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Abstract: This paper deals with synchronization between a fractional order Coullet
chaotic system and an integer order Rabinovich-Fabrikant chaotic system by using
tracking control and stability theory of fractional order system. An effective controller
is designed to synchronize these two systems. Numerical simulations have been done
by using Mathematica and Matlab both. Numerical solutions via Grünwald-Letnikov
method have been used in Matlab. Numerical results show that method is effective
and feasible.
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1 Introduction

Synchronization is the dynamical process by which two or more oscillators adjust their
rhythms due to a weak interaction [38]. This problem has received the great attention
in the literature due to its importance in engineering and physical sciences, as well as in
the challenging biological and social entities [38,39,44]. Chaotic synchronization did not
attract much attention until Pecora and Carroll [34] introduced a method to synchronize
two identical chaotic systems with different initial conditions in 1990 and they demon-
strated that chaotic synchronization could be achieved by driving or replacing one of the
variables of a chaotic system with a variable of another similar chaotic device. From then
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on, enormous studies have been done by researchers on the synchronization of dynami-
cal systems. In the last two decades considerable research has been done in non-linear
dynamical systems and their various properties. One of the most important properties
is synchronization. Synchronization techniques have been improved in recent years and
many different methods are applied theoretically as well as experimentally to synchronize
the chaotic-systems including adaptive control [7,10,27], backstepping design [46–48], ac-
tive control [5,23,52], nonlinear control [6,33] and observer based control method [11,50].
Using these methods, numerous synchronization problems of well-known chaotic systems
such as Lorenz, Chen, Lü and Rössler system have been worked on by many researchers.
In sequel to the study of chaotic systems, chaotic dynamics of fractional order systems
has also been studied popularly. Since many real objects are generally fractional, so
fractional calculus opens wide ways to describe a real object more accurately than the
classical integer methods. So the fractional order methods become global and allow
greater degree of flexibility in the study of dynamical models. Due to advantage over
integer methods they have a lot of important applications in the various fields such
as control theory [35, 42], viscoelastic [3], diffusion [9, 25], bioengineering [29], dielec-
tric polarization [45], electrode-electrolyte polarization [24], electromagnetic waves [22],
medicine [19] etc. Chaotic dynamics of fractional order systems is becoming an impor-
tant field of investigation in nonlinear dynamics. Although the fractional calculus is more
than three century old subject, yet in past few years it has increased rapidly. Analysis of
fractional order dynamical systems has been studied by authors in [31,32,40]. Geometric
and physical interpretation of fractional integration and fractional differentiation has also
been studied by Podlubny [41]. In the continuation of study of chaos in fractional order
dynamical systems, one of the important property synchronization of dynamical systems
of fractional order has also got much attention. We can see many works on chaos in
fractional order systems: in Chen’s system [26], Volta system [37], Rössler system [12],
Chua system [21], Duffing oscillators [18], cellular network [1], Lorenz system [20] etc.
And synchronization between identical as well as non-identical fractional order systems
has been presented in [4, 13, 14, 16, 17, 28, 49, 51, 53, 54].

The aim of this study is to investigate the synchronization behavior between an
integer order system and a fractional order chaotic system. Synchronization between
different orders has its own importance since it plays an important role in security of
communication as well as it can also generate hybrid chaotic transient signals before
final states. So it is necessary to synchronize two different order systems. Here we
have used tracking control method to synchronize Rabinovich-Fabrikant integer order
system and Coullet chaotic system of fractional order. Numerical simulations have been
done by using both Matlab and Mathematica. For fractional order system we have used
Grünwald-Letnikov method [40].

2 Preliminaries

In this section we mention some fundamental properties and definitions of fractional
order derivatives.

2.1 Fractional derivatives and its approximations

Fractional calculus is a generalization of integration and differentiation to non-integer
order fundamental operator aD

α
t , where a and t are the limits of the operation and α is
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the fractional order which can be a complex number, R(α) denotes the real part of α.
The continuous integro-differential operator is defined as:

aD
α
t =







dα

dtα
, R(α) > 0,
1, R(α) = 0,

∫ t

a
dτ−α, R(α) < 0.

The three definitions used for general fractional differintegral are Grünwald-Letnikov(GL)
definition, the Riemann-Liouville (RL) and Caputo’s definition [40]. The GL definition
is given as:

aD
α
t f(t) = lim

h→0
h−α

[ t−a
h

]
∑

j=0

(−1)j
(

α
j

)

f(t− jh),

where [·] denotes the integer part. And the RL definition is given by

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ , n− 1 < α < n,

where Γ(·) is the gamma function. The Caputo fractional derivative is

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

fn(τ)

(t− τ)α−n+1
dτ, n− 1 < α < n.

For numerical calculations of fractional-order derivatives we have used Grünwald-
Letnikov method which is derived from Grünwald-Letnikov definition. It is also called
Power Series Expansion method [8, 15, 36].

2.2 Methodology for synchronization between fractional order and integer

order chaotic system

In this section we put a glimpse of methodology for synchronization between fractional
order and integer order chaotic system via tracking control. Consider the following n-
dimensional fractional order chaotic system as drive (master) system

dqαx

dtqα
= f(x), (2.1)

where x ∈ R
n, fractional order qα = (qα1

, qα2
, ...qαn

)T ; (0 < qdi
< 1) may be unequal.

f : Rn −→ R
n is a differentiable function. Now, consider the following n-dimensional

chaotic system of integer order as :

dy

dt
= g(y),

where y ∈ R
n and g : Rn −→ R

n is a differentiable function and construct the following
integer order response system:

dy

dt
= g(y) + u(y, x), (2.2)

where u(y, x) is the controller to be designed via tracking control method.
Our goal in this paper is to design controller u(y, x) such that

lim
t→∞

‖e‖ = lim
t→∞

‖y − x‖ = 0,

where ‖ · ‖ is the Euclidean norm (here x in response system (2.2) belongs to chaotic
system (2.1)), then the systems (2.1) and (2.2) will be synchronized.



428 AYUB KHAN AND PRIYAMVADA TRIPATHI

2.3 Stability of Fractional order systems

An autonomous system DqX = AX,X(0) = 0, with 0 < q ≤ 1, X ∈ R
n, A ∈ R

n×n

is asymptotically stable iff | argλ| > qπ/2 is satisfied for all eigenvalues (λ)of matrix A.
Also this system is stable iff | argλ|≥qπ/2 is satisfied for all eigenvalues of a matrix A
and those critical eigenvalues which satisfy | argλ| > qπ/2 have geometric multiplicity
one [30].

3 System Description

3.1 Rabinovich-Fabrikant chaotic system of integer order

The Rabinovich-Fabrikant chaotic system is a set of three coupled ordinary differential
equations exhibiting chaotic behavior for certain values of parameters. They are named
after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 1979 [43]. The
equations of system are:

ẏ1 = y2(y3 − 1 + y21)+γy1,

ẏ2 = y1(3y3 + 1− y21)+γy2,

ẏ3 = −2y3(y1y2+α),















(3.1)

where α and γ are constant parameters that control the evolution of the system. For
some values of α and γ, the system is chaotic but for other it tends to a stable periodic
orbit. Figures given below show the chaotic behavior of Rabinovich-Fabrikant system
with different values of parameters.
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Figure 1: Chaotic behavior of the

system with α = 0.87 and γ = 1.1.
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Figure 2: Chaotic behavior having

tendency of stable periodic orbit with

α = 0.14 and γ = 0.1.
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Figure 3: Phase portrait shows

chaotic behavior of the system.
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Figure 4: Phase portrait shows

chaotic behavior of the system.

3.2 Coullet chaotic system of fractional order

The Coullet chaotic system consists of three fractional order differential equations with
orders q1, q2, and q3, respectively [2]

dq1x1

dtq1
= x2,

dq2x2

dtq2
= x3,

dq3x3

dtq3
= ax1 + bx2 + cx3 + dx3

1,



















(3.2)

where a = 0.8, b = −1.1, c = −0.45, and d = −1. We can vary values of q1, q2, and
q3 accordingly. Figures given below show chaotic behavior of the system with different
values of q1, q2, and q3, respectively.
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Figure 5: Chaotic attractor of the

Coullet system in xy-plane with q1 =

0.90, q2 = 0.97, and q3 = 0.95.
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Figure 6: 3D chaotic attractor of the

Coullet system with q1 = 0.90, q2 =

0.97, and q3 = 0.95.
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Figure 7: Chaotic attractor of the

Coullet system in xy-plane with q1 =

q2 = q3 = 0.98.
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Figure 8: 3D chaotic attractor of the

Coullet system with q1 = q2 = q3 =

0.98.

3.3 Synchronization between Coullet chaotic system of fractional order and

Rabinovich-Fabrikant chaotic system of integer order via Tracking con-

trol

In this section, we synchronize a fractional order derivative and an integer order derivative
via tracking control. Consider fractional order Coullet system as a drive (master) system:

dq1x1

dtq1
= x2,

dq2x2

dtq2
= x3,

dq3x3

dtq3
= ax1 + bx2 + cx3 + dx3

1,



















(3.3)

where a = 0.8, b = −1.1, c = −0.45, and d = −1. Here we have taken q1 = q2 = q3 = 0.98
and q1 = 0.90, q2 = 0.97, and q3 = 0.95. One can take any other values of q1, q2 and q3
(0 < q ≤ 1).

Now integer order Rabinovich-Fabrikant chaotic system is:

ẏ1 = y2(y3 − 1 + y21)+γy1,

ẏ2 = y1(3y3 + 1− y21)+γy2,

ẏ3 = −2y3(y1y2+α),















(3.4)

where α and γ are constant parameters. For α = 0.87 and γ = 1.1 system is chaotic but
for α = 0.14 and γ = 0.1 (see Figures 1 and 2) it tends to a stable periodic orbit. Now
construct Rabinovich-Fabrikant chaotic system as response system. The response system
is:











dy1

dt

dy2

dt

dy3

dt











=









y2(y3 − 1 + y21) + γy1

y1(3y3 + 1− y21) + γy2

−2y3(y1y2 + α)









+ θ(x) + τ(y, x), (3.5)

where θ(x) is compensation controller and τ(y, x) is feedback controller.
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According to methodology, we can obtain compensation controller for response system
(3.5) as follows:

θ(x) =
dx

dt
− g(x) =









dx1

dt

dx2

dt

dx3

dt









−









x2(x3 − 1 + x2
1) + γx1

x1(3x3 + 1− x2
1) + γx2

−2x3(x1x2 + α)









. (3.6)

So from equation (3.5) and (3.6),











dy1

dt

dy2

dt

dy3

dt











=









y2(y3 − 1 + y21)+γy1

y1(3y3 + 1− y21)+γy2

−2y3(y1y2+α)









+











dx1

dt

dx2

dt

dx3

dt











−









x2(x3 − 1 + x2
1)+γx1

x1(3x3 + 1− x2
1)+γx2

−2x3(x1x2+α)









+ τ(y, x). (3.7)

Let error ei = yi − xi ; i = 1, 2, 3. Then error system can be obtained from (3.7)
described by









dy1

dt

dy2

dt

dy3

dt









−









dx1

dt

dx2

dt

dx3

dt









=









y2(y3 − 1 + y21)+γy1

y1(3y3 + 1− y21)+γy2

−2y3(y1y2+α)









−









x2(x3 − 1 + x2
1)+γx1

x1(3x3 + 1− x2
1)+γx2

−2x3(x1x2+α)









+ τ(y, x).

This implies









de1
dt

de2
dt

de3
dt









= G1(x, e) +G2(x, e), (3.8)

where G1(x, e) = g(xi + ei) − g(xi) and G2(x, e) = τ(xi + ei, xi) ; i = 1, 2, 3. Now the
vector function G1(x, e) is







2x1x2e1 + 2γx1e1 + 2x1e1e2 + x2e
2

1
+ e2x

2

1
+ e2x3 + e3x2 + e2e3 − e2 + e2e

2

1
+ γe

2

1

3x1e3 + 3x3e1 − 3e1x2

1
− 3x1e

2

1
+ 3e1e3 + e1 − e

3

1
+ 2γx2e2 + γe

2

1

−2αe3 − 2x1x2e3 − 2x1x3e2 − 2x1e2e3 − 2e1x2x3 − 2x2e1e3 − 2x3e1e2 − 2e1e2e3






.

Hence, we can choose that

e1 = e1, e2 = (e2, e3)
T , A1 = (0), A2 =

(

0 0
0 −2α

)

,
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F1(x, e1, e2)

=
(

2x1x2e1 + 2γx1e1 + 2x1e1e2 + x2e
2

1 + e2x
2

1 + e2x3 + e3x2 + e2e3 − e2 + e2e
2

1 + γe
2

1

)

,

F21(x, e1, e2) =

(

3x3e1 − 3e1x
2
1 − 3x1e

2
1 + 3e1e3 + e1 − e31

−2e1x2x3 − 2x2e1e3 − 2x3e1e2 − 2e1e2e3

)

,

F22(x, e1, e2) =

(

3x1e3 − 2γe2x2 + γe22

−2e3x1x2

)

.

So, the vector function

G1(x, e) =

(

A1e1 + F1(x, e1, e2)

A2e2 + F21(x, e1, e2) + F22(x, e1, e2)

)

. (3.9)

Obviously, lime1→0 F21(x, e1, e2) = 0. According to tracking control method we can
define feedback controller as

G2(x, e) =

(

Ω1(x, e1, e2)

Ω2(x, e1, e2)

)

=

(

Λ1e1 − F1(x, e1, e2)

Λ2e2 − F22(x, e1, e2)

)

. (3.10)

So, from equations (3.9) and (3.10) response system (3.8) can be rewritten as

{

de1
dt

= (A1 + Λ1)e1,

de2
dt

= (A2 + Λ2)e2 + F21(x, e1, e2),
(3.11)

so, we choose now suitable A1 + Λ1 ∈ R
1 and A2 + Λ2 ∈ R

2×2, which satisfy | argλ| >
π/2 (here q = 1). As equation (3.11) is asymptotically stable with equilibrium point
e1 = 0 and e2 = 0. Obviously, limt→∞ ‖e1‖ = 0 and lime1→0 F21(x, e1, e2) = 0, then the
synchronization between response system and master system can be achieved.

4 Numerical Simulations

Parameters of the integer order Rabinovich-Fabrikant chaotic system are α = 0.87 and
γ = 1.1 and for fractional order Coullet system a = 0.8, b = −1.1, c = −0.45, and d = −1.
The fractional order is taken to be q = q1 = q2 = q3 = 0.98 and q1 = 0.97, q2 = 0.95 and
q3 = 0.90 for which the systems are chaotic. In equation (3.11) we have chosen Λ1 = (−1)

and Λ2 =

(

−1 0
0 0

)

, which leads to stability conditions as eigenvalue of A1 + Λ1 is

λ1 = −1 and eigenvalues of A2 + Λ2 are λ2 = −1, λ3 = −1.74 when α = 0.87 and
λ2 = −1, λ3 = −0.28 when α = 0.14. The initial conditions for master and slave systems
[x1(0), x2(0), x3(0)] = [0.1, 0.4, 0.3] and [y1(0), y2(0), y3(0)] = [−1, 0, 0.5] respectively and
for [e1(0), e2(0), e3(0)] = [−1.1,−0.4, 0.2] diagrams of convergence of errors given below
are the witness of achieving synchronization between master and slave system.
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Figure 9: Convergence error of

e1, t = [0, 100] with α = 0.87.
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Figure 10: Convergence error of

e2, t = [0, 100] with α = 0.87.
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Figure 11: Convergence error of e3,

t = [0, 100] with α = 0.87.
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Figure 12: Combined Convergence er-

ror of e1, e2, and e3, t = [0, 100] with

α = 0.87.
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Figure 13: Graph between e =
√

e2
1
+ e2

2
+ e2

3
and t = [0, 100] with α = 0.87 shows synchro-

nization between drive and response system.

5 Conclusion

In this paper, we have investigated synchronization behavior between an integer order
Rabinovich-Fabrikant chaotic system and fractional order Coullet chaotic system via
tracking control method and stability of fractional order systems. The results are vali-
dated by numerical simulations using Mathematica and Matlab both. Synchronization
between two different orders has more advantage over synchronization between same
order systems. Synchronization between two different order chaotic systems is more
beneficial to enhance security of communication.
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