Nonlinear Dynamics and Systems Theory, 13 (4) (2013) 400-411

Infinitely Many Solutions for a Discrete Fourth Order Boundary Value Problem

J. R. Graef^{1*}, L. Kong², and Q. Kong³

 ¹ Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
² Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
³ Department of Mathematics, Northern Illinois University, DeKalb, IL 60115, USA

Received: December 10, 2012; Revised: October 9, 2013

Abstract: By using variational methods and critical point theory, the authors obtain criteria for the existence of infinitely many solutions to the fourth order discrete boundary value problem

$$\begin{cases} \Delta^4 u(t-2) - \alpha \Delta^2 u(t-1) + \beta u(t) = \lambda f(t, u(t)), \quad t \in [1, T]_{\mathbb{Z}}, \\ u(0) = \Delta u(-1) = \Delta^2 u(T) = 0, \ \Delta^3 u(T-1) - \alpha \Delta u(T) = \mu g(u(T+1)), \end{cases}$$

where $T \geq 2$ is an integer, $[1, T]_{\mathbb{Z}} = \{1, 2, ..., T\}$, $\alpha, \beta, \lambda, \mu \in \mathbb{R}$ are parameters, $f \in C([1, T]_{\mathbb{Z}} \times \mathbb{R}, \mathbb{R})$, and $g \in C(\mathbb{R}, \mathbb{R})$. Several consequences of their main theorems are also presented. One example is included to show the applicability of the results.

Keywords: *discrete boundary value problem; infinitely many solutions; fourth order; variational methods.*

Mathematics Subject Classification (2010): 39A10, 34B08, 34B15, 58E30.

^{*} Corresponding author: mailto:John-Graef@utc.edu

^{© 2013} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua400