞∑

k=1

|ak|
r < ∞, r ∈ [1, 2], r fixed. (11)

This space is a linear space over C, the norm being given by
∣∣∣∣∣

∞∑

k=1

ak exp(iλkt)

∣∣∣∣∣
r

=

(
∞∑

k=1

|ak|
r

)1/r

, (12)

the right hand side of (12) being known as Minkowski’s norm.
The case r = 1 leads to the space of almost periodic functions with absolutely conver-

gent series of Fourier coefficients. We have called this space Poincaré’s space of almost
periodic functions, and it is well known that it can be organized as a Banach algebra
(see, for instance, Corduneanu [10]). It is denoted by AP1(R, C).

The other extreme, r = 2, leads to the Besicovitch space B2 = AP2 of almost periodic
functions, the largest in which the Parseval’s formula holds true:

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (13)

where f(t) is the function associated to the series (7), in the manner we shall describe in
subsequent lines. What appears in the right hand side of (13), according to (12) where
r = 2, is actually the square of the seminorm of the function space B2(R, C)

|f |2B2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (14)

valid for all series/functions satisfying (11), for r = 2. As one sees from (14), the
Poincaré’s mean value on R is deeply involved in dealing with generalizations of Bohr’s
almost periodic functions.

The scale of spaces, of almost periodic functions, extended from the Poincaré’s space
AP1(R, C), to the Besicovitch space B2(R, C) = AP2(R, C), has been introduced and
investigated in some detail in the recent paper by Corduneanu [11].

Applications of these spaces of almost periodic functions have been recently given in
the papers by Corduneanu [11], Mahdavi [24] and Corduneanu and Li [14], concerning
some classes (linear and nonlinear) of functional differential equations of the form

ẋ(t) = (Ax)(t) + (Fx)(t), t ∈ R, (15)

where A is a linear operator acting on an APr(R, C) space, while F : APr(R, C) →
APr(R, C) is, generally, nonlinear. It is useful to notice that the operator A could involve
convolution type terms, the convolution product being defined by the formula

(K ∗ x)(t) ∼

∞∑

j=1

x̃j exp(iλjt), t ∈ R, (16)
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with x represented by the series

x(t) ∼

∞∑

k=1

xk exp(iλkt), t ∈ R, (17)

and

x̃k = xk

∫

R

K(s) exp(−iλks)ds, k ≥ 1. (18)

The sign ∼ will be used to mark the relationship between trigonometric series and
its associated function, as in (16) and (17). In order for (18) to make sense, it will be
assumed that K ∈ L1(R, C).

It can be easily checked that

|K ∗ x|r ≤ |K|L1 · |x|r , r ∈ [1, 2], (19)

for each x ∈ APr(R, C). The inequality (19) is a replica of a similar one, namely

|f ∗ g|Lp ≤ |f |L1 · |g|Lp , p ≥ 1,

which is often used in convolution problems. Actually, the convolution product, in this
generalized form, has been used in the above referenced papers by Corduneanu, Mahdavi
and Li.

3 The Besicovitch Space B2(R, C)

It is known that the space B2 has properties that have been used in several applica-
tions, and presents various features making it more accessible to connections with other
topics. Such a situation is not encountered when dealing with the Besicovitch space
B = B1(R, C), even though this space is known as the largest for which the Fourier series
can be associated to its elements. We will consider the space B(R, C) in a subsequent
section of this paper.

The construction of the space B2(R, C), starting from our approach (point of view),
is rather simple. We know from the classical theory that, for each f ∈ B2(R, C), the
Parseval formula

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (20)

where

f ∼

∞∑

k=1

ak exp(iλkt), (21)

represents the connection between the function f and its Fourier series. Also, we know
that for each sequence {ak; k ≥ 1} ∈ ℓ2(N, C) =the complex Hilbert space, there exists
f ∈ B2(R, C) such that (21) holds true.

Our basic assumption for constructing B2(R, C), starting from the set of trigonometric
series of the form (7), will be

∞∑

k=1

|ak|
2 < ∞, (22)
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which is the same as {ak; k ∈ N} ∈ ℓ2(N, C).
Consider now a series like (21), and see what we can get if one searches its convergence

in the norm derived from Poincaré’s mean value on the real axis.
Why do we appeal to this type of convergence?
I think because it has proven to be a very important tool in Fourier Analysis (second

stage), and hope to be also successful in the future. The procedure to be followed to
define the space B2(R, C) and emphasize some of its properties has the origin in the
theory of orthogonal functions. In this field of investigation, closely related to Fourier
Analysis, there are numerous monographs and treatises. We send the reader to the
classical references Alexits [1] and Sansone [26].

In order to apply this procedure to the case of almost periodic functions, the following
elementary result is useful:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp(iλt)dt =

{
1, for λ = 0,
0, for λ 6= 0.

(23)

Equation (23) is an orthogonality relation, which clearly appears when one considers a
sequence of complex exponentials {exp(iλkt); k ≥ 1}, with λk 6= λj for k 6= j, and derive
from (23) the relation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[i(λk − λj)t]dt =

{
1, k = j,
0, k 6= j.

(24)

Let us return to the assumption (22), and notice that

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣

2

=

〈
n+p∑

k=n+1

ak exp(iλkt),

n+p∑

k=n+1

āk exp(−iλkt)

〉

=

n+p∑

k=n+1

|ak|
2 +

n+p∑

k,j=n+1
k 6=j

akāj exp[(i(λk − λj)t].

If one takes (24) into account, and takes the Poincaré’s mean value of both sides in the
last equation, one obtains the relation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣

2

dt =

n+p∑

k=n+1

|ak|
2. (25)

Now, taking into account our assumption (22), we see from (25) that the series con-
verges on R, with respect to the seminorm f → |f |B2 , defined by

|f |2B2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (26)

the right hand side of (26) being finite. Indeed, in the way we have obtained (25), one
also obtains

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n∑

k=1

ak exp(iλkt)

∣∣∣∣∣

2

dt =

n∑

k=1

|ak|
2, (27)
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and letting n → ∞, there results on behalf of (22) (the seminorm is continuous!) the
formula (26), or

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (∗)

which is nothing else but Parseval’s formula. See also formula (20).
A legitimate question is now whether the convergence, in the sense of the norm derived

from Poincaré’s mean value, defines a function belonging to L2
loc(R, C), such that (26)

may have a meaning?
The answer to this question is positive and we shall dwell in getting it. If one denotes

by A > 0 the sum of the series

∞∑

k=1

|ak|
2 in (22), then (27) allows us to write the inequality,

valid when n ≥ 1,
∫ ℓ

−ℓ

∣∣∣∣∣

n∑

k=1

ak exp(iλkt)

∣∣∣∣∣

2

dt < 2ℓ(A+ ε), (28)

for ℓ ≥ ℓ(ε). Let us fix now ℓ as mentioned above, and read (28) as follows: the series in
(21), under assumption (22), converges on the interval [−ℓ, ℓ], in the space L2([−ℓ, ℓ], C).
We assign now to ℓ ≥ ℓ(ε) a sequence of values {ℓm; m ≥ 1}, such that ℓm ր ∞ as
m → ∞. Since on each interval [−ℓm, ℓm] the series in (21) is L2-convergent, there results
that we deal with convergence in L2

loc(R, C). The limit function, we have denoted by f(t),
satisfies the equation

f(t) =
∞∑

k=1

ak exp(iλkt), a.e. t ∈ R, (29)

the a.e. convergence being the consequence of the fact f(t) ∈ L2
loc(R, C). Therefore,

we have the right to substitute (29) to (21), and we can now associate to each series,
which satisfies (22), a function f(t) ∈ L2

loc(R, C). This function is exactly the sum of the
series (21), which generates it in the way shown above when proving the convergence in
L2
loc(R, C).
At this point in the discussion, it is very important to look more in detail at the

correspondence from series to functions, as established above. The following remark
is necessary. Namely, since the right hand side in (26) remains unchanged, when the
integrand |f(t)|2 is changed into |f(t)− f0(t)|

2, with f0(t) such that

|f0|B2 =

{
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f0(t)|
2dt

}1/2

= 0, (30)

it means that the correspondence from series to function is not one to one (as it happens
in AP (R, C)). More precisely, to each series in (21), one associates a set of functions
f ∈ L2

loc, for which formula (∗) is verified. This set of functions is nothing else but the
translation of the null space of Poincaré’s functional, i.e., the space N0 of those functions
for which (30) is satisfied. Let us notice that one of these functions is f0(t) = exp(−|t|),
t ∈ R.

Let us denote by B the set of all trigonometric series like (21), such that (22) holds

true for each series. We shall denote by B̃ the space of all functions f ∈ L2
loc(R, C),

corresponding to series from B, by means of the procedure described above, that lead to
the Parseval’s formula (∗). See also the relation given by formula (29).
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Before introducing the Besicovitch space of almost periodic functions, B2 = B2(R, C),
let us point out the fact that formula (∗) in this section is the vehicle that helps us to deal
with either manner of constructing the space B2. We shall prove, first, the following.

Lemma 3.1 The set B, organized as a linear seminormed space, is complete. Hence,
it is isometric and isomorphic to a B-space (see Yosida [31]).

Proof. Since the elements of B are series like (7), and the coefficients verify condition
(22), it is to be expected that the Hilbert space ℓ2(N, C) will play an important role in
investigating properties of B. Indeed, let us consider a Cauchy sequence {xk; k ≥ 1} ⊂ B.
This means that, for any ε > 0, there exists N = N(ε) > 0, with the property

|xn − xm|B < ε for n,m ∈ N(ε). (31)

Since each xk ∈ B can be regarded as an element in the Hilbert space ℓ2(N, C), i.e., its
representation in B is

xk ∼
∞∑

j=1

ajk exp(iλjt), (32)

with {ajk; j ≥ 1} ⊂ ℓ2(N, C), (31) takes the form

∞∑

j=1

|ajn − ajm|2 < ε2, for n,m ≥ N(ε). (33)

Starting from (33), by a routine procedure (see for detailed discussion, for instance,
V. Trénoguine [30]) one obtains the existence of an element/series in B, say x, such

that x ∼
∞∑

j=1

aj exp(iλjt). The coefficients aj , j ≥ 1, are limits for subsequences of the

sequences {ajk; k ≥ 1}, j ∈ N .

Remark 3.1 According to our notation, it appears that the set of λk’s is common
to all series involved in the representation of the elements xk, k ≥ 1. This is not a
restriction, because the union of all such exponents to all xk’s k ≥ 1, is a countable set.
Therefore, one may have to add some terms, in the representations, whose coefficients
are zero. In such a way, we can use the same complex exponentials for each xk ∈ B,
k ≥ 1.

Remark 3.2 In case we have two series in B, say

∞∑

j=1

aj exp(iλjt) and
∞∑

j=1

bj exp(iλjt), the equation (∗) allows us to write

∞∑

j=1

|aj − bj |
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− g(t)|2dt, (34)

from which we derive
aj = bj, j ≥ 1, iff f − g ∈ N0, (35)

where N0 =the null space, has been defined above in this sections. In other words, two
functions f, g ∈ B̃ generate the same series in B, in case, and only in case f − g ⊂ N0.
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Remark 3.3 From the relationship

∞∑

j=1

|ajn − ajm|2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|xn(t)− xm(t)|2dt,

which results from Parseval equation, written for the difference xn(t) − xm(t), in ac-
cordance with the representation (32), one derives the conclusion that the linear space

B̃ ⊂ L2
loc(R, C) is also complete in the topology induced by the seminorm | · |B2 , as defined

by (26).

To summarize the above discussion, we shall state the following.

Theorem 3.1 The Banach space B of series like (7), under assumption (22), with
the norm ∣∣∣∣∣

∞∑

k=1

ak exp(iλkt)

∣∣∣∣∣
B2

=

(
∞∑

k=1

|ak|
2

)1/2

, (36)

is completely determined, as described above. First of its realizations is the model also
described above, starting with the set B, and endowing it until the Banach space B2 =
B2(R, C) is constructed. A second realization (isomorphism plus isometry), also described

above, consists in the model starting with the set B̃ ⊂ L2
loc(R, C), which is isomorphic

and isometric to B, modulo N0 – the null space in B̃. The integral norm on the factor
space B̃/N0 = B2 is given by the formula (26).

The proof, to be complete, also requires to prove that N0 is a closed subspace of B̃,
in the topology of the seminorm (26) on B̃.

Let fn → f in B̃, as n → ∞, and assume lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)|
2dt = 0, n ≥ 1. Let us

show that lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt = 0. This follows from the Minkowski’s inequality

{
(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

}1/2

≤

{
(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− fn(t)|
2dt

}1/2

+

{
(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)|
2dt

}1/2

,

which implies, as ℓ → ∞, |f(t)|B2 ≤ |f(t) − fn(t)|B2 . Now, letting n → ∞, one obtains
|f(t)|B2 = 0, which means f ∈ N0.

For definitions and details concerning the factor space, see Yosida [31] and Swartz [29].

Finally, let us notice that Remark 3.3 to Lemma 3.1 proves the completeness of B̃,
with respect to the seminorm (26), which is needed in obtaining the completeness, and
hence the Banach type space for B2(R, C) – as a quotient or factor space.

With these considerations, related to the construction of the Besicovitch space
B2(R, C), we end the proof of Theorem 3.1.

We have dealt with B2(R, C) in Corduneanu [10], when the notation AP2(R, C) has
been used to stress its connection with the spaces APr(R, C), r ∈ [1, 2). But these spaces,
all of them subsets of B2 = AP2, have different topologies, stronger than the topology
of B2. Moreover, the approximation property has been taken as definition, instead of
starting with trigonometric series. Properties similar to A and B have been emphasized
for the APr(R, C)-spaces.
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In concluding this section, we shall recall the fact that in the book by Corduneanu
[10], the construction of the space B2(R, C) = AP2(R, C) is based on the approximation
property applied in the Macinkiewicz’ space M2(R, C), taking the closure of the set of
trigonometric polynomials.

4 The Besicovitch Space B(R, C)

In Besicovitch [4], one finds the construction of the spaces Bp for p > 1, the case p = 1
conducing to a more difficult treatment, with definitions for the upper and lower mean
values. The difference with respect to the case p > 1 comes from the fact that Hölder
inequality, in case p = 1 leads to the conjugate index q = ∞, while for L∞ we don’t
have an integral norm. But, this tool is systematically used in building the theory of
Bp-spaces when p > 1. It is known that the seminorm which plays the main role in
constructing the spaces Bp(R, C), p < ∞, is given by

|f |pBp = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|pdt. (37)

In the preceding section we have obtained and dealt with (37), in the case p = 2. But
our approach was based on taking the trigonometric series as departing object and the
condition (22) imposed on these series that characterize the B2-functions.

The seminorm (37), for p = 1, which is the Poincaré’s mean value of |f(t)|, will be
also of great use in our approach to construct the space B.

Instead of starting from a condition similar to (22), which apparently does not exist,
even though for APr(R, C) spaces, r ∈ (1, 2], it has been helpful, we shall start from the
space AP (R, C) of Bohr, which has been characterized in our approach by Theorem 2.1.

In the space AP (R, C), due to the summability of its associated series, the approxima-
tion property is valid. This means that the set of trigonometric polynomials, a fraction of
the set ST of trigonometric series like (7) is everywhere dense in AP (R, C), with respect
to the uniform convergence on R. As it is well known (see, for instance, Lewitan [21] or
Corduneanu [10]), once the approximation property is established, one can easily derive
the existence of the mean value for each f ∈ AP (R, C), starting from the obvious fact
that the mean value exists for each trigonometric polynomial (equal to the term without
complex exponential, if any, otherwise = 0).

The main properties of the mean value M{f}, f ∈ AP (R, C), are

(a) M{f̄} = M{f};

(b) M{αf + βg} = αM{f}+ βM{g}, α, β ∈ C, f, g ∈ AP (R, C);

(c) f(t) ≥ 0 on R implies M{f} ≥ 0, f ∈ A(P,R) and M{f} = 0 implies f ≡ 0;

(d) |M{f}| ≤ M{|f |}, f ∈ AP (R, C).

Let us notice that the map f → M{|f |}, from AP (R,R) into R is a norm. Indeed, for
f, g ∈ AP (R, C), one has |f+g| ≤ |f |+|g|, which leads to M{|f+g|} ≤ M{|f |}+M{|g|}.
Property (c) is a consequence of the uniqueness.

Lemma 4.1 In the topology induced by the mean value norm, the space AP (R, C) is
always incomplete ( denoted by APM (R, C)).
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Proof. The proof will be conducted on the principle of reductio ad absurdum. Hence,
let us assume that the set of elements in AP (R, C), with the norm M{|f |}, is complete.
Therefore, it is a Banach space. Then the identity map, which is one-to-one, is a linear
operator acting from the Banach space AP (R, C), in its associate APM (R, C), endowed
with the mean-value normM{|f |}. According to the Banach theorem on the continuity of
the inverse operator, we derive that the identity map (which coincides with its inverse) is
continuous from APM (R, C) onto AP (R, C). This fact implies the existence of a constant
C > 0, such that

sup{|f(t)|; t ∈ R} ≤ CM{|f |}, f ∈ AP (R, C). (38)

By an example, we shall prove now that (38) is impossible, and therefore our assumption
that APM (R, C) is complete is false.

Let us consider the sequence of periodic functions, defined by fn(t+1) = fn(t), t ∈ R,
n ≥ 2, and for t ∈ [0, 1) by

fn(t) =






1− nt, 0 ≤ t < n−1,

0, n−1 ≤ t < 1− n−1,

1− n+ nt, 1− n−1 ≤ t ≤ 1.

(39)

Since periodic functions are almost periodic (Bohr), i.e. in AP (R,R) ⊂ AP (R, C), we
obtain M{fn} = n−1, n ≥ 2, while sup fn = 1, n ≥ 2. Hence, one should have 1 ≤ C/n,
n ≥ 2, which is obviously impossible. This ends the proof of Lemma 4.1.

Further, on our way to construct the space B = B(R, C), we shall complete the
space APM (R, C), following the usual procedure (see, for instance, Trénoguine [30], or
Yosida [31]).

Let us denote by B the linear complete space which is the (unique, up to isomorphism)
completion of the space APM (R, C). One has APM (R, C) ⊂ B(R, C), more precisely
APM (R, C) can be identified with a set which is everywhere dense in B(R, C).

Applying the Hahn-Banach theorem on extension of functionals, from subspaces to
a larger space, we can infer that the seminorm M{|f |}, which is defined on APM (R, C),
admits an extension to B(R, C), with preservation of its basic properties. If one denotes

by M̃{|f |} the extension of M from APM (R, C) to B(R, C), then M̃{|f |} = M{|f |} for

each f ∈ APM (R, C) and M̃ satisfies on B the properties (a), (b), (c), (d), excepting the
part of (c) which makes APM (R, C) a normed space (not a seminormed one!).

A natural question arises at this point in our discussion. Namely, how do we know
that the new elements in the completed space are functions locally integrable onR, so
that M̃{|f |} makes sense.

The answer to this question results from the following considerations (also encoun-
tered when constructing B2(R, C), in the preceding section). If one considers a Cauchy se-

quence in APM (R, C), say {fk; k ≥ 1} ⊂ APM , from lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)−fm(t)|dt < ε,

for n,m ≥ N(ε), one derives the inequality

∫ ℓ

−ℓ

|fn(t)− fm(t)|dt < (2ℓ+ 1)ε, (40)

for n,m ≥ N(ε) and ℓ ≥ L(ε). As proceeded in the preceding section, one obtains
that F (t) = lim fm(t), as m → ∞, in L1

loc(R, C). Hence, we are assured that in order
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to complete the normed space APM (R, C), it is sufficient to add functions which are in
L1
loc(R, C). Of course, this situation takes place when the Cauchy sequence {fk; k ≥ 1}

does not have its limit in APM (R, C).
So far, we have constructed a complete seminormed space, not a Banach space yet,

denoted by B(R, C), the seminorm being the mean-value functional f → M̃{|f |}.
The last step to achieve the construction of the Besicovitch space B(R, C), as a

Banach space, is to take the factor space B/N0, where N0 stands for the null space of
the functional

M̃{|f |} = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|dt. (41)

For the construction of the factor space B/N0, in order to obtain by means of this proce-
dure a normed complete space (Banach), we need to show that N0 is a closed subspace

of B. Indeed, assume that {fk; k ≥ 1} ⊂ B is such that M̃(|fk|) = 0, k ≥ 1, and

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fk(t)− f(t)|dt = 0. (42)

We need to prove that f ∈ N0, i.e., M̃(|f |) = 0. Taking into account the relationship
|f(t)| ≤ |f(t)− fk(t)|+ |fk(t)|, we obtain

M̃(|f |) ≤ M̃(|f − fk|) + M̃(|fk|), k ≥ 1, (43)

and since M̃(|fk|) = 0, k ≥ 1, while M̃(|f−fk|) → 0 as k → ∞, there results M̃(|f |) = 0.
This means f ∈ N0, and this is what we wanted to prove. Summarizing the discussion
about the construction of the space B = B(R, C), carried out above, we can formulate
the following

Theorem 4.1 The Besicovitch space B = B(R, C) is constructed by the following
procedure:

1) One starts with the Bohr space of almost periodic functions AP (R, C) (see Theorem
2.1 above), which generates the incomplete normed space APM (R, C), according to
Lemma 4.1.

2) The (unique) completion of APM (R, C), denoted by B = B(R, C), is a seminormed

complete space, with the seminorm f → M̃(|f |) =the extended mean value/norm
in APM (R, C), defined by (41).

3) The Banach space B = B(R, C) is the factor space B/N0, with N0 the null space

of the seminorm M̃{|f |}, f ∈ B.

The proof of Theorem 4.1 has been completed above, in this section, while the
construction procedure is motivated by the known results on completion of seminormed
spaces, as well as on the construction of the factor space. For details in this regard, see
Yosida [31] and Swartz [29].

In concluding this section, we shall briefly discuss some properties of the space B,
including its relationships with other spaces of almost periodic functions.

From the construction of the space B(R, C) described above, there results several
properties that we shall consider below.
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First, let us notice the fact that the approximation property is valid, in the norm of
the space B(R, C). This means that for f ∈ B and each ε > 0, one can determine a
trigonometric polynomial of the form (5), such that

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− Tε(t)|dt < ε, (44)

is satisfied.
Second, the mean value of any function g ∈ B(R, C) exists, being given by (4).
The proof of this statement can be found in Besicovitch [4] or Corduneanu [11].

Third, the mean value f → M̃{f} satisfies conditions (a), (b), (d) mentioned above
in this section, while in (c) only the first statement remains true.

Indeed, M̃(|f |) = 0 does not imply f = 0, but only f ∈ N0. One has to take into

account that |M̃(t)| ≤ M̃(|f |), which is an obvious property. The property also shows

that f → M̃(f) is a continuous functional on B (or B).

Fourth, once established the existence of the mean value M̃(f), for each f ∈ B(R, C),
one can find the Fourier series associated to f ∈ B(R, C), which represents the trigono-
metric series of the form (7), characterizing not only f (as an individual function), but
the equivalence class which contains f , i.e., any other g for which

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− g(t)|dt = 0.

Fifth, besides the spaces AP (R, C) and B2(R, C), B(R, C) is also containing the
Stepanov’s space of almost periodic functions, S = S(R, C), which is defined as the
set of all f ∈ L1

loc(R, C), such that

sup

{∫ t+1

t

|f(s)|ds; t ∈ R

}
= |f |S < ∞. (45)

Since for large ℓ > 0 we can write for f ∈ S

ℓ−1

∫ ℓ

0

|f(s)|ds ≤ ℓ−1

(∫ 1

0

|f(s)|ds+

∫ 2

1

|f(s)|ds+ ...+

∫ [ℓ]+1

[ℓ]

|f(s)|ds

)
≤ ℓ−1([ℓ]+1)|f |S,

one obtains, as ℓ → ∞, the inequality

|f |B ≤ |f |S, f ∈ S(R, C), (46)

which tells us that S ⊂ B.
We took into account that one has

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|ds = lim
ℓ→∞

ℓ−1

∫ ℓ

0

|f(s)|ds = lim
ℓ→∞

ℓ−1

∫ 0

−ℓ

|f(s)|ds,

which can be found in most books on almost periodic functions (for instance, Corduneanu
[11]).

As far as the inclusion B2 ⊂ B is concerned, it follows from the inequality

(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|ds ≤

[
(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|2ds

]1/2
,
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valid for ℓ > 0 and each f ∈ B2(R, C) ⊂ L2
loc(R, C), on behalf of Cauchy’s integral

inequality (special case of Hölder’s inequality).
Sixth, because the approximation property by trigonometric polynomials is assured

for functions in B(R, C), there results that the property B, mentioned in Introduction,
is valid. As it is known, the Bochner’s property (i.e., relative compactness) of the family
of translates if f , F = {f(t+ h); h ∈ R}, implies Bohr’s property. Of course, all these
properties are meant in the sense of the norm of the space B(R, C). More precisely, for
f ∈ B(R, C), to any ε > 0 there corresponds ℓ = ℓ(ε), such that each interval (a, a+ℓ) ∋ τ ,
such that |f(t+ τ)− f(t)|B < ε, t ∈ R.

Seventh, the space B(R, C) has been already involved in work pertaining to the third
stage of the development of the theory of oscillatory functions. See the book by Ch.
Zhang [33], which contains the theory of pseudo-almost periodic functions. When defining
the space PAP (R, C) of these functions, the B-norm is involved, together with that of
BC-space (the supremum norm, on R). One has the inclusion PAP (R, C) ⊂ BC(R, C),
but the pseudo-almost periodicity appears as perturbation of the classical case of Bohr.
An example of the use of space B(R, C) in proving existence of almost periodic solutions
to certain functional equations is given in Corduneanu [9]. The solutions are in B2(R, C).

Eighth, the interest for oscillatory functions/solutions comes from their significance in
the physical problems, and their frequent use. In the paper of Staffans [28], an example of
a function belonging to the Weyl’s space (see Besicovitch [4]) is provided, which does not
present the oscillatory character. It is understood that the space B(R, C) may contain
functions whose behaviour may not be classified as oscillatory.

We shall make a final remark about the manner of introducing the space B(R, C).
Namely, if we start again from the set of trigonometric series, of the form (7), the Cauchy’s
type convergence condition

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣ dt < ε, (47)

for n ≥ N(ε), p ≥ 1, is, very likely, leading to the space B(R, C) after the operations used
already (completion, factor space). We have used this approach in constructing the space
B2(R, C). In that case, we have been essentially helped by condition (22) imposed on the
coefficients of the candidate series. It is obvious that (47) is the condition guaranteeing
the convergence of the series (7) in the space B or B (after factorization). The approach
we have used in this section relies substantially on the facts known in the classical theory.

5 Some Preliminaries for Oscillatory Functions Spaces

Both classes of oscillatory functions, amply investigated during the last two centuries,
are representable by means of series of the form (7). It does not mean that the series
are convergent in the usual sense, but the procedure that can be associated to them,
in various ways, allow the construction of corresponding functions (e.g., by summability
methods or by convergence in certain nonclassical norms, usually inducing a weaker type
of convergence than the sup norm). They are useful, because they permit the construction
of the function, in a manner that leads to results that can be used in applications.

We have in mind the Fourier Analysis in the classical framework, but also its extension
to various classes of almost periodic functions, starting with the functions in AP (R, C),
or AP (R,R).
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Let us point out that the problem of convergence of Fourier series, which constitute
a special form of series (7), has been in the attention of famous mathematicians for
a long time. An example constructed by Kolmogorov (see the treatises by Bary and
Zygmund, quoted in Introduction) shows that there exists Fourier series, in the classical
sense, nowhere convergent on the interval [−π, π]. It is also worth mentioning the fact
that the attention paid to the convergence of series of the form (7) is directed to their
convergence on the finite interval [−π, π], even though each term of the series is defined
on the whole R. This feature is not, generally, agreeing with the needs of applications,
when large interval of time can be involved, such as it happens in Celestial Mechanics or
in other types (could be man made) of evolutionary systems.

Some of the latest example of oscillatory systems/functions led to the investigation
of series of a much more general form than (7), namely

∞∑

k=1

ak exp[iλk(t)] (48)

with {ak; k ≥ 1} ⊂ C, and λk(t), k ≥ 1, some real functions defined on R, and such that
certain orthogonality conditions are verified.

We shall use again the Poincaré’s mean value on R, and write these conditions in the
form

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[i(λk(t)− λj(t))]dt =

{
1, j = k,

0, j 6= k,
(49)

where k, j ≥ 1, and λk(t) 6= λj(t) for k 6= j, with λk(t) ∈ L1
loc(R,R), k ≥ 1,

while {ak; k ≥ 1} < C satisfy (22).
The following assertion shows how a certain type of convergence, applied to the series

(48), can help to associate a function or set of functions to it.

Lemma 5.1 Consider the series (48), under the above stated conditions for the func-
tions λk(t), k ≥ 1, and {ak; k ≥ 1} ⊂ ℓ2(N, C). Then the series (48) converges on R,
with respect to the B2-seminorm, i.e.,

f →

[
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

]1/2
, (50)

which implies convergence in L2
loc(R,R).

The proof of Lemma 5.1 is completely similar to that given in the section of this
paper dedicated to the construction of the space B2(R, C), where λk(t) = λkt, t ∈ R,
λk ∈ R, k ≥ 1. As shown there, one can write

f(t) =

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (51)

the convergence (on R) being that of the space L2([−ℓ, ℓ], R), for each ℓ > 0.
An important aspect in the development of the approach of constructing classes/

spaces of oscillatory functions, starting from series of the form (51), under condition (22)
for the coefficients, is the finding/construction of sets consisting of function λ(t) : R → R,
from which we can recruit sequences satisfying the conditions stipulated in Lemma 5.1.
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We owe to Ch. Zhang [34], [35], [36] the finding of such a set of functions (polyno-
mials), which allowed him to construct spaces of oscillatory functions, called strong limit
power functions. These functions are obtained by the uniform approximation procedure
from a set of polynomials, forming a group, under usual addition. These polynomials,
actually ”generalized polynomials”, are defined as follows:

λ(t) =





m∑

j=1

cjt
αj , t ≥ 0,

−

m∑

j=1

cj(−t)αj , t < −0,

(52)

where cj ∈ C, j ≥ 1 and α1 > α2 > ... > αm > 0 are arbitrary positive numbers. Then,
one considers generalized polynomials of the form

P (t) =

n∑

k=1

ak exp[iλk(t)], t ∈ R, (53)

with each λk(t) as described in (52). It is obvious that each λ(t) in (52) is an odd function
(like sin t), a property which plays an important role in existence of the mean value on R.

Then, the orthogonality conditions (49) are satisfied, and one can proceed to the
construction of the space SLP (R, C) – strong limit power – as follows: f ∈ SLP (R, C) if
for every ε > 0, there exists a generalized polynomial of the form(53), such that

|f(t)− Pε(t)| < ε, t ∈ R. (54)

From (54) we read that sup-norm is the one for SLP (R, C).
The SLP space defined above is a Banach space, and each f ∈ SLP (R, C) can be

related to a generalized Fourier series, such that

f(t) ∼

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (55)

which satisfies the Parseval equality

∞∑

k=1

|ak|
2 = M{|f |2} (56)

with the coefficients
ak = M{f(t)e−iλk(t)}. (57)

Many properties of AP (R, C) can be adapted to the SLP (R, C) space. We can say
that the space SLP (R, C) is a ”copy” of the Bohr space, with considerable extension of
the class of functions involved.

The mean value functional M{f} is the Poincaré’s mean value on R, and possesses
other properties that appear in the case of the space AP (R, C). See also the papers by
Ch. Zhang and C. Meng [37], [38].

We can now proceed to construct a space of almost periodic functions, relying on
Lemma 5.1, and using the same procedure as in case of the space B2(R, C). In this way,
we shall obtain a larger space than SLP (R, C), because we shall use the seminorm that
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appears in (50). This space will be richer than the space SLP (R, C), possessing less
properties, but still pertaining to the oscillatory type.

We will denote this space, to be constructed, by B2
λ(R, C), where the index λ desig-

nates the fact that only polynomials of the form (53) will be used as exponents for the
complex exponentials involved.

The space B2
λ(R, C) will be a space of oscillatory functions, and as SLP (R, C), will

be part of the third period in the development of classical Fourier Analysis.

6 Construction of the Space B2
λ(R, C)

The space B2
λ(R, C) will be constructed in the manner used in case of the Besicovitch

space B2(R, C). The first step is to start with formal generalized series of the form

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (58)

instead of the trigonometric series (7). The function λk(t), k ≥ 1, are generalized poly-
nomials as those defined by the formula (52) and used in constructing the SLP -space
of Ch. Zhang [35], [36]. By applying Lemma 5.1, we shall associate a function f in
L2
loc(R, C), such that

f(t) =
∞∑

k=1

ak exp[iλk(t)], a.e. on R, (59)

and following step by step the construction of the space B2(R, C) in a previous section,
we find the equation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n

ak exp[iλk(t)]

∣∣∣∣∣

2

dt =

n+p∑

k=n

|ak|
2, n ≥ 1, p ≥ 1, (60)

which, on behalf of (22), assures the convergence of the series (59) in L2
loc(R, C). Hence,

we can write the formula

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt =

∞∑

k=1

|ak|
2, (61)

which is the same as (56).

Formula (61) is the Parseval equation for the function f ∈ B̃2
λ(R, C), which is defined

as the set of functions respresentable in the form (59), with {ak; k ≥ 1} ∈ ℓ2(N, C), and

convergence in L2
loc(R, C). The connection between f ∈ B̃2

λ(R, C) and the coefficients ak
is given by (57), formulas easy to obtain from (59) and the above procedure.

The set of functions, we have denoted by B̃2
λ(R, C), is naturally organized as a

seminormed linear space, with the seminorm in the left hand side of (61), taken at
power 1/2, i.e.,

f →

{
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

}1/2

. (62)

In order to prove the completeness of this seminormed space, one needs to proceed
again like in the case of construction of the Besicovitch space B2(R, C). The key condition
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is again the assumption (22) on the coefficients of complex exponentials, and the validity
of Parseval’s type formula (61). In other words, everything reduces to the structure of
the space ℓ2(N, C). See Remark 3.3 to Theorem 2.1.

The last step in constructing the space B2
λ(R, C) consists in taking the factor space

of B̃2
λ(R, C), modulo the subspace of zero-seminorm elements in this space.
If the subspace above, say N0λ is closed in the topology induced by the seminorm

(62), then the factor space is a Banach space. Apparently, this is the case, but it is to be
seen if the argument used in case of Besicovitch space B2(R, C) is valid in this situation.
Otherwise, the final result is a seminormed complete space, which is widely accepted in
Functional Analysis (see, for instance, Yosida [31] or Swartz [29]).

In other words, the last step may not be necessary in the construction of B2
λ(R, C),

the space B̃2
λ(R, C) constituting the complete seminormed space, which can be useful in

various applications.
A few final remarks, related to the content of this paper, may be in order to con-

clude it.
First, this paper (a continuation of Corduneanu [9]), pursues the idea of construc-

ting spaces of oscillatory functions, generalizing those encountered in the study of pe-
riodic functions (classical Fourier Analysis), of almost periodic functions and, lately, of
new spaces of oscillatory functions, taking as starting point the set (say T S) of formal
trigonometric series (in complex form). By imposing various conditions to the formal
series, one obtains old or new classes/spaces of oscillatory functions, with properties that
allow their use in applications (particularly, in Engineering, whose impulse has been felt
in mathematical research). See references to Zhang [34].

Second, this approach in constructing new spaces of oscillatory functions led to various
classes of almost periodic functions, as the APr(R, C), r ∈ [1, 2], allowing to obtain a scale
of almost periodic function spaces, with a good potential of applications to the theory of
functional equations and the introduction of new concepts, like the generalization of the
convolution product (see Corduneanu [8], for instance).

Third, the series characterizing various classes, generally, are not convergent in the
classical sense (i.e., uniformly or in Lebesque’s spaces), and in order to have a better tool
for investigation, it would be desirable to ”descend” from these rather abstract functions,
to more affordable ones, necessary in numerical analysis and in many applications. For
instance, to each series in APr(R, C) or in APr(R,R), with r ∈ (1, 2), one can attach the

series (in AP1(R, C)),
∞∑

k=1

|ak|
r exp(iλkt), i.e., an absolutely convergent series. Can we

take some advantage from the investigation of the operator Tr : APr → AP1,

∞∑

k=1

ak exp(iλkt) →
∞∑

k=1

|ak|
r exp(iλkt)?

We have also formulated this problem in Corduneanu [9].
Fourth, the approach based on dealing with formal series in order to obtain new classes

of oscillatory functions, appears to be adequate in advancing the study of more and more
intricate functions occurring in applied fields. The work of Ch. Zhang [34–36] is highly
illustrative in this regard. One has to note also the contribution of V.F. Osipov [25],
who presented a special case of the oscillatory functions of Fresnel type (for instance, the
type of oscillations corresponding to the sin t2), and who dedicated a whole volume to
this kind of problems.
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Fifth, the method of formal series must be used, in particular, for finding oscillatory
solutions of various classes of functional equations. In order to be applicable to partial
differential equations, a theory of oscillatory functions, with values in Hilbert or Banach
spaces, appears necessary. We will finish soon a paper, dedicated to the existence of such
solutions, in which hyperbolic equations are tested – these representing the natural type
to possess such solutions (but not only).

Sixth, one problem of great importance in constructing new spaces of oscillatory
functions is finding adequate systems {λk(t); k ≥ 1}, satisfying the orthogonality condi-
tion (49).
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Abstract: In this paper, by introducing a new operator, improving and generating
a p-Laplace operator for some p ≥ 2, we study the existence and uniqueness of a non-
trivial solution for nonlinear m-point eigenvalue problems on time scales. We obtain
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1 Introduction

In this paper, we are concerned with the existence and uniqueness of a nontrivial
solution for the following second order m-point eigenvalue problems on time scales:

(ϕ(h(t)u△(t)))∇ + λf(t, u(t), u△(t)) = 0, t ∈ [0, T ], (1)

αu(ρ(0))− βu△(ρ(0)) = C0(

m−2∑

i=1

αiu
△(ξi)), u△(T ) = 0, (2)

where ϕ : R → R is an increasing homeomorphism and homomorphism such that ϕ(0) =
0, λ > 0 is a parameter, ξi ∈ [0, T ] with 0 < ξ1 < ... < ξm−2 < T , α > 0 and β ≥ 0.
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A projection ϕ : R → R is called an increasing homeomorphism and homomorphism,
if the following conditions are satisfied:
1) If x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R.
2) ϕ is a continuous bijection and its inverse mapping is also continuous.
3) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R.

Moreover, throughout the paper the following conditions hold for αi, f, h, C0 and ϕ−1:
(A1) αi ∈ [0,∞), i = 1, 2, ...,m− 2 and f ∈ Cld([0, T ]×R×R).
(A2) h ∈ C([ρ(0), T ], (0,∞)) and h is increasing on [ρ(0), T ].
(A3) C0(v) is a continuous function on R and satisfies the condition that there exists
A > 0 such that |C0(v)| ≤ A|v|, for all v ∈ R.
(A4) For all x, y ∈ R, |C0(x) − C0(y)| ≤ C0(|x− y|).
(A5) For all x, y ≥ 0, ϕ−1(x+ y) ≤ ϕ−1(x) + ϕ−1(y).

A time scale T is a nonempty closed subset of R. We make the assumption that 0 ∈ Tk

and T ∈ Tk. By an interval [0, T ], we always mean the intersection of the real interval
[0, T ] with Tk

k; that is [0, T ] ∩ Tk
k. Some basic definitions and theorems on time scales

can be found in the books [4, 5].
Recently, for φp(u) = |u|p−2u, p > 1, p-Laplacian problems with two-point, three-

point and multi-point boundary value conditions for ordinary differential equations and
finite difference equations have been studied extensively, see [8, 11, 13, 15]. For the
existence problems of positive solutions of boundary value problems on time scales, some
authors have obtained many results; for details, see [2, 7, 9, 10, 12, 14, 16] and the
references therein. However, for the increasing homeomorphism and homomorphism
operator, the research has proceeded very slowly. Especially for the existence of countably
many positive solutions for dynamic equations on time scales still remain unknown.

In this paper we define a new operator ϕ which is an increasing homeomorphism and
homomorphism with ϕ(0) = 0. For existence result we need that the assumption (A5) is
provided by this operator. Since the condition (A5) is not satisfied for φp(u), 1 < p < 2,
our paper generalizes p-Laplacian operator φp for p ≥ 2.

In [9], He considered the existence of positive solutions of the p-Laplacian dynamic
equations on time scales:

(φp(u
△(t)))∇ + a(t)f(u(t)) = 0, t ∈ (0, T ),

αu(0)−B0(u
△(η) = 0, u△(T ) = 0,

or

αu△(0) = 0, u(T )−B1(u
△(η)) = 0,

where η ∈ (0, ρ(T )). He obtained the existence of at least double and triple positive
solutions of this problem by using a new double fixed-point theorem and triple fixed-
point theorem, respectively.

In [15], Yao studied the existence of positive solutions for the following semipositone
second-order boundary value problem:

u′′(t) = λq(t)f(t, u(t), u′(t)), t ∈ (0, 1),

αu(0)− βu′(0) = d, u(1) = 0,

where d > 0, α ≥ 0, β ≥ 0, α + β > 0 and q(t)f(t, u(t), u′(t)) ≥ 0 on a suitable subset
of [0, 1] × [0,∞) × (−∞,∞). His proofs are based on the Leray-Schauder fixed-point
theorem and the localization method.
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In [12], Lianga and Zhanga show the sufficient conditions for the existence of countably
many positive solutions by using the fixed-point index theory and a new fixed-point
theorem in cones for the following boundary value problem on time scales:

(ϕ(u△(t)))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]T,

u(0) =

m−2∑

i=1

αiu(ξi), u△(T ) = 0,

where ϕ : R → R is an increasing homeomorphism and positive homomorphism and
ϕ(0) = 0, ξi ∈ [0, T ]T with 0 < ξ1 < ... < ξm−2 < T and 0 <

∑m−2
i=1 αi < 1, a(t) :

[0, T ]T → [0,∞) and has countably many singularities in [0, T ]T.
This paper is organized as follows. In Section 2, we present some lemmas that will be

used to prove our main results and we will establish two new theorems of existence and
uniqueness of nontrivial solutions of (1.1)–(1.2). In Section 3, we will give some examples
to illustrate the main results in this paper.

2 Main Results

To prove the main results in this paper, we will employ some several lemmas. The
following lemma is based on the linear BVP

(ϕ(h(t)u△(t)))∇ + λy(t) = 0, t ∈ [0, T ], (3)

αu(ρ(0))− βu△(ρ(0)) = C0(
m−2∑

i=1

αiu
△(ξi)), u△(T ) = 0. (4)

Lemma 2.1 If y ∈ Cld([0, T ], R), then the problem (2.3)−(2.4) has a unique solution

u(t) =

∫ t

ρ(0)

1

h(s)
ϕ−1(

∫ T

s

λy(r)∇r)∆s +
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λy(r)∇r)

+
1

α
C0(

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λy(r)∇r)).

Let Y denote the Banach space C1
ld[0, T ] with the norm

‖u‖1 = ‖u‖+ ‖u△‖ = maxt∈[0,T ]|u(t)|+maxt∈[0,T ]|u
△(t)|.

Lemma 2.2 [6] Let X be a real Banach space and Ω be a bounded open subset of X,
0 ∈ Ω, F : Ω → X be a completely continuous operator.Then either there exist x ∈ ∂Ω,
µ > 1 such that F (x) = µx or there exists a fixed point x∗ ∈ Ω.

The main results of this paper are the following.

Theorem 2.1 Suppose that (A1), (A2), (A3), (A5) hold, f(t, 0, 0) 6≡ 0, t ∈ [0, T ] and
there exist nonnegative functions p, q, a ∈ L1[0, T ] such that

|f(t, u, v)| ≤ p(t)ϕ(|u|) + q(t)ϕ(|v|) + a(t), forall(t, u, v) ∈ [0, T ]×R2,

and there exists t0 ∈ [0, T ] such that p(t0) 6= 0 or q(t0) 6= 0. Then there exists a constant
λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.1)− (1.2) has at least one nontrivial
solution u∗ ∈ Y .
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Proof. By Lemma 2.1, the problem (1.1)− (1.2) has a solution u = u(t) if and only
if u solves the operator equation

u(t) = Fu(t) =

∫ t

ρ(0)

1

h(s)
ϕ−1(

∫ T

s

λy(r)∇r)∆s +
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λy(r)∇r)

+
1

α
C0(

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λy(r)∇r))

in Y . So we only need to seek a fixed point of F in Y . It follows that this operator
F : Y → Y is a completely continuous operator from the references [1, 3, 14].

From the condition (A3), there exists A > 0 such that

|C0(

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λf(r, u, u△)∇r))| ≤ A|

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λf(r, u, u△)∇r)|.

Let M∗ =
1

α
(α(T − ρ(0)) + β +K + α)M and N∗ =

1

α
(α(T − ρ(0)) + β +K + α)N .

where M = ϕ−1(

∫ T

ρ(0)

(p(r) + q(r))∇r), N = ϕ−1(

∫ T

ρ(0)

a(r)∇r) and K = A
∑m−2

i=1 αi.

Since |f(t, 0, 0)| ≤ a(t) for all t ∈ [0, T ], we know that N > 0, from p(t0) 6= 0 or
q(t0) 6= 0, we readily obtain M > 0. Moreover, M∗, N∗ > 0 since α,M,N > 0.

Let r =
N∗

M∗
and Ω = {u ∈ C1

ld([0, T ]) : ‖u‖1 < r}. Suppose u ∈ ∂Ω, µ > 1 such that

Fu = µu. Then

µr = µ‖u‖1 = ‖Fu‖1 = ‖Fu‖+ ‖(Fu)△‖.

For all t ∈ [0, T ], we have

|Fu(t)| ≤

∫ T

ρ(0)

1

h(s)
ϕ−1(

∫ T

s

λ|f(r, u, u△)|∇r)∆s+
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λ|f(r, u, u△)|∇r)

+
A

α

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λ|f(r, u, u△)|∇r)

≤

∫ T

ρ(0)

1

h(ρ(0))
ϕ−1(

∫ T

s

λ[p(r)ϕ(|u|) + q(r)ϕ(|u△|) + a(r)]∇r)∆s

+
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λ[p(r)ϕ(|u|) + q(r)ϕ(|u△|) + a(r)]∇r)

+
A

α

m−2∑

i=1

αi

1

h(ρ(0)))
ϕ−1(

∫ T

ξi

λ[p(r)ϕ(|u|) + q(r)ϕ(|u△|) + a(r)]∇r)

≤

∫ T

ρ(0)

1

h(ρ(0))
ϕ−1(λ[

∫ T

ρ(0)

ϕ(‖u‖1)(p(r) + q(r))∇r +

∫ T

ρ(0)

a(r)∇r])∆s

+
β

α

1

h(ρ(0))
ϕ−1(λ[

∫ T

ρ(0)

ϕ(‖u‖1)(p(r) + q(r))∇r +

∫ T

ρ(0)

a(r)∇r])
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+
A

α

1

h(ρ(0))

m−2∑

i=1

αiϕ
−1(λ[

∫ T

ρ(0)

ϕ(‖u‖1)(p(r) + q(r))∇r +

∫ T

ρ(0)

a(r)∇r])

≤
1

h(ρ(0))

∫ T

ρ(0)

ϕ−1(λ)[‖u‖1M +N ]∆s

+
β

α

1

h(ρ(0))
ϕ−1(λ)[‖u‖1M +N ] +

1

α

ϕ−1(λ)

h(ρ(0)
[‖u‖1M +N ]A

m−2∑

i=1

αi.

Then

‖Fu‖ ≤
ϕ−1(λ

h(ρ(0))
‖u‖1

1

α
(α(T − ρ(0)) + β +K)M +

ϕ−1(λ)

h(ρ(0))

1

α
(α(T − ρ(0)) + β +K)N .

For all t ∈ [0, T ], we have

|(Fu)△(t)| ≤
1

h(t)
ϕ−1(

∫ T

t

λ|f(r, u, u△)|∇r)

≤
1

h(ρ(0))
ϕ−1(

∫ T

t

λ[p(r)ϕ(|u|) + q(r)ϕ(|u△|) + a(r)]∇r)

≤
1

h(ρ(0))
ϕ−1(λ[ϕ(‖u‖1)

∫ T

ρ(0)

(p(r) + q(r))∇r +

∫ T

ρ(0)

a(r)∇r])

≤
ϕ−1(λ)

h(ρ(0))
‖u‖1ϕ

−1(

∫ T

ρ(0)

(p(r) + q(r))∇r) +
ϕ−1(λ)

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

a(r)∇r)

=
ϕ−1(λ)

h(ρ(0))
‖u‖1M +

ϕ−1(λ)

h(ρ(0))
N .

Then ‖(Fu)△‖ ≤
ϕ−1(λ)

h(ρ(0))
‖u‖1M +

ϕ−1(λ)

h(ρ(0))
N . Thus, we get

‖Fu‖1 ≤
ϕ−1(λ)

h(ρ(0))
‖u‖1M

∗ +
ϕ−1(λ)

h(ρ(0))
N∗.

Choose λ∗ = ϕ(h(ρ(0))2M∗
). Then when 0 < λ ≤ λ∗, we have

µr = µ‖u‖1 = ‖Fu‖1 ≤
1

2M∗h(ρ(0))
M∗h(ρ(0))‖u‖1 +

N∗

2M∗
.

Consequently, µr ≤
1

2
r +

1

2
r = r.

This contradicts µ > 1, by Lemma 2.2, F has a fixed point u∗ ∈ Ω, since f(t, 0, 0) 6≡ 0,
then when 0 < λ ≤ λ∗, the problem (1.1)− (1.2) has a nontrivial solution u∗ ∈ Y . This
completes the proof.

Theorem 2.2 Suppose that (A1), (A2), (A3), (A4) and (A5) hold, and f : [0, T ] ×
R2 → (−∞, 0] or f : [0, T ]× R2 → [0,∞) is ld-continuous, f(t, 0, 0) 6≡ 0, t ∈ [0, T ] and
there exist nonnegative functions p1, q1 ∈ L1[0, T ] such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ p1(t)ϕ(|u1 − u2|) + q1(t)ϕ(|v1 − v2|)
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and there exists t0 ∈ [0, T ] such that p1(t0) 6= 0 or q1(t0) 6= 0. Then there exists a
constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.1) − (1.2) has a unique
nontrivial solution u∗ ∈ Y .

Proof. If u2 = v2 = 0, then we have

|f(t, u1, v1)| ≤ p1(t)ϕ(|u1|) + q1(t)ϕ(|v1|) + |f(t, 0, 0)|.

From Theorem 2.1, we know that the problem (1.1)–(1.2) has a nontrivial solution
u∗ ∈ Y .

Now, we shall use the Banach fixed theorem to show the uniqueness of nontrivial
solution of the problem (1.1)− (1.2). For |Fu1(t)− Fu2(t)|, we have

|

∫ t

ρ(0)

1

h(s)
ϕ−1(

∫ T

s

λf(r, u1, u
△

1 )∇r)∆s −

∫ t

ρ(0)

1

h(s)
ϕ−1(

∫ T

s

λf(r, u2, u
△

2 )∇r)∆s

+
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λf(r, u1, u
△

1 )∇r) −
β

α

1

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

λf(r, u2, u
△

2 )∇r)

+
1

α
C0(

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λf(r, u1, u
△

1 )∇r))

−
1

α
C0(

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(

∫ T

ξi

λf(r, u2, u
△

2 )∇r))|

≤

∫ t

ρ(0)

1

h(s)
|ϕ−1(

∫ T

s

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

s

λf(r, u2, u
△

2 )∇r)|∆s

+
β

α

1

h(ρ(0))
|ϕ−1(

∫ T

ρ(0)

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ρ(0)

λf(r, u2, u
△

2 )∇r)|

+
1

α
C0(|

m−2∑

i=1

αi

1

h(ξi)
[ϕ−1(

∫ T

ξi

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ξi

λf(r, u2, u
△

2 )∇r)]|)

≤

∫ T

ρ(0)

1

h(s)
|ϕ−1(

∫ T

s

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

s

λf(r, u2, u
△

2 )∇r)|∆s

+
β

α

1

h(ρ(0))
|ϕ−1(

∫ T

ρ(0)

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ρ(0)

λf(r, u2, u
△

2 )∇r)|

+
A

α

m−2∑

i=1

αi

1

h(ξi)
|ϕ−1(

∫ T

ξi

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ξi

λf(r, u2, u
△

2 )∇r)|

≤

∫ T

ρ(0)

1

h(ρ(0))
ϕ−1(λ)ϕ−1(

∫ T

ρ(0)

|f(r, u1, u
△

1 )− f(r, u2, u
△

2 )|∇r)∆s

+
β

α

1

h(ρ(0))
ϕ−1(λ)ϕ−1(

∫ T

ρ(0)

|f(r, u1, u
△

1 )− f(r, u2, u
△

2 )|∇r)

+
A

α

m−2∑

i=1

αi

1

h(ξi)
ϕ−1(λ)ϕ−1(

∫ T

ξi

|f(r, u1, u
△

1 )− f(r, u2, u
△

2 )|∇r)
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≤
ϕ−1(λ)

h(ρ(0))

∫ T

ρ(0)

ϕ−1(

∫ T

ρ(0)

(p1(r)ϕ(|u1 − u2|) + q1(r)ϕ(|u
△

1 − u△

2 |))∇r)∆s

+
β

α

ϕ−1(λ)

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

(p1(r)ϕ(|u1 − u2|) + q1(r)ϕ(|u
△

1 − u△

2 |))∇r)

+
A

α

ϕ−1(λ)

h(ρ(0))

m−2∑

i=1

αiϕ
−1(

∫ T

ρ(0))

(p1(r)ϕ(|u1 − u2|) + q1(r)ϕ(|u
△

1 − u△

2 |))∇r)

≤
ϕ−1(λ)

h(ρ(0))

∫ T

ρ(0)

ϕ−1(

∫ T

ρ(0)

ϕ(‖u1 − u2‖1)(p1(r) + q1(r))∇r)∆s

+
β

α

ϕ−1(λ)

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

ϕ(‖u1 − u2‖1)(p1(r) + q1(r))∇r)

+
A

α

ϕ−1(λ)

h(ρ(0))

m−2∑

i=1

αiϕ
−1(

∫ T

ρ(0)

ϕ(‖u1 − u2‖1)(p1(r) + q1(r))∇r)

=
ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1(T − ρ(0))M1 +

β

α

ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1M1

+
1

α

ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1M1A

m−2∑

i=1

αi.

Then

‖Fu1 − Fu2‖ ≤
ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1

1

α
(α(T − ρ(0)) + β +K)M1,

where M1 = ϕ−1(

∫ T

ρ(0)

(p1(r) + q1(r))∇r), A is a constant such that

C0(|
∑m−2

i=1 αi
1

h(ξi)
[ϕ−1(

∫ T

ξi

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ξi

λf(r, u2, u
△

2 )∇r)]|)

≤ A|

m−2∑

i=1

αi

1

h(ξi)
[ϕ−1(

∫ T

ξi

λf(r, u1, u
△

1 )∇r) − ϕ−1(

∫ T

ξi

λf(r, u2, u
△

2 )∇r)]|

and K = A
∑m−2

i=1 αi. For all t ∈ [0, T ], we have

|((Fu1)
△ − (Fu2)

△)(t)| ≤
1

h(t)
ϕ−1(

∫ T

t

λ|f(r, u1, u
△

1 )− f(r, u2, u
△

2 )|∇r)

≤
1

h(t)
ϕ−1(

∫ T

ρ(0)

λ[p1(r)ϕ(|u1 − u2|) + q1(r)ϕ(|u
△

1 − u△

2 |)]∇r)

≤
ϕ−1(λ)

h(ρ(0))
ϕ−1(

∫ T

ρ(0)

ϕ(‖u1 − u2‖1)(p1(r) + q1(r))∇r).

Then

‖(Fu1)
△ − (Fu2)

△‖ ≤
ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1M1.

So, we get

‖Fu1 − Fu2‖1 ≤
ϕ−1(λ)

h(ρ(0))
‖u1 − u2‖1M

∗

1 ,
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where M∗

1 =
1

α
(α(T − ρ(0)) + β +K + α)M1.

Choose λ∗ = ϕ(
h(ρ(0))

2M∗

1

). Then when 0 < λ ≤ λ∗, we have

‖Fu1 − Fu2‖1 ≤
1

2
‖u1 − u2‖1.

Thus the problem (1.1)–(1.2) has a unique solution for 0 < λ ≤ λ∗.

Corollary 2.1 Suppose that (A1), (A2), (A3), (A5) hold, f : [0, T ] × R2 → R is ld-
continuous, f(t, 0, 0) 6≡ 0, t ∈ [0, T ] and

0 ≤ l = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|

ϕ(|u|) + ϕ(|v|)
< +∞. (5)

Then there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.1)−(1.2)
has at least one nontrivial solution u∗ ∈ Y .

Proof. Let ε > 0. By (2.5), there exists H > 0 such that

|f(t, u, v)| ≤ (l + ε)(ϕ(|u|) + ϕ(|v|)), |u|+ |v| ≥ H, t ∈ [0, T ].

Let K = maxt∈[0,T ],|u|+|v|≤H |f(t, u, v)|. Then for (t, u, v) ∈ [0, T ]×R2, we have

|f(t, u, v)| ≤ (l + ε)ϕ(|u|) + (l + ε)ϕ(|v|) +K.

From Theorem 2.1, we know that the problem (1.1)–(1.2) has at least one nontrivial
solution u∗ ∈ Y .

Corollary 2.2 Suppose that (A1), (A2), (A3), (A5) hold, f : [0, T ] × R2 → R is ld-
continuous, f(t, 0, 0) 6≡ 0, t ∈ [0, T ] and

0 ≤ l = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|

ϕ(|u|)
< +∞,

or

0 ≤ l = lim sup
|u|+|v|→+∞

max
t∈[0,T ]

|f(t, u, v)|

ϕ(|v|)
< +∞.

Then there exists a constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.1)−(1.2)
has at least one nontrivial solution u∗ ∈ Y .

Corollary 2.3 Suppose that (A1), (A2), (A3), (A4) and (A5) hold, f : [0, T ]× R2 →
[0,∞) is ld-continuous, f(t, 0, 0) 6≡ 0, t ∈ [0, T ] , C0(v) satisfies the condition that there
exists B > 0 such that Bv ≤ C0(v), for all v ≥ 0 and there exist nonnegative functions
p1, q1 ∈ L1[0, T ] such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ p1(t)ϕ(|u1 − u2|) + q1(t)ϕ(|v1 − v2|)

and there exists t0 ∈ [0, T ] such that p1(t0) 6= 0 or q1(t0) 6= 0. Then there exists a
constant λ∗ > 0 such that for any 0 < λ ≤ λ∗, the problem (1.1) − (1.2) has a positive
unique solution u∗ ∈ Y .
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3 Examples

In this section, we will give some examples to illustrate our main results.

Example 3.1 Let T = [0, 1] ∪ {2} ∪ [3, 5]. We consider the following second order
eigenvalue problem

(ϕ((t+ 4)u△(t)))∇ + λ(te−tu2 − (u△)2t2 sin t+ cos t) = 0, t ∈ [0, 4], (6)

u(0) =
1

2
|u△(1) + u△(2)|, u△(4) = 0, (7)

where h(t) = t+ 4, α = 1, β = 0, T = 4, ξ1 = 1, ξ2 = 2, α1 = α2 =
1

2
,

ϕ(u) =

{
−u2, u < 0,
u2, u ≥ 0,

and C0(x) = |x|. Then we can take A = 1 so that |C0(x)| ≤ A|x| for all x ∈ R. Thus
K = A(α1 + α2) = 1.

Noticing, for all t ∈ [0, 4], f satisfies

|f(t, u, v)| = |te−tu2 − v2t2 sin t+ cos t| ≤ t|u|2 + t2|v|2 + 1.

Then |f(t, u, v)| ≤ tϕ(|u|) + t2ϕ(|v|) + 1. It is easy to see by calculating that

M = ϕ−1(

∫ 4

0

(r2 + r)∇r) =

√
74

3
, M∗ =

1

α
(α(T − ρ(0)) + β +K + α)M = 6

√
74

3
.

So, we have λ∗ = ϕ(
h(0)

2M∗
) ≈ 0.0045. Then by Theorem 2.1, we know that the problem

(3.6)–(3.7) has nontrivial solution u∗ ∈ Y for any λ ∈ (0, λ∗].

Example 3.2 Let T = {0} ∪ {
1

n
: n ∈ N} ∪ [2, 4]. We consider the following second

order eigenvalue problem

(ϕ(etu△(t)))∇ + λ(t2 sinu+ t) = 0, t ∈ [0, 3], (8)

2u(0)− u△(0) =
1

3
|u△(

1

5
) + u△(

12

5
) + u△(

14

5
)|, u△(3) = 0, (9)

where ϕ(u) = u, h(t) = et, α = 2, β = 1, T = 3, ξ1 =
1

5
, ξ2 =

12

5
, ξ3 =

14

5
, α1 = α2 =

α3 =
1

3
and C0(x) = |x|. Then we can take A = 1 so that |C0(x)| ≤ A|x| for all x ∈ R.

Thus, K = A(α1 + α2 + α3) = 1.
Noticing, for all t ∈ [0, 3], f satisfies

|f(t, u1, v1)− f(t, u2, v2)| = |t2 sinu1 + t− t2 sinu2 − t| ≤ t2|u1 − u2|.

It is easy to see by calculating that

M1 =

∫ 3

0

r2∇r =
π2 + 38

6
and M∗

1 = 5(
π2 + 38

6
).

Thus, we have λ∗ =
h(0)

2M∗

1

≈ 0.0125. Then by Theorem 2.2, we know that the problem

(3.8)− (3.9) has a unique solution u∗ ∈ Y for any λ ∈ (0, λ∗].
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In the following example we will take the p-Laplacian operator φ4(u) such that

φp(u) = |u|p−2u for p > 1 and (φp)
−1 = φq with

1

p
+

1

q
= 1 which is the special

case of ϕ.

Example 3.3 Let T = [0, 1] ∪ [2, 7]. We consider the following second order eigen-
value problem

(φ4((t+ 2)u△(t)))∇ + λ(arctan(u2 + (u△)2) + t2 sinh t) = 0, t ∈ [0, 4], (10)

2u(0) =
1

3
u△(1) +

2

3
u△(3), u△(4) = 0, (11)

where h(t) = t + 2, α = 2, β = 0, T = 4, ξ1 = 1, ξ2 = 3, α1 =
1

3
, α2 =

2

3
and C0(x) = x.

Then we can take A = 1 so that |C0(x)| ≤ A|x| for all x ∈ R. Thus K = A(α1+α2) = 1.
It is clear that

lim sup
|u|+|v|→+∞

max
t∈[0,4]

| arctan(u2 + v2) + t2 sinh t|

φ4(|u|) + φ4(|v|)
= 0.

Choosing ǫ =
1

2
, we get

M = φq(

∫ 4

0

(
1

2
+

1

2
)∇r) =

3
√
4 and M∗ =

1

α
(α(T − ρ(0)) + β +K + α)M =

11

2
3
√
4.

So, we have λ∗ = φ4(
h(0)

2M∗
) ≈ 0.0015. Then by Corollary 2.1, we know that the problem

(3.10)–(3.11) has nontrivial solution u∗ ∈ Y for any λ ∈ (0, λ∗].
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1 Introduction

Throughout this paper, for any integers a and b with a ≤ b, let [a, b]Z denote the discrete
interval {a, a+ 1, . . . , b}. Here, we are concerned with the existence of solutions of the
four-parameter fourth order discrete boundary value problem (BVP)

{
∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = µg(u(T + 1)),
(1.1)

where T ≥ 2 is an integer, ∆ is the forward difference operator defined by ∆u(t) =
u(t+1)− u(t), ∆ku(t) = ∆k−1(∆u(t)) for k = 2, 3, 4, α, β, λ, µ are four parameters with
α, β ∈ R, λ ∈ (0,∞), µ ∈ [0,∞), f ∈ C([1, T ]Z×R,R), and g ∈ C(R,R). By a solution of
(1.1), we mean a function u ∈ C([−1, T +2]Z,R) satisfying (1.1). We assume throughout,
and without further mention, that the following condition holds:

(H1) α and β satisfy
1 + α−(T + 1)2 + β−T

2(T + 1)2 > 0,

where α− = min{α, 0} and β− = min{β, 0}.

Difference equations appear in numerous settings and forms, both in mathematics and
in its applications to statistics, computing, electrical circuit analysis, dynamical systems,
economics, biology, and other fields ([1,19]). In recent years, many researchers have paid
a lot of attention to fourth order BVPs for difference equations with various boundary
conditions. The reader may refer to [2,6,7,11,13,14,16–18,20,22,26,28] and the included
references for some recent work.

We point out, depending on the values of the parameters α, β, λ, and µ, that BVP
(1.1) covers many problems as special cases. For instance, if α = β = 0 and µ = 1, BVP
(1.1) becomes

{
∆4u(t− 2) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1) = g(u(T + 1)).
(1.2)

The continuous version of BVP (1.2), i.e., the problem
{

u(4)(t) = λf(t, u), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g(u(1)),

has recently been investigated in [24] where results for the existence of three solutions are
obtained. Notice that BVPs for fourth order differential equations have been extensively
studied in the literature. For a small sample of recent work, see [9, 12, 14, 15, 23–25].

The existence of three solutions of BVP (1.1) has been studied in [11]. In this paper,
we continue our study on BVP (1.1). We apply variational methods and critical point
theorem to establish some criteria for the existence of infinitely many solutions of BVP
(1.1). We also present several consequences of our main theorems. Our analysis is mainly
based on a recent theorem on critical points that appeared in [3,21]; see Lemma 4.1 below.
This lemma and its variations have been frequently used to obtain multiplicity results
for nonlinear problems of a variational nature; see, for example, [3–5, 8, 10, 21] and the
references therein. Our proofs are partly motivated by these papers.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, Section 3 contains the main results of this paper and one illustrative example,
and the proofs of the main results are presented in Section 4.



402 J. R. GRAEF, L. KONG, AND Q. KONG

2 Preliminary Lemmas

We define a real vector space

X =
{
u : [−1, T + 2]Z → R : u(−1) = u(0) = 0, ∆2u(T ) = 0

}
. (2.1)

For any u ∈ X , we let

||u||X =

(
T+1∑

t=1

(
|∆2u(t− 2)|2 + α|∆u(t− 1)|2

)
+ β

T∑

t=1

|u(t)|2

)1/2

.

Let
ρ = (T + 1)3/2

(
1 + α−(T + 1)2 + β−T

2(T + 1)2
)−1/2

. (2.2)

Clearly, ρ > 0 by condition (H1).
The following result is taken from [11, Lemma 2.1].

Lemma 2.1 For any u ∈ X, we have

T+1∑

t=1

(
|∆2u(t− 2)|2 + α|∆u(t− 1)|2

)
+ β

T∑

t=1

|u(t)|2 ≥ 0

and
|u(t)| ≤ ρ||u||X for t ∈ [1, T + 1]Z. (2.3)

Hence, || · ||X is a norm on X with which X becomes a T + 1 dimensional separable and
reflexive Banach space.

For any u ∈ X , let the functionals Φ and Ψ be defined by

Φ(u) =
1

2
||u||2X (2.4)

and

Ψ(u) =

T∑

t=1

F (t, u(t))−
µ

λ
G(u(T + 1)), (2.5)

where

F (t, x) =

∫ x

0

f(t, s)ds, (t, x) ∈ [1, T ]Z × R, (2.6)

and

G(x) =

∫ x

0

g(s)ds, x ∈ R. (2.7)

Then, Φ and Ψ are well defined and continuously Gâteaux differentiable whose Gâteaux
derivatives at u ∈ X are the functionals Φ′(u) and Ψ′(u) given by

Φ′(u)(v) =

T+1∑

t=1

(
∆2u(t− 2)∆2v(t− 2) + α∆u(t− 1)∆v(t− 1)

)
+ β

T∑

t=1

u(t)v(t)

and

Ψ′(u)(v) =

T∑

t=1

f(t, u(t))v(t)−
µ

λ
g(u(T + 1))v(T + 1)

for any v ∈ X .
Lemma 2.2 below follows from [11, Lemma 2.3].
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Lemma 2.2 The function u ∈ X is a critical point of the functional Φ− λΨ if and
only if u is a solution of BVP (1.1).

3 Main Results

In this section, we present our main results. In what follows, let X , ρ, F , and G be
defined by (2.1), (2.2), (2.6), and (2.7), respectively. For convenience, we use the following
notation:

A = lim inf
ξ→∞

∑T

t=1
max
|x|≤ξ

F (t, x)

ξ2
, B = lim sup

ξ→∞

∑T

t=1
F (t, ξ)

ξ2
, (3.1)

C = lim inf
ξ→0+

∑T

t=1
max
|x|≤ξ

F (t, x)

ξ2
, D = lim sup

ξ→0+

∑T
t=1

F (t, ξ)

ξ2
, (3.2)

λ1 =
2+ α+ βT

2B
, λ2 =

1

2ρ2A
, (3.3)

λ3 =
2 + α+ βT

2D
, λ4 =

1

2ρ2C
.

In the following, we assume that

(H2) A, B, C, D ≥ 0.

We also use the convention that 1/a = ∞ when a = 0.
We now state our main results in the paper.

Theorem 3.1 Assume that

A <
B

ρ2(2 + α+ βT )
. (3.4)

Then, for each λ ∈ (λ1, λ2), for each function g ∈ C(R,R) with

g(x) ≤ 0 on R and G∞ = lim inf
ξ→∞

G(ξ)

ξ2
> −∞, (3.5)

and for each µ ∈ [0, µ1) with

µ1 =
1− 2ρ2λA

−2ρ2G∞

, (3.6)

BVP (1.1) has a sequence of solutions that is unbounded in X.

Theorem 3.2 Assume that

C <
D

ρ2(2 + α+ βT )
. (3.7)

Then, for each λ ∈ (λ3, λ4), for each function g ∈ C(R,R) satisfying (3.4), and for each
µ ∈ [0, µ2) with

µ2 =
1− 2ρ2λC

−2ρ2G∞

,

BVP (1.1) has a sequence of solutions converging uniformly to zero in X.
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Remark 3.1 For Theorems 3.1 and 3.2, we make the following comments.

(a) It is easy to verify that condition (H) implies 2 + α + βT > 0. Thus, λ1 ≥ 0 and
λ3 ≥ 0.

(b) By the assumptions (3.4) and (3.7), we see that λ1 < λ2 and λ3 < λ4. This assures
that the intervals (λ1, λ2) and (λ3, λ4) are nonempty.

(c) The interval [0, µ1) is well defined since µ1 > 0 under the condition that λ < λ2.

(d) The interval [0, µ2) is well defined since µ2 > 0 under the condition that λ < λ4.

The following results are direct consequences of Theorems 3.1 and 3.2.

Corollary 3.1 Assume that (3.4) holds. Then, for each λ ∈ (λ1, λ2), the BVP

{
∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = 0,
(3.8)

has a sequence of solutions which is unbounded in X.

Corollary 3.2 Assume that (3.7) holds. Then, for each λ ∈ (λ3, λ4), BVP (3.8) has
a sequence of solutions converging uniformly to zero in X.

Corollary 3.3 Assume that A = 0 and B = ∞. Then, for each λ ∈ (0,∞), for each
function g ∈ C(R,R) with

g(x) ≤ 0 on R and G∞ = lim inf
ξ→∞

G(ξ)

ξ2
= 0, (3.9)

and for each µ ∈ [0,∞), BVP (1.1) has a sequence of solutions which is unbounded in
X.

Corollary 3.4 Assume that C = 0 and D = ∞. Then, for each λ ∈ (0,∞), for each
function g ∈ C(R,R) satisfying (3.9), and for each µ ∈ [0,∞), BVP (1.1) has a sequence
of solutions converging uniformly to zero in X.

Corollary 3.5 Assume that A < B
2(T+1)3

. Then, for each λ ∈
(

1

B
, 1

2A(T+1)3

)
and

each function g ∈ C(R,R) satisfying (3.9), BVP (1.2) has a sequence of solutions which
is unbounded in X.

Corollary 3.6 Assume that C < D
2(T+1)3

. Then, for each λ ∈
(

1

D
, 1

2C(T+1)3

)
and

each function g ∈ C(R,R) satisfying (3.9), BVP (1.2) has a sequence of solutions con-
verging uniformly to zero in X.

We conclude this section with the following example where the construction of the
nonlinear function f(t, x) is partly motivated by [10, Example 3.1].
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Example 3.1 Let T ≥ 2 be an integer, {an} and {bn} be sequences defined by
b1 = 2, bn+1 = b6n, and an = b4n for n ∈ N. Let f : [0, T ]Z × R → R be a positive
continuous function defined by

f(t, x) = t2






b31
√
1− (1− x)2 + 1, x ∈ [0, b1],

(an − b3n)
√

1− (an − 1− x)2 + 1, x ∈ ∪∞

n=1[an − 2, an],

(b3n+1 − an)
√

1− (bn+1 − 1− x)2 + 1, x ∈ ∪∞

n=1[bn+1 − 2, bn+1],

1, otherwise.

Let α, β ∈ R satisfy (H). We claim that for each λ ∈ (0,∞) and µ ∈ [0,∞), the BVP
{

∆4u(t− 2)− α∆2u(t− 1) + βu(t) = λf(t, u(t)), t ∈ [1, T ]Z,

u(0) = ∆u(−1) = ∆2u(T ) = 0, ∆3u(T − 1)− α∆u(T ) = −µ(u(T + 1))2/3,
(3.10)

has a sequence of solutions which is unbounded in X .

In fact, with g(x) = −x2/3, it is clear that BVP (3.10) is a special case of BVP
(1.1) and that (3.9) holds. Let F (t, x) be defined by (2.6). Then, for t ∈ [1, T ]Z, simple
computations yield

F (t, an) = t2
(∫ an

0

1ds+ b31

∫ 2

0

√
1− (1− s)2 ds

+

n∑

i=1

∫ ai

ai−2

(ai − b3i )
√
1− (ai − 1− s)2 ds

+

n−1∑

i=1

∫ bi+1

bi+1−2

(b3i − ai)
√
1− (bi+1 − 1− s)2 ds

)

= t2
(π
2
an + an

)

and

F (t, bn) = t2
(∫ bn

0

1ds+ b31

∫ 2

0

√
1− (1− s)2 ds

+

n−1∑

i=1

∫ ai

ai−2

(ai − b3i )
√
1− (ai − 1− s)2 ds

+

n−1∑

i=1

∫ bi+1

bi+1−2

(b3i − ai)
√
1− (bi+1 − 1− s)2 ds

)

= t2
(π
2
b3n + bn

)
.

Thus,

lim
n→∞

F (t, an)

a2n
= 0 and lim

n→∞

F (t, bn)

b2n
= ∞ for t ∈ [1, T ]Z.

Then, for A and B defined in (3.1), it is easy to see that

A = lim inf
ξ→∞

F (t, ξ)
∑T

t=1
t2

ξ2
= 0 and B = lim sup

ξ→∞

F (t, ξ)
∑T

t=1
t2

ξ2
= ∞. (3.11)
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Thus, all the conditions of Corollary 3.3 are satisfied. The claim then follows directly
from Corollary 3.3.

4 Proofs of the Main Results

The proofs of our theorems are based on the following lemma obtained in [3, Theorem
2.1]. This result is a supplement of the variational principle of Ricceri [21, Theorem 2.5].

Lemma 4.1 Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinu-
ous, strongly continuous and coercive, and Ψ is sequentially weakly upper semicontinuous.
For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r)Ψ(v)

)
−Ψ(u)

r − Φ(u)
, (4.1)

and

γ := lim inf
r→∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional
Iλ := Φ−λΨ to Φ−1(−∞, r) admits a global minimum that is a critical point (local
minimum) of Iλ in X.

(b) If γ < ∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→∞

Φ(un) = ∞.

(c) If δ < ∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of
Iλ which converges weakly to a global minimum of Φ.

The proof of Theorem 3.1 relies on Lemma 4.1 (b).

Proof of Theorem 3.1. Let the functionals Φ,Ψ : X → R be defined by (2.4) and
(2.5), respectively. Then, it is clear that Φ and Ψ satisfy all the regularity assumptions
given in Lemma 4.1.

By the definition of A in (3.1), there exists a sequence {ξn} of positive numbers such
that limn→∞ ξn = ∞ and

A = lim
n→∞

∑T

t=1
max|x|≤ξn F (t, x)

ξ2n
. (4.2)
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Let rn =
ξ2
n

2ρ2 . Then, for any u ∈ X with Φ(u) < rn, from (2.3), we have

max
t∈[1,T+1]Z

|u(t)| ≤ ρ||u||X < ρ(2rn)
1/2 = ξn. (4.3)

Note that 0 ∈ Φ−1(−∞, rn) and Ψ(0) = 0. Then, by (4.1) and (3.5),

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(
supv∈Φ−1(−∞,rn)

Ψ(v)
)
−Ψ(u)

rn − Φ(u)

≤ inf
u∈Φ−1(−∞,rn)

supv∈Φ−1(−∞,rn)
Ψ(v)

rn

≤

∑T

t=1
max|x|≤ξn F (t, x)− µ

λ
min|s|≤ξn G(s)

rn

= 2ρ2
∑T

t=1
max|x|≤ξn F (t, x) − µ

λ
G(ξn)

ξ2n
.

Thus, from (3.5) and (4.2), we see that, for γ defined in Lemma 4.1,

γ ≤ lim inf
n→∞

ϕ(rn) ≤ 2ρ2
(
A−

µ

λ
G∞

)
< ∞. (4.4)

We claim that

if λ ∈ (λ1, λ2) and µ ∈ [0, µ1), then λ ∈ (0, 1/γ). (4.5)

In fact, it is clear that λ > 0. Now, when λ ∈ (λ1, λ2) and µ ∈ [0, µ1), from (3.6) and
(4.4), we have

γ ≤ 2ρ2
(
A−

µ1

λ
G∞

)
= 2ρ2

(
A+

1− 2ρ2λA

2ρ2λ

)
=

1

λ
,

and so, λ < 1/γ. Thus, (4.5) holds.
Let λ ∈ (λ1, λ2) and µ ∈ [0, µ1) be fixed. Then, in view of (4.4) and (4.5), by Lemma

4.1 (b), it follows that one of the following alternatives holds

(b1) either Iλ := Φ− λΨ has a global minimum, or

(b2) there exists a sequence {un} of critical points of Iλ such that limn→∞ ||un||X = ∞.

In what follows, we show that alternative (b1) does not hold. By the definition of B
in (3.1), there exists a sequence {ηn} of positive numbers such that limn→∞ ηn = ∞ and

B = lim
n→∞

∑T

t=1
F (t, ηn)

η2n
. (4.6)

For each n ∈ N, define a function wn : [−1, T + 2]Z → R by

wn(t) =

{
0, t = −1, 0,

ηn, t ∈ [1, T + 2]Z.
(4.7)
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Then, wn ⊆ X . Moreover, from (2.4) and (2.5), it is easy to see that

Φ(wn) =
1

2
(2 + α+ βT )η2n

and

Ψ(wn) =
T∑

t=1

F (t, ηn)−
µ

λ
G(ηn).

Note that G(ηn) ≤ 0 by (3.5). Then, we have

Iλ(wn) = Φ(wn)− λΨ(wn)

=
1

2
(2 + α+ βT )η2n − λ

T∑

t=1

F (t, ηn) + µG(ηn)

≤
1

2
(2 + α+ βT )η2n − λ

T∑

t=1

F (t, ηn). (4.8)

Now, we consider two cases.
Case 1: B < ∞. From the fact that λ > λ1 and the definition of λ1 in (3.3), we have

B − 2+α+βT
2λ

> 0. Let

ǫ ∈

(
0, B −

2 + α+ βT

2λ

)
. (4.9)

From (4.6), there exists N1 ∈ N such that

T∑

t=1

F (t, ηn) > (B − ǫ)η2n for n ≥ N1.

This, together with (4.8), implies that

Iλ(wn) ≤

(
1

2
(2 + α+ βT )η2n − λ(B − ǫ)

)
η2n.

Thus, from (4.9) and the fact that limn→∞ ηn = ∞, we have limn→∞ Iλ(wn) = −∞.
Case 2: B = ∞. Choose

M >
2 + α+ βT

2λ
. (4.10)

Then, (4.6) implies that there exists N2 ∈ N such that

T∑

t=1

F (t, ηn) > Mη2n for n ≥ N2.

Thus, from (4.8),

Iλ(wn) ≤

(
1

2
(2 + α+ βT )η2n − λM

)
η2n.

Then, from (4.10) and the fact that limn→∞ ηn = ∞, we have limn→∞ Iλ(wn) = −∞.
Combining the above two cases, we see that the functional Iλ is always unbounded

from below. Hence, the alternative (b1) does not hold. Therefore, there exists a sequence
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{un} of critical points of Iλ such that limn→∞ ||un||X = ∞. Applying Lemma 2.2
completes the proof of the theorem. �

Using Lemma 4.1 (c) and arguing as in the proof of Theorem 3.1, we can prove
Theorem 3.2. For the completeness, we give the proof below.

Proof of Theorem 3.2. Let the functionals Φ,Ψ : X → R be defined by (2.4) and
(2.5), respectively. Then, as before, Φ and Ψ satisfy all the regularity assumptions given
in Lemma 4.1.

By the definition of C in (3.2), there exists a sequence {ξn} of positive numbers such
that limn→∞ ξn = 0 and

C = lim
n→∞

∑T

t=1
max|x|≤ξn F (t, x)

ξ2n
.

By the fact that infX Φ = 0 and the definition δ, we have δ = lim infr→0+ ϕ(r). Then,
as in showing (4.4) and (4.5) in the proof of Theorem 3.1, we can prove that δ < ∞ and
that if λ ∈ (λ3, λ4) and µ ∈ [0, µ2), then λ ∈ (0, 1/δ). Let λ ∈ (λ3, λ4) and µ ∈ [0, µ2) be
fixed. Then, by Lemma 4.1 (c), we see that one of the following alternatives holds

(c1) either there is a global minimum of Φ which is a local minimum of Iλ = Φ−λΨ, or

(c2) there exists a sequence {un} of critical points of Iλ which converges weakly to a
global minimum of Φ.

In the following, we show that alternative (c1) does not hold. By the definition of C in
(3.2), there exists a sequence {ηn} of positive numbers such that limn→∞ ηn = 0 and

C = lim
n→∞

∑T
t=1

F (t, ηn)

η2n
. (4.11)

For each n ∈ N, let wn : [−1, T + 2]Z → R be defined by (4.7) with the above ηn. Then,
as in the cases 1 and 2 of the proof of Theorem 3.1, we can obtain that, for n large
enough, if C < ∞, then

Iλ(wn) ≤

(
1

2
(2 + α+ βT )η2n − λ(C − ǫ)

)
η2n,

where

ǫ ∈

(
0, C −

2 + α+ βT

2λ

)
,

and if C = ∞, then

Iλ(wn) ≤

(
1

2
(2 + α+ βT )η2n − λM

)
η2n,

where M satisfies (4.10). Therefore, we always have Iλ(wn) < 0 for large n. Then, since
limn→∞ Iλ(wn) = Iλ(0) = 0, we see that 0 is not a local minimum of Iλ. This, together
with the fact that 0 is the only global minimum of Φ, shows that alternative (c1) does
not hold. Therefore, there exists a sequence {un} of critical points of Iλ which converges
weakly (and thus also strongly) to 0. An application of Lemma 2.2 completes the proof
of the theorem. �

Finally, we point out that Corollaries 3.1, 3.3, and 3.5 follow directly from Theorem
3.1, and Corollaries 3.2, 3.4, and 3.6 are obviously consequences of Theorem 3.2.
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1 Introduction

Power systems are highly non-linear and exhibit low frequency oscillations due to poor
damping caused by the high-gain, fast-acting automatic voltage regulator (AVR) em-
ployed in the excitation system. The power system utilities employ power system sta-
bilizers (PSSs) to introduce supplementary stabilizing signals into the excitation system
to increase the damping of the low frequency oscillations. Among various types of PSSs,
the fixed-structure lag-lead type is preferred by the utilities due to its operational sim-
plicity and ease of tuning PSS parameters. However, the robustness of these PSS under
changing conditions is a major concern.

The concept of PSSs and their tuning procedures were well explained in literature. A
well-tuned lag-lead type PSS can effectively improve dynamic stability. Many approaches
have been proposed to tune PSSs, such as the sensitivity approach [4], pole placement
technique [2], and the damping torque approach [1]. Global optimization technique like
genetic algorithm (GA) [5], Particle Swarm Optimization (PSO) [12], tabu search [6] and
simulated annealing (SA) [7] are attracting the attention in the field of PSS parameter
optimization in recent times. But when the system has a highly epistatic objective
function (i.e., where the parameters being optimized are highly correlated) and number
of parameters to be optimized are large, GA has been reported to exhibit degraded
efficiency [8]. Bacterial foraging algorithm has been proposed and introduced as a new
evolutionary technique in [9]. Passino et al. pointed out that the foraging algorithms can
be integrated in the framework of evolutionary algorithms. To overcome the drawbacks
of conventional methods for PSS design, a new optimization scheme known as bacterial
foraging (BF) is used for the PSS parameter design. This algorithm (BFA) appeared
as a promising one for handling the optimization problems [13]. It is a computational
intelligence based technique that is not largely affected by the size and nonlinearity of the
problem and can converge to the optimal solution in many cases where many analytical
methods fail to converge. Considering the strength of this algorithm, it is employed in
the present work for the optimal tuning the parameters of the PSS.

In this paper a new/improved BFA-based optimal determination of PID-PSS parame-
ters is presented which overcomes the shortcomings of previous works. In order to design
a robust PSS which guarantees stability of system in a wide range of operating condi-
tions, the objective function is defined such that the resultant time response is restricted
to lie within specific bounds as well as limiting the amount of overshooting of power
system response when subjected to disturbances. The performance of the BFAPSS is
compared with those obtained with other techniques such as conventional and Particle
Swarm Optimization (PSO) by plotting the time response curves for step disturbance.
Further, the robustness of the controller so designed is established by choosing any one
set of parameters for a particular operating condition and testing its performance with
its fixed structure for other operating conditions too.

2 Power System Model Studied

The system considered in this paper is a synchronous machine connected to an infinite
bus through a transmission line, as shown in Figure 1.The linear incremental model of a
synchronous machine connected to a large system is shown in Figure 2.

The state equation under a particular loading condition can be written as [1].
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Figure 1: Single Machine connected to Infinite Bus System.

dx(t)/dt = Ax(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where x(t) is the state vector, u(t) is the control input and y(t) is the output and A,B,C
are the matrices of appropriate dimensions. The following physical variables are chosen
as the state and output for the power system under consideration.

x(t) = [∆(t) ∆ω(t) ∆Eq′(t) ∆Efd(t)]T , (3)

y(t) = [0 1 0 0]. (4)

The system matrices as taken from [1] are given below

A =

∣∣∣∣∣∣∣∣

0 314 0 0
−K1/M −D/M 0 0
−K4/M 0 −1/K3T ′do 0
KeK5/Ta 0 −K6Ke/Te −1/Te

∣∣∣∣∣∣∣∣
,

B = [0 0 0 Ke/Te], (5)

C = [0 1 0 0]. (6)

The parameters K1-K6 in system matrix A are functions of real power output P and
reactive power output Q of the generator [11, 12]. Thus it is observed that the elements
of the A matrix change as the operating point of the generator changes. When the
system is perturbed it is possible that it becomes unstable or operates with sustained
oscillations. It is therefore necessary to design a PSS which will guarantee stability of
the system and suppress these unwanted oscillations. Further, it is necessary to change
the PSS parameters according to the drift in the operating conditions.

The main objective of this work is to design the power system stabilizer using Bacterial
Foraging Algorithm such that the controller structure so designed rejects the internal and
external disturbances and is immune to machine parameters variations.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based stochastic optimization tech-
nique developed by Eberhart and Kennedy [12]. It shares many similarities with evolu-
tionary computation techniques such as Genetic Algorithms (GA). The system is initial-
ized with a population of random particles where each particle is a candidate solution.
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Figure 2: Linearized model of a synchronous machine with an exciter and stabilizer.

The particles fly through the problem space by following the current optimum particles
and searches for optima by updating their positions. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. The advantages of PSO over GA
are the ease of programming and fast convergence [8, 9]. In the PSO algorithm, each
particle updates its velocity and position by the following relationships:

V ik+1 = wV ik + c1rand1(pbesti− Sik) + c2rand2(gbesti− Sik), (7)

Sik+1 = Sk + V ik+1, (8)

where c1 and c2 are cognition and social parameters respectively, rand1() and rand2() are
constant numbers in the range of [0,1], w is the inertia weight. V i represents the velocity
of the ith particle and Si is its position, pbesti and gbesti are local best and global best
positions respectively. The velocity of particle in equation (7) depends on its previous
velocity, its own thinking and social psychological adaptation of the population. The
PSO algorithm starts with random initialization of population and velocity. The search
for the optimum solution is continued unless one of the stopping criteria is reached. The
stopping criteria are: either the maximum iterations are reached, or there is no further
improvement in the optimal solution. The values of parameters for PSO used in this
study are as follows: No. of particles 20; No. of swarms 3 (Kp,Ki,Kd); No. iteration=
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500; Maximum particle velocity (upper-lower bound) / No. iteration = 0.05; c1, c2 = 2, 2;
wmax = 0.9, wmin = 0.4.

To compute the optimum parameter values of PID-PSS shown in Figure 4, a 0.1 step
change in reference mechanical torque (∆Tm) is assumed and the performance index in
equation (9) is minimized using Particle Swarm Optimization. The settling time (ts) and
peak overshoot (∆ωp) are evaluated for each iteration.

4 Bacterial Foraging Algorithm

Bacterial foraging algorithm is inspired by an activity called ”chemotaxis” exhibited by
bacterial foraging behaviors. Motile bacteria such as E. coli and salmonella propel them-
selves by rotation of the flagella. To move forward, the flagella rotates counterclockwise
and the organism ”swims” or ”runs” while a clockwise rotation of the flagellum causes
the bacterium to randomly ”tumble” itself in a new direction and swim again. Alter-
nation between ”swim” and ”tumble” enables the bacterium to search for nutrients in
random directions. Swimming is more frequent as the bacterium approaches a nutrient
gradient. Tumbling, hence direction changes, is more frequent as the bacterium moves
away from some food to search for more. Basically, bacterial chemotaxis is a complex
combination of swimming and tumbling that keeps bacteria in places of higher concen-
trations of nutrients. The foraging strategy of Escherichia coli bacteria present in human
intestine can be explained by three processes, namely chemotaxis, reproduction, and
elimination-dispersal [9].

In Chemotaxis, a unit walk with random direction represents a ”tumble” and a unit
walk with the same direction in the last step indicates a ”run”. C(i) is called the run
length unit parameter, is the chemo tactic step size during each run or tumble. With
the activity of run or tumble at each step of the chemotaxis process, a step fitness
will be evaluated. In the reproduction step, all bacteria are stored in reverse order
according to the health status. Here only the first half of the population survives, and
a surviving bacterium splits into two identical ones, which are then placed in the same
locations. Thus, the population of bacteria keeps constant. It is possible that in the local
environment, the life of a population of bacteria changes either gradually by consumption
of nutrients or suddenly due to some other influence. Events can kill or disperse all
the bacteria in a region. They have the effect of possibly destroying the chemotactic
progress, but in contrast, they also assist it, since dispersal may place bacteria near good
food sources. Elimination and dispersal helps in reducing the behavior of stagnation
(i.e., being trapped in a premature solution point or local optima). The flow chart of the
iterative algorithm is shown in Figure 3.

The bacteria with large run length unit C(i) have the exploring ability and stay for
a while in several domains containing local optima. It can also escape from the local
optima to enter the domain with global optima. On the other hand, a bacterium with
small run length unit C(i) is attracted into the domain with local optima and exploits
this local minimum for its whole life cycle. It is therefore necessary to choose the value
of C(i) with larger value for faster convergence. In this algorithm, cost function value
is taken as objective function and the bacterium having minimum cost function (J) is
retained for the next generation. For swarming, the distances of all the bacteria in a new
chemotactic stage are evaluated from the global optimum bacterium till that point. To
speed up the convergence, a simple heuristic rule to update one of the coefficients (C) of
BFA algorithm is formulated.
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Figure 3: Flowchart of Bacterial Foraging Algorithm.

5 BFA based Tuning of PID-PSS

PID (proportional integral derivative) control is one of the earlier control strategies.
Its early implementation was in pneumatic devices, followed by vacuum and solid state
analog electronics, before arriving at today’s digital implementation of microprocessors.
It has a simple control structure which was understood by plant operators and which
they found relatively easy to tune. Since many control systems using PID control have
proved satisfactory, it still has a wide range of applications in industrial control. It has
been found possible to set satisfactory controller parameters from less plant information
than a complete mathematical model. In the proposed design approach, the PID control
structure shown in Figure 4 is used as the power system stabilizer as opposed to the
traditional lead-lag controller. In Figure 4, the speed deviation is the input to the

Figure 4: The PID power system stabilizer.

controller and u is the supplementary stabilizing signal. The PID parameters Kp,Ki,
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and Kd are tuned using the BFA technique discussed in Section 4. To compute the
optimum parameter values, a 0.1 step change in reference mechanical torque (∆Tm) is
assumed and the performance index

F =
1

(1 + ∆ωp)(1 + ts)
(9)

is minimized using bacterial foraging algorithm. The settling time (ts) and peak
overshoot (∆ωp) are evaluated for each iteration. The PID parameters selected using
the above objective function are used to form the augmented A matrix as given below:




0 314 0 0 0
−K1/M 0 −K2/M 0 0

−K4/T ′d0 0 −1/K3T ′do 1/T ′do 0
MKe(−K5 + MKi/314 − KdK1)MTe KeKp/Te −MK6Ke− K2KeKd/Te 1/Te Ke/Te

MKi/314 − KdK1/MTw Kp/Tw −K2Kd/MTw 0 −1/Tw


.

The following machine parameters are chosen for study xd = 1.6;x′d = 0.32;xq =
1.55; vt0 = 1.05; ω = 100rad/s;T ′d0 = 6.0sD = 0.0;M = 10.0; re = 0;xe = 0.4;Ke =
50.0;Te = 0.05s;T = 5s. The parameters for BFA used in this study are as follows:
Nc = 5, Nre = 4, Ned = 10, Ns = 4, datt = 0.01, hrep = 0.01, watt = 0.4, wrep =
0.42, w = 0.8, c1 = 2.0 and c2 = 2.0.

6 Tuning Results and Discussion

Simulation tests were made using a computational program that represents the single
machine connected to infinite bus bar system. The machine with PID-PSS is represented
as 5th order state space model with saturation neglected.

The different operating conditions [2] considered are given in Table 1. The simulation
study for the operating conditions mentioned using Bacterial Foraging Algorithm (BFA)
is carried out for a step disturbance of 0.1 mechanical torque (∆Tm). Simulation study
is also carried out for the mentioned operating conditions for the PSS designed using
conventional and Particle Swarm Optimization (PSO). The conventional PSS parameters
are calculated using frequency response method. The PSS parameters obtained by the
application of conventional, PSO and BFA along with the corresponding eigenvalues
are shown in Table 2. From Table 2, it is observed that the real parts of closed loop
eigenvalues obtained using BFAPSS are shifted to the left half of the s-plane which
provides more damping. The time response specifications obtained from the transient
response curves are shown in Table 3.

From Figures 5–7 and Table 3, it is observed that the performance of the PSS de-
signed using BFA is far superior compared to the PSS designed using conventional as
well as Particle Swarm Optimization (PSO). Figure 8 illustrates the convergence of the
objective function with Particle Swarm Optimization (PSO) and BFA. From the conver-
gence characteristics it is clear that BFA offers superior performance than (PSO). Figure
9 shows the speed deviation for different operating conditions with BFA PSS when the
system is subjected to 0.1 p.u step disturbance in the reference input voltage (∆V ref).

In power system the operating condition changes very fast. The controller designed
for one operating condition may not give satisfactory performance to other operating
conditions. Therefore, it becomes necessary that the controller parameters need to be
tuned according to the changes in the operating condition which is very difficult to
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accomplish online even using very fast computer. Therefore it is necessary to design a
PSS which is robust in behaviour. From Table 2 the eigen values obtained for the power
system with BFAPSS do not change appreciably which suggests the robustness of the
PSS. It is therefore possible to choose the PSS parameters obtained by BFA at any one
operating condition which can be chosen and retained for other operating conditions also.

Operating Conditions
Operating points P1 P2 P3
Real Power(P) 1.2 0.9 0.7

Reactive Power(Q) 0.2 0.3 0.2

Table 1: Operating conditions of the machine.

Operating Conditions CPS PSOPSS BFAPSS
P=1.2,Q=0.2 Kpss=9.2734 Kp=12.74 Kp=31.58

T1=0.3806 Ki=12.84 Ki=6.3202
T2=0.1 Kd=14.35 Kd=32.32

Eigenvalues -21.2515 +4.9661i -14.914 +20.104i -15.01+29.1567i
-21.2515 -4.9661i -14.914 -20.104i -15.01-29.1567i
- 0.7438 + 6.6601i -11.569 - 13.4750
- 0.7438 - 6.6601i -4.7024 -6.8227
-5.6514 -0.30501 -0.3272

P=0.9,Q=0.3 Kpss=7.6451 Kp=10.66 Kp=48.98
T1=0.48746 Ki=4.556 Ki=9.0988
T2=0.1 Kd=14.82 Kd=25.17

Eigenvalues -21.3386 +4.1240i -14.938 +20.454i -14.5016+26.0508i
-21.3386 -4.1240i -14.938 -20.454i -14.5016-26.0508i
-0.6869 +6.5345i -11.699 - 13.8296
-0.6869 -6.5345i -4.8983 -6.1569
-5.3633 -0.32239 -0.3241

P=0.7,Q=0.2 Kpss=5.571 Kp=40.99 Kp=38.05
T1=0.6776 Ki=7.650 Ki=8.5241
T2=0.1 Kd=6.306 Kd=36.97

Eigenvalues -21.3488 + 3.3392i -13.69 +12.755i -15.1515+ 31.322i
-21.3488 - 3.3392i -13.69 -12.755i -15.1515- 31.322i
- 0.6133 +6.2708i -10.956 - 13.3897
-0.6869 -6.5345i -1.6008 -7.0191
-5.1956 -0.26435 -0.3264

Table 2: Eigenvalue analysis.

For the study of robustness, the PSS parameters designed using BFA for light load
condition are chosen. With these PSS parameters fixed at all operating conditions the
dynamic response of the system for 0.1p.u mechanical disturbance (∆Tm) for light,
normal and heavy operating conditions are obtained and plotted as shown in Figure 10
and Figure 11. From Figure 10 and Figure 11, it is evident that the oscillations due to
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Operating Point PSOPSS BFAPSS
Settling time Peakoveshoot Settling time Peakoveshoot

P=1.2;Q=0.2 2.77 0.66X10−4 3.4 0.57X10−4
P=0.9;Q=0.3 3.13 0.69X10−4 1.9 0.63X10−4
P=0.7;Q=0.2 1.34 1.45X10−4 2.4 0.83X10−4

Table 3: Settling time max. overshoot comparison.
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Figure 5: Speed deviation for operating condition (P = 1.2, Q = 0.2).
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Figure 6: Speed deviation for operating condition (P = 0.9, Q = 0.3).

disturbances are completely suppressed and the system rejects external disturbances at
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Figure 7: Speed deviation for operating condition (P = 0.7, Q = 0.2).
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Figure 8: Convergence comparison of PSO and BFA.

all operating conditions. In addition, the system performance with the proposed PSS
is much better than that of PSOPSS and the oscillations are damped out much faster.
This illustrates the potential and superiority of the proposed design approach to obtain
an optimal set of PSS parameters.
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Figure 9: Speed deviation for different operating conditions for a 0.1 p.u step change in reference
input voltage (∆V ref)
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7 Conclusion

In this study, optimal design of robust power system stabilizer (PSS) for single machine
system using Bacterial Foraging Algorithm is proposed. Eigenvalue analysis under dif-
ferent operating conditions reveals that undamped and lightly damped oscillation modes
are shifted to a specific stable zone in the s-plane. These results show the potential of
Bacterial Foraging Algorithm for optimal design of PSS parameters. Further, from the
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Figure 11: Speed deviation for different operating conditions using PSOPSS with Kp =
40.997, Ki = 7.6503, Kd = 6.30605.

simulation results it is observed that, when a system is subjected to internal and external
disturbances by retaining the same structure and parameter of the controller which was
obtained for any one operating condition works effectively over a wide range of loading
conditions which is very difficult to accomplish on line. This shows the robustness of
the controller designed using BFA. Furthermore, the simulation results also show that
the proposed method in this paper gives much improved performance when compared to
the performance of conventional and Particle Swarm Optimization (PSO) based design
of controller for PSS. Further, the convergence of the objective function in the proposed
method is much faster when compared with Particle Swarm Optimization (PSO).

In this paper, the linear incremental model of single machine connected to infinite
bus has been considered for the design of PID controller even though the actual system is
highly non-linear one and therefore it becomes necessary to validate the results obtained
here by laboratory test which has been taken for future work. The Bacterial Foraging
Algorithm (BFA) remains to be tried out for designing controllers in the capacitive area
and also for multi-machine complex power system.
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Abstract: This paper deals with synchronization between a fractional order Coullet
chaotic system and an integer order Rabinovich-Fabrikant chaotic system by using
tracking control and stability theory of fractional order system. An effective controller
is designed to synchronize these two systems. Numerical simulations have been done
by using Mathematica and Matlab both. Numerical solutions via Grünwald-Letnikov
method have been used in Matlab. Numerical results show that method is effective
and feasible.
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1 Introduction

Synchronization is the dynamical process by which two or more oscillators adjust their
rhythms due to a weak interaction [38]. This problem has received the great attention
in the literature due to its importance in engineering and physical sciences, as well as in
the challenging biological and social entities [38,39,44]. Chaotic synchronization did not
attract much attention until Pecora and Carroll [34] introduced a method to synchronize
two identical chaotic systems with different initial conditions in 1990 and they demon-
strated that chaotic synchronization could be achieved by driving or replacing one of the
variables of a chaotic system with a variable of another similar chaotic device. From then
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on, enormous studies have been done by researchers on the synchronization of dynami-
cal systems. In the last two decades considerable research has been done in non-linear
dynamical systems and their various properties. One of the most important properties
is synchronization. Synchronization techniques have been improved in recent years and
many different methods are applied theoretically as well as experimentally to synchronize
the chaotic-systems including adaptive control [7,10,27], backstepping design [46–48], ac-
tive control [5,23,52], nonlinear control [6,33] and observer based control method [11,50].
Using these methods, numerous synchronization problems of well-known chaotic systems
such as Lorenz, Chen, Lü and Rössler system have been worked on by many researchers.
In sequel to the study of chaotic systems, chaotic dynamics of fractional order systems
has also been studied popularly. Since many real objects are generally fractional, so
fractional calculus opens wide ways to describe a real object more accurately than the
classical integer methods. So the fractional order methods become global and allow
greater degree of flexibility in the study of dynamical models. Due to advantage over
integer methods they have a lot of important applications in the various fields such
as control theory [35, 42], viscoelastic [3], diffusion [9, 25], bioengineering [29], dielec-
tric polarization [45], electrode-electrolyte polarization [24], electromagnetic waves [22],
medicine [19] etc. Chaotic dynamics of fractional order systems is becoming an impor-
tant field of investigation in nonlinear dynamics. Although the fractional calculus is more
than three century old subject, yet in past few years it has increased rapidly. Analysis of
fractional order dynamical systems has been studied by authors in [31,32,40]. Geometric
and physical interpretation of fractional integration and fractional differentiation has also
been studied by Podlubny [41]. In the continuation of study of chaos in fractional order
dynamical systems, one of the important property synchronization of dynamical systems
of fractional order has also got much attention. We can see many works on chaos in
fractional order systems: in Chen’s system [26], Volta system [37], Rössler system [12],
Chua system [21], Duffing oscillators [18], cellular network [1], Lorenz system [20] etc.
And synchronization between identical as well as non-identical fractional order systems
has been presented in [4, 13, 14, 16, 17, 28, 49, 51, 53, 54].

The aim of this study is to investigate the synchronization behavior between an
integer order system and a fractional order chaotic system. Synchronization between
different orders has its own importance since it plays an important role in security of
communication as well as it can also generate hybrid chaotic transient signals before
final states. So it is necessary to synchronize two different order systems. Here we
have used tracking control method to synchronize Rabinovich-Fabrikant integer order
system and Coullet chaotic system of fractional order. Numerical simulations have been
done by using both Matlab and Mathematica. For fractional order system we have used
Grünwald-Letnikov method [40].

2 Preliminaries

In this section we mention some fundamental properties and definitions of fractional
order derivatives.

2.1 Fractional derivatives and its approximations

Fractional calculus is a generalization of integration and differentiation to non-integer
order fundamental operator aD

α
t , where a and t are the limits of the operation and α is
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the fractional order which can be a complex number, R(α) denotes the real part of α.
The continuous integro-differential operator is defined as:

aD
α
t =





dα

dtα
, R(α) > 0,
1, R(α) = 0,∫ t

a
dτ−α, R(α) < 0.

The three definitions used for general fractional differintegral are Grünwald-Letnikov(GL)
definition, the Riemann-Liouville (RL) and Caputo’s definition [40]. The GL definition
is given as:

aD
α
t f(t) = lim

h→0
h−α

[ t−a
h

]∑

j=0

(−1)j
(

α
j

)
f(t− jh),

where [·] denotes the integer part. And the RL definition is given by

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ , n− 1 < α < n,

where Γ(·) is the gamma function. The Caputo fractional derivative is

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

fn(τ)

(t− τ)α−n+1
dτ, n− 1 < α < n.

For numerical calculations of fractional-order derivatives we have used Grünwald-
Letnikov method which is derived from Grünwald-Letnikov definition. It is also called
Power Series Expansion method [8, 15, 36].

2.2 Methodology for synchronization between fractional order and integer

order chaotic system

In this section we put a glimpse of methodology for synchronization between fractional
order and integer order chaotic system via tracking control. Consider the following n-
dimensional fractional order chaotic system as drive (master) system

dqαx

dtqα
= f(x), (2.1)

where x ∈ R
n, fractional order qα = (qα1 , qα2 , ...qαn

)T ; (0 < qdi
< 1) may be unequal.

f : Rn −→ R
n is a differentiable function. Now, consider the following n-dimensional

chaotic system of integer order as :

dy

dt
= g(y),

where y ∈ R
n and g : Rn −→ R

n is a differentiable function and construct the following
integer order response system:

dy

dt
= g(y) + u(y, x), (2.2)

where u(y, x) is the controller to be designed via tracking control method.
Our goal in this paper is to design controller u(y, x) such that

lim
t→∞

‖e‖ = lim
t→∞

‖y − x‖ = 0,

where ‖ · ‖ is the Euclidean norm (here x in response system (2.2) belongs to chaotic
system (2.1)), then the systems (2.1) and (2.2) will be synchronized.
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2.3 Stability of Fractional order systems

An autonomous system DqX = AX,X(0) = 0, with 0 < q ≤ 1, X ∈ R
n, A ∈ R

n×n

is asymptotically stable iff | argλ| > qπ/2 is satisfied for all eigenvalues (λ)of matrix A.
Also this system is stable iff | argλ|≥qπ/2 is satisfied for all eigenvalues of a matrix A
and those critical eigenvalues which satisfy | argλ| > qπ/2 have geometric multiplicity
one [30].

3 System Description

3.1 Rabinovich-Fabrikant chaotic system of integer order

The Rabinovich-Fabrikant chaotic system is a set of three coupled ordinary differential
equations exhibiting chaotic behavior for certain values of parameters. They are named
after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 1979 [43]. The
equations of system are:

ẏ1 = y2(y3 − 1 + y21)+γy1,

ẏ2 = y1(3y3 + 1− y21)+γy2,

ẏ3 = −2y3(y1y2+α),





(3.1)

where α and γ are constant parameters that control the evolution of the system. For
some values of α and γ, the system is chaotic but for other it tends to a stable periodic
orbit. Figures given below show the chaotic behavior of Rabinovich-Fabrikant system
with different values of parameters.
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Figure 3: Phase portrait shows
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chaotic behavior of the system.

3.2 Coullet chaotic system of fractional order

The Coullet chaotic system consists of three fractional order differential equations with
orders q1, q2, and q3, respectively [2]

dq1x1

dtq1
= x2,

dq2x2

dtq2
= x3,

dq3x3

dtq3
= ax1 + bx2 + cx3 + dx3

1,





(3.2)

where a = 0.8, b = −1.1, c = −0.45, and d = −1. We can vary values of q1, q2, and
q3 accordingly. Figures given below show chaotic behavior of the system with different
values of q1, q2, and q3, respectively.
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Figure 5: Chaotic attractor of the

Coullet system in xy-plane with q1 =

0.90, q2 = 0.97, and q3 = 0.95.
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3.3 Synchronization between Coullet chaotic system of fractional order and

Rabinovich-Fabrikant chaotic system of integer order via Tracking con-

trol

In this section, we synchronize a fractional order derivative and an integer order derivative
via tracking control. Consider fractional order Coullet system as a drive (master) system:

dq1x1

dtq1
= x2,

dq2x2

dtq2
= x3,

dq3x3

dtq3
= ax1 + bx2 + cx3 + dx3

1,





(3.3)

where a = 0.8, b = −1.1, c = −0.45, and d = −1. Here we have taken q1 = q2 = q3 = 0.98
and q1 = 0.90, q2 = 0.97, and q3 = 0.95. One can take any other values of q1, q2 and q3
(0 < q ≤ 1).

Now integer order Rabinovich-Fabrikant chaotic system is:

ẏ1 = y2(y3 − 1 + y21)+γy1,

ẏ2 = y1(3y3 + 1− y21)+γy2,

ẏ3 = −2y3(y1y2+α),





(3.4)

where α and γ are constant parameters. For α = 0.87 and γ = 1.1 system is chaotic but
for α = 0.14 and γ = 0.1 (see Figures 1 and 2) it tends to a stable periodic orbit. Now
construct Rabinovich-Fabrikant chaotic system as response system. The response system
is:




dy1

dt

dy2

dt

dy3

dt


 =




y2(y3 − 1 + y21) + γy1

y1(3y3 + 1− y21) + γy2

−2y3(y1y2 + α)


+ θ(x) + τ(y, x), (3.5)

where θ(x) is compensation controller and τ(y, x) is feedback controller.
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According to methodology, we can obtain compensation controller for response system
(3.5) as follows:

θ(x) =
dx

dt
− g(x) =




dx1

dt

dx2

dt

dx3

dt


 −




x2(x3 − 1 + x2
1) + γx1

x1(3x3 + 1− x2
1) + γx2

−2x3(x1x2 + α)


 . (3.6)

So from equation (3.5) and (3.6),




dy1

dt

dy2

dt

dy3

dt


 =




y2(y3 − 1 + y21)+γy1

y1(3y3 + 1− y21)+γy2

−2y3(y1y2+α)


+




dx1

dt

dx2

dt

dx3

dt




−




x2(x3 − 1 + x2
1)+γx1

x1(3x3 + 1− x2
1)+γx2

−2x3(x1x2+α)


+ τ(y, x). (3.7)

Let error ei = yi − xi ; i = 1, 2, 3. Then error system can be obtained from (3.7)
described by




dy1

dt

dy2

dt

dy3

dt


−




dx1

dt

dx2

dt

dx3

dt


 =




y2(y3 − 1 + y21)+γy1

y1(3y3 + 1− y21)+γy2

−2y3(y1y2+α)




−




x2(x3 − 1 + x2
1)+γx1

x1(3x3 + 1− x2
1)+γx2

−2x3(x1x2+α)


+ τ(y, x).

This implies




de1
dt

de2
dt

de3
dt


 = G1(x, e) +G2(x, e), (3.8)

where G1(x, e) = g(xi + ei) − g(xi) and G2(x, e) = τ(xi + ei, xi) ; i = 1, 2, 3. Now the
vector function G1(x, e) is







2x1x2e1 + 2γx1e1 + 2x1e1e2 + x2e
2

1
+ e2x

2

1
+ e2x3 + e3x2 + e2e3 − e2 + e2e

2

1
+ γe

2

1

3x1e3 + 3x3e1 − 3e1x2

1
− 3x1e

2

1
+ 3e1e3 + e1 − e

3

1
+ 2γx2e2 + γe

2

1

−2αe3 − 2x1x2e3 − 2x1x3e2 − 2x1e2e3 − 2e1x2x3 − 2x2e1e3 − 2x3e1e2 − 2e1e2e3






.

Hence, we can choose that

e1 = e1, e2 = (e2, e3)
T , A1 = (0), A2 =

(
0 0
0 −2α

)
,
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F1(x, e1, e2)

=
(

2x1x2e1 + 2γx1e1 + 2x1e1e2 + x2e
2

1 + e2x
2

1 + e2x3 + e3x2 + e2e3 − e2 + e2e
2

1 + γe21
)

,

F21(x, e1, e2) =

(
3x3e1 − 3e1x

2
1 − 3x1e

2
1 + 3e1e3 + e1 − e31

−2e1x2x3 − 2x2e1e3 − 2x3e1e2 − 2e1e2e3

)
,

F22(x, e1, e2) =

(
3x1e3 − 2γe2x2 + γe22

−2e3x1x2

)
.

So, the vector function

G1(x, e) =

(
A1e1 + F1(x, e1, e2)

A2e2 + F21(x, e1, e2) + F22(x, e1, e2)

)
. (3.9)

Obviously, lime1→0 F21(x, e1, e2) = 0. According to tracking control method we can
define feedback controller as

G2(x, e) =

(
Ω1(x, e1, e2)

Ω2(x, e1, e2)

)
=

(
Λ1e1 − F1(x, e1, e2)

Λ2e2 − F22(x, e1, e2)

)
. (3.10)

So, from equations (3.9) and (3.10) response system (3.8) can be rewritten as

{
de1
dt

= (A1 + Λ1)e1,

de2
dt

= (A2 + Λ2)e2 + F21(x, e1, e2),
(3.11)

so, we choose now suitable A1 + Λ1 ∈ R
1 and A2 + Λ2 ∈ R

2×2, which satisfy | argλ| >
π/2 (here q = 1). As equation (3.11) is asymptotically stable with equilibrium point
e1 = 0 and e2 = 0. Obviously, limt→∞ ‖e1‖ = 0 and lime1→0 F21(x, e1, e2) = 0, then the
synchronization between response system and master system can be achieved.

4 Numerical Simulations

Parameters of the integer order Rabinovich-Fabrikant chaotic system are α = 0.87 and
γ = 1.1 and for fractional order Coullet system a = 0.8, b = −1.1, c = −0.45, and d = −1.
The fractional order is taken to be q = q1 = q2 = q3 = 0.98 and q1 = 0.97, q2 = 0.95 and
q3 = 0.90 for which the systems are chaotic. In equation (3.11) we have chosen Λ1 = (−1)

and Λ2 =

(
−1 0
0 0

)
, which leads to stability conditions as eigenvalue of A1 + Λ1 is

λ1 = −1 and eigenvalues of A2 + Λ2 are λ2 = −1, λ3 = −1.74 when α = 0.87 and
λ2 = −1, λ3 = −0.28 when α = 0.14. The initial conditions for master and slave systems
[x1(0), x2(0), x3(0)] = [0.1, 0.4, 0.3] and [y1(0), y2(0), y3(0)] = [−1, 0, 0.5] respectively and
for [e1(0), e2(0), e3(0)] = [−1.1,−0.4, 0.2] diagrams of convergence of errors given below
are the witness of achieving synchronization between master and slave system.
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Figure 9: Convergence error of

e1, t = [0, 100] with α = 0.87.

20 40 60 80 100

-2.5´10-8

-2.´10-8

-1.5´10-8

-1.´10-8

-5.´10-9

Figure 10: Convergence error of

e2, t = [0, 100] with α = 0.87.
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Figure 11: Convergence error of e3,

t = [0, 100] with α = 0.87.
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Figure 12: Combined Convergence er-

ror of e1, e2, and e3, t = [0, 100] with

α = 0.87.
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1
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3
and t = [0, 100] with α = 0.87 shows synchro-

nization between drive and response system.

5 Conclusion

In this paper, we have investigated synchronization behavior between an integer order
Rabinovich-Fabrikant chaotic system and fractional order Coullet chaotic system via
tracking control method and stability of fractional order systems. The results are vali-
dated by numerical simulations using Mathematica and Matlab both. Synchronization
between two different orders has more advantage over synchronization between same
order systems. Synchronization between two different order chaotic systems is more
beneficial to enhance security of communication.
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