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Abstract: In this paper, a novel bacterial foraging algorithm (BFA) based approach
for robust and optimal design of PID controller connected to power system stabilizer
(PSS) is proposed for damping low frequency power oscillations of a single machine
infinite bus bar (SMIB) power system. This paper attempts to optimize three parame-
ters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria
in human intestine. The problem of robustly selecting the parameters of the power
system stabilizer is converted to an optimization problem which is solved by bacte-
rial foraging algorithm with a carefully selected objective function. The eigenvalue
analysis and the simulation results obtained for internal and external disturbances
for a wide range of operating conditions show the effectiveness and robustness of
the proposed BFAPSS. Further, the time domain simulation results when compared
with those obtained using conventional PSS and Particle Swarm Optimization (PSO)
based PSS show the superiority of the proposed design.
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1 Introduction

Power systems are highly non-linear and exhibit low frequency oscillations due to poor
damping caused by the high-gain, fast-acting automatic voltage regulator (AVR) em-
ployed in the excitation system. The power system utilities employ power system sta-
bilizers (PSSs) to introduce supplementary stabilizing signals into the excitation system
to increase the damping of the low frequency oscillations. Among various types of PSSs,
the fixed-structure lag-lead type is preferred by the utilities due to its operational sim-
plicity and ease of tuning PSS parameters. However, the robustness of these PSS under
changing conditions is a major concern.

The concept of PSSs and their tuning procedures were well explained in literature. A
well-tuned lag-lead type PSS can effectively improve dynamic stability. Many approaches
have been proposed to tune PSSs, such as the sensitivity approach [4], pole placement
technique [2], and the damping torque approach [1]. Global optimization technique like
genetic algorithm (GA) [5], Particle Swarm Optimization (PSO) [12], tabu search [6] and
simulated annealing (SA) [7] are attracting the attention in the field of PSS parameter
optimization in recent times. But when the system has a highly epistatic objective
function (i.e., where the parameters being optimized are highly correlated) and number
of parameters to be optimized are large, GA has been reported to exhibit degraded
efficiency [8]. Bacterial foraging algorithm has been proposed and introduced as a new
evolutionary technique in [9]. Passino et al. pointed out that the foraging algorithms can
be integrated in the framework of evolutionary algorithms. To overcome the drawbacks
of conventional methods for PSS design, a new optimization scheme known as bacterial
foraging (BF) is used for the PSS parameter design. This algorithm (BFA) appeared
as a promising one for handling the optimization problems [13]. Tt is a computational
intelligence based technique that is not largely affected by the size and nonlinearity of the
problem and can converge to the optimal solution in many cases where many analytical
methods fail to converge. Considering the strength of this algorithm, it is employed in
the present work for the optimal tuning the parameters of the PSS.

In this paper a new/improved BFA-based optimal determination of PID-PSS parame-
ters is presented which overcomes the shortcomings of previous works. In order to design
a robust PSS which guarantees stability of system in a wide range of operating condi-
tions, the objective function is defined such that the resultant time response is restricted
to lie within specific bounds as well as limiting the amount of overshooting of power
system response when subjected to disturbances. The performance of the BFAPSS is
compared with those obtained with other techniques such as conventional and Particle
Swarm Optimization (PSO) by plotting the time response curves for step disturbance.
Further, the robustness of the controller so designed is established by choosing any one
set of parameters for a particular operating condition and testing its performance with
its fixed structure for other operating conditions too.

2 Power System Model Studied

The system considered in this paper is a synchronous machine connected to an infinite
bus through a transmission line, as shown in Figure 1.The linear incremental model of a
synchronous machine connected to a large system is shown in Figure 2.

The state equation under a particular loading condition can be written as [1].
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Figure 1: Single Machine connected to Infinite Bus System.

dx(t)/dt = Az(t) + Bu(t), (1)

y(t) = Cx(t), (2)

where z(t) is the state vector, u(t) is the control input and y(t) is the output and A, B,C
are the matrices of appropriate dimensions. The following physical variables are chosen
as the state and output for the power system under consideration.

o(t) = [A(t) Aw(t) AEq(t) AEfd(t)]", (3)

y(t)=1[0 1 0 0]. (4)

The system matrices as taken from [1] are given below

0 314 0 0
A_| —KUyM  —D/M 0 0
| —K4/M 0  —1/K3T%do 0 |’
KeK5/Ta 0 —K6Ke/Te —1/Te
B=1[0 0 0 Ke/Te], (5)
cC=1[010 0] (6)

The parameters K1-K6 in system matrix A are functions of real power output P and
reactive power output Q of the generator [11, 12]. Thus it is observed that the elements
of the A matrix change as the operating point of the generator changes. When the
system is perturbed it is possible that it becomes unstable or operates with sustained
oscillations. It is therefore necessary to design a PSS which will guarantee stability of
the system and suppress these unwanted oscillations. Further, it is necessary to change
the PSS parameters according to the drift in the operating conditions.

The main objective of this work is to design the power system stabilizer using Bacterial
Foraging Algorithm such that the controller structure so designed rejects the internal and
external disturbances and is immune to machine parameters variations.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based stochastic optimization tech-
nique developed by Eberhart and Kennedy [12]. It shares many similarities with evolu-
tionary computation techniques such as Genetic Algorithms (GA). The system is initial-
ized with a population of random particles where each particle is a candidate solution.
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Figure 2: Linearized model of a synchronous machine with an exciter and stabilizer.

The particles fly through the problem space by following the current optimum particles
and searches for optima by updating their positions. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. The advantages of PSO over GA
are the ease of programming and fast convergence [8, 9]. In the PSO algorithm, each
particle updates its velocity and position by the following relationships:

Vit = wVik + clrandl (pbesti — Si*) + c2rand2(gbesti — Si¥), (7)

S,L-k-i-l _ Sk + Vik+17 (8)

where ¢l and ¢2 are cognition and social parameters respectively, randl() and rand2() are
constant numbers in the range of [0,1], w is the inertia weight. Vi represents the velocity
of the i*" particle and Si is its position, pbesti and gbesti are local best and global best
positions respectively. The velocity of particle in equation (7) depends on its previous
velocity, its own thinking and social psychological adaptation of the population. The
PSO algorithm starts with random initialization of population and velocity. The search
for the optimum solution is continued unless one of the stopping criteria is reached. The
stopping criteria are: either the maximum iterations are reached, or there is no further
improvement in the optimal solution. The values of parameters for PSO used in this
study are as follows: No. of particles 20; No. of swarms 3 (Kp, Ki, Kd); No. iteration=
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500; Maximum particle velocity (upper-lower bound) / No. iteration = 0.05; c1,¢2 = 2, 2;
wmaz = 0.9, wmin = 0.4.

To compute the optimum parameter values of PID-PSS shown in Figure 4, a 0.1 step
change in reference mechanical torque (ATm) is assumed and the performance index in
equation (9) is minimized using Particle Swarm Optimization. The settling time (¢s) and
peak overshoot (Awp) are evaluated for each iteration.

4 Bacterial Foraging Algorithm

Bacterial foraging algorithm is inspired by an activity called ”chemotaxis” exhibited by
bacterial foraging behaviors. Motile bacteria such as E. coli and salmonella propel them-
selves by rotation of the flagella. To move forward, the flagella rotates counterclockwise
and the organism ”swims” or "runs” while a clockwise rotation of the flagellum causes
the bacterium to randomly ”tumble” itself in a new direction and swim again. Alter-
nation between "swim” and ”tumble” enables the bacterium to search for nutrients in
random directions. Swimming is more frequent as the bacterium approaches a nutrient
gradient. Tumbling, hence direction changes, is more frequent as the bacterium moves
away from some food to search for more. Basically, bacterial chemotaxis is a complex
combination of swimming and tumbling that keeps bacteria in places of higher concen-
trations of nutrients. The foraging strategy of Escherichia coli bacteria present in human
intestine can be explained by three processes, namely chemotaxis, reproduction, and
elimination-dispersal [9].

In Chemotaxis, a unit walk with random direction represents a ”tumble” and a unit
walk with the same direction in the last step indicates a ”run”. C(i) is called the run
length unit parameter, is the chemo tactic step size during each run or tumble. With
the activity of run or tumble at each step of the chemotaxis process, a step fitness
will be evaluated. In the reproduction step, all bacteria are stored in reverse order
according to the health status. Here only the first half of the population survives, and
a surviving bacterium splits into two identical ones, which are then placed in the same
locations. Thus, the population of bacteria keeps constant. It is possible that in the local
environment, the life of a population of bacteria changes either gradually by consumption
of nutrients or suddenly due to some other influence. Events can kill or disperse all
the bacteria in a region. They have the effect of possibly destroying the chemotactic
progress, but in contrast, they also assist it, since dispersal may place bacteria near good
food sources. Elimination and dispersal helps in reducing the behavior of stagnation
(i.e., being trapped in a premature solution point or local optima). The flow chart of the
iterative algorithm is shown in Figure 3.

The bacteria with large run length unit C(7) have the exploring ability and stay for
a while in several domains containing local optima. It can also escape from the local
optima to enter the domain with global optima. On the other hand, a bacterium with
small run length unit C(4) is attracted into the domain with local optima and exploits
this local minimum for its whole life cycle. It is therefore necessary to choose the value
of C(i) with larger value for faster convergence. In this algorithm, cost function value
is taken as objective function and the bacterium having minimum cost function (J) is
retained for the next generation. For swarming, the distances of all the bacteria in a new
chemotactic stage are evaluated from the global optimum bacterium till that point. To
speed up the convergence, a simple heuristic rule to update one of the coefficients (C') of
BFA algorithm is formulated.
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Figure 3: Flowchart of Bacterial Foraging Algorithm.

5 BFA based Tuning of PID-PSS

PID (proportional integral derivative) control is one of the earlier control strategies.
Its early implementation was in pneumatic devices, followed by vacuum and solid state
analog electronics, before arriving at today’s digital implementation of microprocessors.
It has a simple control structure which was understood by plant operators and which
they found relatively easy to tune. Since many control systems using PID control have
proved satisfactory, it still has a wide range of applications in industrial control. It has
been found possible to set satisfactory controller parameters from less plant information
than a complete mathematical model. In the proposed design approach, the PID control
structure shown in Figure 4 is used as the power system stabilizer as opposed to the
traditional lead-lag controller. In Figure 4, the speed deviation is the input to the

Figure 4: The PID power system stabilizer.

controller and w is the supplementary stabilizing signal. The PID parameters Kp, K71,
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and Kd are tuned using the BFA technique discussed in Section 4. To compute the
optimum parameter values, a 0.1 step change in reference mechanical torque (ATm) is
assumed and the performance index

1

F= (14 Awp)(1 +ts) ©)

is minimized using bacterial foraging algorithm. The settling time (ts) and peak
overshoot (Awp) are evaluated for each iteration. The PID parameters selected using
the above objective function are used to form the augmented A matrix as given below:

0 314 0 0 0
-K1/M 0 —K2/M 0 0
—K4/T'd0 0 —1/K3T'do 1/T'do 0
MKe(—K5+ MKi/314 — KdK1)MTe KeKp/Te —MK6Ke— K2KeKd/Te 1/Te Ke/Te
MKi/314 — KdK1/MTw Kp/Tw —K2Kd/MTw 0 —1/Tw
The following machine parameters are chosen for study zd = 1.6;2'd = 0.32;2q¢ =

1.55; vt0 = 1.05; w = 100rad/s; T'd0 = 6.0sD = 0.0; M = 10.0;re = 0;ze = 0.4; Ke =
50.0;Te = 0.05s;T = 5s. The parameters for BFA used in this study are as follows:
Nc = 5,Nre = 4,Ned = 10, Ns = 4,datt = 0.01, hrep = 0.01, watt = 0.4, wrep =
0.42,w =0.8,cl = 2.0 and ¢2 = 2.0.

6 Tuning Results and Discussion

Simulation tests were made using a computational program that represents the single
machine connected to infinite bus bar system. The machine with PID-PSS is represented
as bth order state space model with saturation neglected.

The different operating conditions [2] considered are given in Table 1. The simulation
study for the operating conditions mentioned using Bacterial Foraging Algorithm (BFA)
is carried out for a step disturbance of 0.1 mechanical torque (AT'm). Simulation study
is also carried out for the mentioned operating conditions for the PSS designed using
conventional and Particle Swarm Optimization (PSO). The conventional PSS parameters
are calculated using frequency response method. The PSS parameters obtained by the
application of conventional, PSO and BFA along with the corresponding eigenvalues
are shown in Table 2. From Table 2, it is observed that the real parts of closed loop
eigenvalues obtained using BFAPSS are shifted to the left half of the s-plane which
provides more damping. The time response specifications obtained from the transient
response curves are shown in Table 3.

From Figures 5-7 and Table 3, it is observed that the performance of the PSS de-
signed using BFA is far superior compared to the PSS designed using conventional as
well as Particle Swarm Optimization (PSO). Figure 8 illustrates the convergence of the
objective function with Particle Swarm Optimization (PSO) and BFA. From the conver-
gence characteristics it is clear that BFA offers superior performance than (PSO). Figure
9 shows the speed deviation for different operating conditions with BFA PSS when the
system is subjected to 0.1 p.u step disturbance in the reference input voltage (AVref).

In power system the operating condition changes very fast. The controller designed
for one operating condition may not give satisfactory performance to other operating
conditions. Therefore, it becomes necessary that the controller parameters need to be
tuned according to the changes in the operating condition which is very difficult to
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accomplish online even using very fast computer. Therefore it is necessary to design a
PSS which is robust in behaviour. From Table 2 the eigen values obtained for the power
system with BFAPSS do not change appreciably which suggests the robustness of the
PSS. Tt is therefore possible to choose the PSS parameters obtained by BFA at any one
operating condition which can be chosen and retained for other operating conditions also.

Operating Conditions
Operating points | P1 | P2 | P3
Real Power(P) 1.2 109 |07
Reactive Power(Q) | 0.2 | 0.3 | 0.2

Table 1: Operating conditions of the machine.

Operating Conditions | CPS PSOPSS BFAPSS
P=1.2,0=0.2 Kpss=9.2734 Kp=12.74 Kp=31.58

T1=0.3806 Ki=12.84 Ki=6.3202

T2=0.1 Kd=14.35 Kd=32.32
Eigenvalues -21.2515 +4.9661i | -14.914 +20.104i | -15.01+29.1567i

-21.2515 -4.9661i -14.914 -20.104i | -15.01-29.1567i

- 0.7438 + 6.6601i | -11.569 - 13.4750

- 0.7438 - 6.66011 | -4.7024 -6.8227

-5.6514 -0.30501 -0.3272
P=0.9,Q=0.3 Kpss=7.6451 Kp=10.66 Kp=48.98

T1=0.48746 Ki=4.556 Ki=9.0988

T2=0.1 Kd=14.82 Kd=25.17
Eigenvalues -21.3386 +4.1240i | -14.938 +20.454i | -14.5016+26.0508i

-21.3386 -4.1240i1 -14.938 -20.454i | -14.5016-26.05081

-0.6869 +6.5345i1 -11.699 - 13.8296

-0.6869 -6.53451 -4.8983 -6.1569

-5.3633 -0.32239 -0.3241
P=0.7,Q=0.2 Kpss=5.571 Kp=40.99 Kp=38.05

T1=0.6776 Ki=7.650 Ki=8.5241

T2=0.1 Kd=6.306 Kd=36.97
Eigenvalues -21.3488 + 3.3392i | -13.69 +12.7551 | -15.15154 31.322i

-21.3488 - 3.33921 | -13.69 -12.755i1 -15.1515- 31.322i

- 0.6133 +6.27081 | -10.956 - 13.3897

-0.6869 -6.5345i1 -1.6008 -7.0191

-5.1956 -0.26435 -0.3264

Table 2: Eigenvalue analysis.

For the study of robustness, the PSS parameters designed using BFA for light load
condition are chosen. With these PSS parameters fixed at all operating conditions the
dynamic response of the system for 0.1p.u mechanical disturbance (AT'm) for light,
normal and heavy operating conditions are obtained and plotted as shown in Figure 10
and Figure 11. From Figure 10 and Figure 11, it is evident that the oscillations due to
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Operating Point PSOPSS BFAPSS
Settling time | Peakoveshoot || Settling time | Peakoveshoot
P=1.2;Q=0.2 2.77 0.66 X104 34 0.57X10 4
P=0.9;Q=0.3 3.13 0.69X1074 1.9 0.63X10~4
P=0.7,Q=0.2 1.34 1.45X1074 2.4 0.83X1074

Speed Deviation

Table 3: Settling time max. overshoot comparison.
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Figure 5: Speed deviation for operating condition (P = 1.2,Q = 0.2).
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Figure 6: Speed deviation for operating condition (P = 0.9,Q = 0.3).

disturbances are completely suppressed and the system rejects external disturbances at
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Figure 7: Speed deviation for operating condition (P = 0.7,Q = 0.2).
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Figure 8: Convergence comparison of PSO and BFA.

all operating conditions. In addition, the system performance with the proposed PSS
is much better than that of PSOPSS and the oscillations are damped out much faster.
This illustrates the potential and superiority of the proposed design approach to obtain
an optimal set of PSS parameters.
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Figure 9: Speed deviation for different operating conditions for a 0.1 p.u step change in reference
input voltage (AVref)
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Figure 10: Speed deviation for different operating conditions using BFA PSS with Kp =
38.0553, Ki = 8.5241, Kd = 36.9748.

7 Conclusion

In this study, optimal design of robust power system stabilizer (PSS) for single machine
system using Bacterial Foraging Algorithm is proposed. Eigenvalue analysis under dif-
ferent operating conditions reveals that undamped and lightly damped oscillation modes
are shifted to a specific stable zone in the s-plane. These results show the potential of
Bacterial Foraging Algorithm for optimal design of PSS parameters. Further, from the
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Figure 11: Speed deviation for different operating conditions using PSOPSS with Kp =
40.997, Ki = 7.6503, Kd = 6.30605.

simulation results it is observed that, when a system is subjected to internal and external
disturbances by retaining the same structure and parameter of the controller which was
obtained for any one operating condition works effectively over a wide range of loading
conditions which is very difficult to accomplish on line. This shows the robustness of
the controller designed using BFA. Furthermore, the simulation results also show that
the proposed method in this paper gives much improved performance when compared to
the performance of conventional and Particle Swarm Optimization (PSO) based design
of controller for PSS. Further, the convergence of the objective function in the proposed
method is much faster when compared with Particle Swarm Optimization (PSO).

In this paper, the linear incremental model of single machine connected to infinite
bus has been considered for the design of PID controller even though the actual system is
highly non-linear one and therefore it becomes necessary to validate the results obtained
here by laboratory test which has been taken for future work. The Bacterial Foraging
Algorithm (BFA) remains to be tried out for designing controllers in the capacitive area
and also for multi-machine complex power system.
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