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Abstract: This paper is the second, in a cycle dedicated to the new approach in
constructing new oscillatory functions spaces, taking as primary object the formal
trigonometric series and their generalizations, whose terms are of the form exp if(t),
with f(t) functions that belong to various classes. The linear case being considered in
the first part of the paper leads to the classical cases of periodicity and almost period-
icity, while the generalized case is aimed to obtain more general spaces of oscillatory
functions, including those already known, due to V.F. Osipov and Ch. Zhang.
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1 Introduction

The periodic and, more general, the oscillatory functions/motions appeared in Science
and Engineering and other fields of knowledge, have conducted to the development of
classical Fourier Analysis of periodic functions and their associated series. While the
first traces of this branch of classical analysis can be found in the Mathematics of the
XVIII-th century (Euler, for instance), it is the XIX-th century that contains significant
results, which stimulated substantially the birth of new theories, contributing vigorously
to the new concepts of Modern Analysis (Set Theory, Real variables including Measure
and Integral). The Fourier Analysis, as developed until the third decade of the XX-th
century, has known a strong impulse due to the emerging of the concept of Almost
Periodicity, due to H. Bohr (1923-25), and successfully continued to the present day.
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It is also true that the topics of classical Fourier Analysis have also kept the attention of
many leading mathematicians, after the birth of almost periodic functions.

The well known treatises of N.K. Bary (Pergamon, 1964) and A. Zygmund (Cambridge
Univ. Press, 2002) contain a wealth of results and information about the periodic func-
tions and their Fourier series, specially obtained before the introduction of the methods
of Functional Analysis. More recent publications, due to J.P. Kahane [20], R.E. Ed-
wards [16], G. Folland [19], have brought new ideas and results from this classical, but
prolific field.

The concept of almost periodicity had several leading contributors to its beginning
period. In his famous treatise Nouvelles Méthodes de la Mécanique Céleste (1893),
H. Poincaré considered the problem of developing a function in a series of sine func-
tions, namely

f(t) =

∞∑

k=1

fk sinλkt, t ∈ R, (1)

where λk are arbitrary real numbers, not necessarily like λk = kω, k ∈ N , ω > 0.
Poincaré has succeeded to obtain the coefficients fk, k ≥ 1, simultaneously introducing
the mean value of a function on the whole real line.

Using the complex notations, which became common with the new concept of almost
periodicity, formula (1) can be rewritten as

f(t) =
∞∑

k=1

fk exp(iλkt), t ∈ R, (2)

with fk ∈ C and λk ∈ R, k ≥ 1. The coefficients fk are determined by the formulas

fk = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp(−iλkt)dt, (3)

in which the Poincaré’s mean value (i.e., on an infinite interval) appears:

M(g) = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

g(t)dt, (4)

g ∈ Lloc(R+, R), under the assumption that the limit exists as a finite number.
It is known that most concepts related to almost periodicity, including the Fourier

exponents and coefficients (see (3) above) are based on the mean value defined in (4).
Other early contributors, preceding the period initiated by H. Bohr, include P. Bohl

(1893) and E. Esclangon (1919) who dealt with what was later called quasiperiodic func-
tions, a special case of almost periodicity. They have investigated oscillatory functions
with a finite number of frequencies, the periodic case being concerned with only one basic
frequency (2π/ω), ω-period. Some methods encountered to P. Bohl, but particularly to
E. Esclangon, have been adapted to the general case of almost periodicity by H. Bohr.

H. Bohr (1887–1951) was the first to create a theory of almost periodicity, in a
series of papers (1922–1925) which contained most of the fundamental results of the
new theory (Generalized Fourier Analysis). The new theory is marking the beginning
of a second stage in the study of oscillatory functions, aiming at global behavior of its
elements. The theory of almost periodic functions has attracted, in short time, the
interest of many mathematicians, including V.V. Stepanov (1925), H. Weyl (1926), A.S.
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Besicovitch (1926-1932), S. Bochner (1925-), J. Favard (1926-), J. von Neumann (1934-),
B.M. Lewitan (1939-), N.N. Bogoliubov (1930-).

The definition of H. Bohr, for almost periodic functions, is showing the fact that these
new functions are direct generalizations of the periodic ones:

A continuous function f : R → R (or C) is called almost periodic if the following
property holds: to each ε > 0, there corresponds a number ℓ = ℓ(ε) > 0, such that each
interval (a, a+ ℓ) ⊂ R contains a number τ with |f(t+ τ) − f(t)| < ε, t ∈ R.

The number τ is called an ε-almost period of the functions f and one says that all
numbers τ , with the above property, form a relatively dense set on R.

This terminology has been present in all the generalizations the almost periodic func-
tions have known so far.

The following two properties of almost periodic functions, in the sense of Bohr, have
been readily discovered by Bohr himself, Bochner and Bogoliubov.

A. Approximation property: for each ε > 0, there exists a complex trigonometric
polynomial

T (t) = Tε(t) =

n∑

j=1

aj exp(iλjt), t ∈ R, (5)

with λj ∈ R, aj ∈ C, such that

|f(t)− Tε(t)| < ε, t ∈ R. (6)

Rephrasing the above property, one may say that any almost periodic function (Bohr)
can be uniformly approximated on R by trigonometric polynomials of the form (5).

B. Bochner property: the set of translates of an almost periodic function (Bohr),
say F = {f(t+h); h ∈ R}, is relatively compact in the sense of uniform convergence
on R.

Each of properties A and B can be taken as definition for the almost periodic functions
in the sense of Bohr. Bogoliubov has given a direct proof of the equivalence between the
definition of Bohr and the approximation property, making possible the constructive
presentation of the theory.

In what follows, by AP (R,R) or AP (R, C), we will understand the almost periodic
set of functions in the sense of Bohr. These sets are actually Banach function spaces,
the norm being given by the formula |f |AP = sup{|f(t)|; t ∈ R}, which makes sense for
each almost periodic function (Bohr), because each function in AP (R,R) or AP (R, C) is
bounded on R and uniformly continuous.

The three equivalent properties for the space of almost periodic functions, i.e., the
Bohr’s definition and A, B, constitute the core of the classical theory and numerous
applications to various types of functional equations. See the books by H. Bohr [6],
A.S. Besicovitch [5], J. Favard [17], B.M. Levitan [21], C. Corduneanu [9,10], L. Amerio
and G. Prouse [2], A.M. Fink [18], S. Zaidman [32], Ch. Zhang [33], W. Maak [23],
B.M. Levitan and V.V. Zhikov [22], for most of the evolution of the theory of almost
periodic functions, until recently. These references contain a large number of sources in
the field, with varied applications in Mathematics and other areas.

Currently, we assist at the beginning of a third stage in the development of mathema-
tical concepts and theories to advance the study of various types of vibratory motions,
encountered in the description of phenomena examined in Science or Engineering.
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We shall touch partially this aspect in the following pages of this paper. It has been
realized, by both users and designers of the new tools for investigation of oscillatory
phenomena, that periodicity (first stage) and almost periodicity (seconde stage) cannot
describe the wide variety of oscillatory or wave-like phenomena that one encounters in
science or in the real world.

2 A Remark and Its Consequences

A new approach to build up spaces/classes of oscillatory functions, applicable also to
the classical ones (periodic or almost periodic) consists in starting with formal/generic
trigonometric series of the form:

∞∑

k=1

ak exp(iλkt), t ∈ R, (7)

where ak ∈ C, λk ∈ R, k ≥ 1, the assumption λk 6= λj for k 6= j, k, j ≥ 1, being accepted
throughout the paper.

The main idea leading to the new approach, in this paper, partially illustrated in
our previous paper [11], is to start with formal trigonometric series, of the form (7), as
primary material, and identify conditions on the two sequences {ak; k ≥ 1} ⊂ C and
{λk; k ≥ 1} ⊂ R, such that (7) ”characterizes” a certain type of oscillatory function,
either in the classical category (periodic or almost periodic), or in the new classes of
oscillatory functions (e.g., pseudo-almost periodic, to begin with in the third stage of
development, or new types, as those investigated by Ch. Zhang [33, 34, 36]).

As we shall see, this new approach works for classes/spaces of classical type, but as
well for introducing new spaces of oscillatory (or vibrating?) functions. The answer is
not always simple, and to illustrate the situation we will start with the question:

Under what conditions does the series (7) characterize the space AP (R, C) of Bohr
almost periodic function?

Based on the theory of almost periodic functions, the answer has a simple formulation,
which is:

Theorem 2.1 The necessary and sufficient condition, for the series (7), to charac-
terize an almost periodic function of the space AP (R, C) is the summability of this series,
in the sense of Cesaró-Fejér-Bochner, with respect to the uniform convergence on R.

Proof. The condition is necessary, because it is well known (see, for instance, Cor-
duneanu [9], [10]) that for a function f ∈ AP (R, C), whose Fourier series has the form
(7), the sequence of trigonometric polynomials

σm(t) =

n∑

k=1

akrk,m exp(iλkt), t ∈ R, (8)

n = n(m), with rk,m rationals depending on λk and m, but independent of {ak; k ≥ 1},
converges uniformly on R to f(t).

The summability condition is also sufficient, because if (7) is summable with respect
to the uniform convergence on R, the limit function will belong to AP (R, C).

Let us point out that any linear method of summability, not necessarily the one
described by (8), leads to the same conclusion. This ends the proof of Theorem 2.1, which
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characterizes the formal trigonometric series of the form (7), representing functions in
AP (R, C), the first space of almost periodic functions (Bohr).

Remark 2.1 Based on the uniqueness of the Fourier series corresponding to a func-
tion from AP (R, C), in case of convergence on R of the series (7), there results that it is
the Fourier series of its sum. This case takes place, obviously, when the convergence of
(7) is uniform on R, and we can write

f(t) =

∞∑

k=1

ak exp(iλkt), t ∈ R. (9)

Otherwise, we have to be content with the relationship

lim
m→∞

σm(t) = f(t), t ∈ R, (10)

uniformly, the {σm(t), m ≥ 1} being the summability sequence consisting of trigono-
metric polynomials (e.g., like in (8)). Of course, any trigonometric polynomial
n∑

k=1

ak exp(iλkt), when regarded as a formal series, is summable, hence Bohr’s almost

periodic.

In order to establish Theorem 2.1, we needed to rely on Bohr’s properties of almost
periodic functions.

What if we start with the new definition for AP (R, C), a fact made possible by
Theorem 2.1?

It turns out that the most basic properties can be routinely derived from the new
definition. We shall list a few of them, leaving the task of proof to the reader.

a) An almost periodic function in Bohr’s sense is bounded on R.

b) An almost periodic function in Bohr’s sense is uniformly continuous on R.

c) If f ∈ AP (R, C) and c ∈ C, then cf ∈ AP (R, C), as well as f̄ .

d) If f, g ∈ AP (R, C), then f + g ∈ AP (R, C) also fg.

e) If f ∈ AP (R, C) and h ∈ R, then f(t + h) = fh(t) and f(ht) = fh(t) both belong
to AP (R, C).

More basic properties of Bohr’s almost periodic functions can be ”rediscovered” if we
introduce a topology/convergence in the set of all formal trigonometric series (7). We
shall not proceed on this way, preferring instead on relying on every fact in the existing
theory of almost periodicity, as soon as essential connections are established.

Let us give one more example to illustrate the fact that, starting from trigonometric
series, one can proceed successfully to the construction of various spaces of almost perio-
dic functions. On behalf of Theorem 2.1 (and even of the new definition of AP -space),
the approximation is assured by the summability assumption. This means that, for any
f ∈ AP (R, C), one can construct a sequence of trigonometric polynomials, say {fn;n ≥ 1}
⊂ AP (R, C), such that lim fn(t) = f(t), uniformly on R, as n → ∞.

Starting from A, the space AP (R, C) has been constructed by Bogoliubov in 1930’s.
This direct approach is discussed in detail in the book by Corduneanu [9].
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The new approach, starting from trigonometric series as background material, in-
stead of trigonometric polynomials, is not meant to be a substitute for other existing
approaches. It has been shown in Corduneanu [9] or Shubin [27] that various applica-
tions make sense in this approach, and properties can be emphasized that were unknown
before, in case of the spaces we have denoted by APr(R, C), 1 ≤ r ≤ 2, obtained by
the procedure of completion of the linear space of trigonometric polynomials. Briefly,
the space APr(R, C) is defined as consisting of all series (7), satisfying the convergence
condition

∞∑

k=1

|ak|
r < ∞, r ∈ [1, 2], r fixed. (11)

This space is a linear space over C, the norm being given by
∣∣∣∣∣

∞∑

k=1

ak exp(iλkt)

∣∣∣∣∣
r

=

(
∞∑

k=1

|ak|
r

)1/r

, (12)

the right hand side of (12) being known as Minkowski’s norm.
The case r = 1 leads to the space of almost periodic functions with absolutely conver-

gent series of Fourier coefficients. We have called this space Poincaré’s space of almost
periodic functions, and it is well known that it can be organized as a Banach algebra
(see, for instance, Corduneanu [10]). It is denoted by AP1(R, C).

The other extreme, r = 2, leads to the Besicovitch space B2 = AP2 of almost periodic
functions, the largest in which the Parseval’s formula holds true:

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (13)

where f(t) is the function associated to the series (7), in the manner we shall describe in
subsequent lines. What appears in the right hand side of (13), according to (12) where
r = 2, is actually the square of the seminorm of the function space B2(R, C)

|f |2B2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (14)

valid for all series/functions satisfying (11), for r = 2. As one sees from (14), the
Poincaré’s mean value on R is deeply involved in dealing with generalizations of Bohr’s
almost periodic functions.

The scale of spaces, of almost periodic functions, extended from the Poincaré’s space
AP1(R, C), to the Besicovitch space B2(R, C) = AP2(R, C), has been introduced and
investigated in some detail in the recent paper by Corduneanu [11].

Applications of these spaces of almost periodic functions have been recently given in
the papers by Corduneanu [11], Mahdavi [24] and Corduneanu and Li [14], concerning
some classes (linear and nonlinear) of functional differential equations of the form

ẋ(t) = (Ax)(t) + (Fx)(t), t ∈ R, (15)

where A is a linear operator acting on an APr(R, C) space, while F : APr(R, C) →
APr(R, C) is, generally, nonlinear. It is useful to notice that the operator A could involve
convolution type terms, the convolution product being defined by the formula

(K ∗ x)(t) ∼
∞∑

j=1

x̃j exp(iλjt), t ∈ R, (16)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13(4) (2013) 367–388 373

with x represented by the series

x(t) ∼
∞∑

k=1

xk exp(iλkt), t ∈ R, (17)

and

x̃k = xk

∫

R

K(s) exp(−iλks)ds, k ≥ 1. (18)

The sign ∼ will be used to mark the relationship between trigonometric series and
its associated function, as in (16) and (17). In order for (18) to make sense, it will be
assumed that K ∈ L1(R, C).

It can be easily checked that

|K ∗ x|r ≤ |K|L1 · |x|r , r ∈ [1, 2], (19)

for each x ∈ APr(R, C). The inequality (19) is a replica of a similar one, namely

|f ∗ g|Lp ≤ |f |L1 · |g|Lp , p ≥ 1,

which is often used in convolution problems. Actually, the convolution product, in this
generalized form, has been used in the above referenced papers by Corduneanu, Mahdavi
and Li.

3 The Besicovitch Space B2(R, C)

It is known that the space B2 has properties that have been used in several applica-
tions, and presents various features making it more accessible to connections with other
topics. Such a situation is not encountered when dealing with the Besicovitch space
B = B1(R, C), even though this space is known as the largest for which the Fourier series
can be associated to its elements. We will consider the space B(R, C) in a subsequent
section of this paper.

The construction of the space B2(R, C), starting from our approach (point of view),
is rather simple. We know from the classical theory that, for each f ∈ B2(R, C), the
Parseval formula

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (20)

where

f ∼
∞∑

k=1

ak exp(iλkt), (21)

represents the connection between the function f and its Fourier series. Also, we know
that for each sequence {ak; k ≥ 1} ∈ ℓ2(N, C) =the complex Hilbert space, there exists
f ∈ B2(R, C) such that (21) holds true.

Our basic assumption for constructing B2(R, C), starting from the set of trigonometric
series of the form (7), will be

∞∑

k=1

|ak|
2 < ∞, (22)
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which is the same as {ak; k ∈ N} ∈ ℓ2(N, C).
Consider now a series like (21), and see what we can get if one searches its convergence

in the norm derived from Poincaré’s mean value on the real axis.
Why do we appeal to this type of convergence?
I think because it has proven to be a very important tool in Fourier Analysis (second

stage), and hope to be also successful in the future. The procedure to be followed to
define the space B2(R, C) and emphasize some of its properties has the origin in the
theory of orthogonal functions. In this field of investigation, closely related to Fourier
Analysis, there are numerous monographs and treatises. We send the reader to the
classical references Alexits [1] and Sansone [26].

In order to apply this procedure to the case of almost periodic functions, the following
elementary result is useful:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp(iλt)dt =

{
1, for λ = 0,
0, for λ 6= 0.

(23)

Equation (23) is an orthogonality relation, which clearly appears when one considers a
sequence of complex exponentials {exp(iλkt); k ≥ 1}, with λk 6= λj for k 6= j, and derive
from (23) the relation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[i(λk − λj)t]dt =

{
1, k = j,
0, k 6= j.

(24)

Let us return to the assumption (22), and notice that

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣

2

=

〈
n+p∑

k=n+1

ak exp(iλkt),

n+p∑

k=n+1

āk exp(−iλkt)

〉

=

n+p∑

k=n+1

|ak|
2 +

n+p∑

k,j=n+1

k 6=j

akāj exp[(i(λk − λj)t].

If one takes (24) into account, and takes the Poincaré’s mean value of both sides in the
last equation, one obtains the relation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣

2

dt =

n+p∑

k=n+1

|ak|
2. (25)

Now, taking into account our assumption (22), we see from (25) that the series con-
verges on R, with respect to the seminorm f → |f |B2 , defined by

|f |2B2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (26)

the right hand side of (26) being finite. Indeed, in the way we have obtained (25), one
also obtains

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n∑

k=1

ak exp(iλkt)

∣∣∣∣∣

2

dt =

n∑

k=1

|ak|
2, (27)
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and letting n → ∞, there results on behalf of (22) (the seminorm is continuous!) the
formula (26), or

∞∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (∗)

which is nothing else but Parseval’s formula. See also formula (20).
A legitimate question is now whether the convergence, in the sense of the norm derived

from Poincaré’s mean value, defines a function belonging to L2
loc(R, C), such that (26)

may have a meaning?
The answer to this question is positive and we shall dwell in getting it. If one denotes

by A > 0 the sum of the series

∞∑

k=1

|ak|
2 in (22), then (27) allows us to write the inequality,

valid when n ≥ 1,
∫ ℓ

−ℓ

∣∣∣∣∣

n∑

k=1

ak exp(iλkt)

∣∣∣∣∣

2

dt < 2ℓ(A+ ε), (28)

for ℓ ≥ ℓ(ε). Let us fix now ℓ as mentioned above, and read (28) as follows: the series in
(21), under assumption (22), converges on the interval [−ℓ, ℓ], in the space L2([−ℓ, ℓ], C).
We assign now to ℓ ≥ ℓ(ε) a sequence of values {ℓm; m ≥ 1}, such that ℓm ր ∞ as
m → ∞. Since on each interval [−ℓm, ℓm] the series in (21) is L2-convergent, there results
that we deal with convergence in L2

loc(R, C). The limit function, we have denoted by f(t),
satisfies the equation

f(t) =
∞∑

k=1

ak exp(iλkt), a.e. t ∈ R, (29)

the a.e. convergence being the consequence of the fact f(t) ∈ L2
loc(R, C). Therefore,

we have the right to substitute (29) to (21), and we can now associate to each series,
which satisfies (22), a function f(t) ∈ L2

loc(R, C). This function is exactly the sum of the
series (21), which generates it in the way shown above when proving the convergence in
L2
loc(R, C).
At this point in the discussion, it is very important to look more in detail at the

correspondence from series to functions, as established above. The following remark
is necessary. Namely, since the right hand side in (26) remains unchanged, when the
integrand |f(t)|2 is changed into |f(t)− f0(t)|2, with f0(t) such that

|f0|B2 =

{
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f0(t)|
2dt

}1/2

= 0, (30)

it means that the correspondence from series to function is not one to one (as it happens
in AP (R, C)). More precisely, to each series in (21), one associates a set of functions
f ∈ L2

loc, for which formula (∗) is verified. This set of functions is nothing else but the
translation of the null space of Poincaré’s functional, i.e., the space N0 of those functions
for which (30) is satisfied. Let us notice that one of these functions is f0(t) = exp(−|t|),
t ∈ R.

Let us denote by B the set of all trigonometric series like (21), such that (22) holds

true for each series. We shall denote by B̃ the space of all functions f ∈ L2
loc(R, C),

corresponding to series from B, by means of the procedure described above, that lead to
the Parseval’s formula (∗). See also the relation given by formula (29).



376 C. CORDUNEANU

Before introducing the Besicovitch space of almost periodic functions, B2 = B2(R, C),
let us point out the fact that formula (∗) in this section is the vehicle that helps us to deal
with either manner of constructing the space B2. We shall prove, first, the following.

Lemma 3.1 The set B, organized as a linear seminormed space, is complete. Hence,
it is isometric and isomorphic to a B-space (see Yosida [31]).

Proof. Since the elements of B are series like (7), and the coefficients verify condition
(22), it is to be expected that the Hilbert space ℓ2(N, C) will play an important role in
investigating properties of B. Indeed, let us consider a Cauchy sequence {xk; k ≥ 1} ⊂ B.
This means that, for any ε > 0, there exists N = N(ε) > 0, with the property

|xn − xm|B < ε for n,m ∈ N(ε). (31)

Since each xk ∈ B can be regarded as an element in the Hilbert space ℓ2(N, C), i.e., its
representation in B is

xk ∼
∞∑

j=1

ajk exp(iλjt), (32)

with {ajk; j ≥ 1} ⊂ ℓ2(N, C), (31) takes the form

∞∑

j=1

|ajn − ajm|2 < ε2, for n,m ≥ N(ε). (33)

Starting from (33), by a routine procedure (see for detailed discussion, for instance,
V. Trénoguine [30]) one obtains the existence of an element/series in B, say x, such

that x ∼
∞∑

j=1

aj exp(iλjt). The coefficients aj , j ≥ 1, are limits for subsequences of the

sequences {ajk; k ≥ 1}, j ∈ N .

Remark 3.1 According to our notation, it appears that the set of λk’s is common
to all series involved in the representation of the elements xk, k ≥ 1. This is not a
restriction, because the union of all such exponents to all xk’s k ≥ 1, is a countable set.
Therefore, one may have to add some terms, in the representations, whose coefficients
are zero. In such a way, we can use the same complex exponentials for each xk ∈ B,
k ≥ 1.

Remark 3.2 In case we have two series in B, say

∞∑

j=1

aj exp(iλjt) and
∞∑

j=1

bj exp(iλjt), the equation (∗) allows us to write

∞∑

j=1

|aj − bj |
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− g(t)|2dt, (34)

from which we derive
aj = bj, j ≥ 1, iff f − g ∈ N0, (35)

where N0 =the null space, has been defined above in this sections. In other words, two
functions f, g ∈ B̃ generate the same series in B, in case, and only in case f − g ⊂ N0.
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Remark 3.3 From the relationship

∞∑

j=1

|ajn − ajm|2 = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|xn(t)− xm(t)|2dt,

which results from Parseval equation, written for the difference xn(t) − xm(t), in ac-
cordance with the representation (32), one derives the conclusion that the linear space

B̃ ⊂ L2
loc(R, C) is also complete in the topology induced by the seminorm | · |B2 , as defined

by (26).

To summarize the above discussion, we shall state the following.

Theorem 3.1 The Banach space B of series like (7), under assumption (22), with
the norm ∣∣∣∣∣

∞∑

k=1

ak exp(iλkt)

∣∣∣∣∣
B2

=

(
∞∑

k=1

|ak|
2

)1/2

, (36)

is completely determined, as described above. First of its realizations is the model also
described above, starting with the set B, and endowing it until the Banach space B2 =
B2(R, C) is constructed. A second realization (isomorphism plus isometry), also described

above, consists in the model starting with the set B̃ ⊂ L2
loc(R, C), which is isomorphic

and isometric to B, modulo N0 – the null space in B̃. The integral norm on the factor
space B̃/N0 = B2 is given by the formula (26).

The proof, to be complete, also requires to prove that N0 is a closed subspace of B̃,
in the topology of the seminorm (26) on B̃.

Let fn → f in B̃, as n → ∞, and assume lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)|
2dt = 0, n ≥ 1. Let us

show that lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt = 0. This follows from the Minkowski’s inequality

{
(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

}1/2

≤

{
(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− fn(t)|
2dt

}1/2

+

{
(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)|
2dt

}1/2

,

which implies, as ℓ → ∞, |f(t)|B2 ≤ |f(t) − fn(t)|B2 . Now, letting n → ∞, one obtains
|f(t)|B2 = 0, which means f ∈ N0.

For definitions and details concerning the factor space, see Yosida [31] and Swartz [29].

Finally, let us notice that Remark 3.3 to Lemma 3.1 proves the completeness of B̃,
with respect to the seminorm (26), which is needed in obtaining the completeness, and
hence the Banach type space for B2(R, C) – as a quotient or factor space.

With these considerations, related to the construction of the Besicovitch space
B2(R, C), we end the proof of Theorem 3.1.

We have dealt with B2(R, C) in Corduneanu [10], when the notation AP2(R, C) has
been used to stress its connection with the spaces APr(R, C), r ∈ [1, 2). But these spaces,
all of them subsets of B2 = AP2, have different topologies, stronger than the topology
of B2. Moreover, the approximation property has been taken as definition, instead of
starting with trigonometric series. Properties similar to A and B have been emphasized
for the APr(R, C)-spaces.
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In concluding this section, we shall recall the fact that in the book by Corduneanu
[10], the construction of the space B2(R, C) = AP2(R, C) is based on the approximation
property applied in the Macinkiewicz’ space M2(R, C), taking the closure of the set of
trigonometric polynomials.

4 The Besicovitch Space B(R, C)

In Besicovitch [4], one finds the construction of the spaces Bp for p > 1, the case p = 1
conducing to a more difficult treatment, with definitions for the upper and lower mean
values. The difference with respect to the case p > 1 comes from the fact that Hölder
inequality, in case p = 1 leads to the conjugate index q = ∞, while for L∞ we don’t
have an integral norm. But, this tool is systematically used in building the theory of
Bp-spaces when p > 1. It is known that the seminorm which plays the main role in
constructing the spaces Bp(R, C), p < ∞, is given by

|f |pBp = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|pdt. (37)

In the preceding section we have obtained and dealt with (37), in the case p = 2. But
our approach was based on taking the trigonometric series as departing object and the
condition (22) imposed on these series that characterize the B2-functions.

The seminorm (37), for p = 1, which is the Poincaré’s mean value of |f(t)|, will be
also of great use in our approach to construct the space B.

Instead of starting from a condition similar to (22), which apparently does not exist,
even though for APr(R, C) spaces, r ∈ (1, 2], it has been helpful, we shall start from the
space AP (R, C) of Bohr, which has been characterized in our approach by Theorem 2.1.

In the space AP (R, C), due to the summability of its associated series, the approxima-
tion property is valid. This means that the set of trigonometric polynomials, a fraction of
the set ST of trigonometric series like (7) is everywhere dense in AP (R, C), with respect
to the uniform convergence on R. As it is well known (see, for instance, Lewitan [21] or
Corduneanu [10]), once the approximation property is established, one can easily derive
the existence of the mean value for each f ∈ AP (R, C), starting from the obvious fact
that the mean value exists for each trigonometric polynomial (equal to the term without
complex exponential, if any, otherwise = 0).

The main properties of the mean value M{f}, f ∈ AP (R, C), are

(a) M{f̄} = M{f};

(b) M{αf + βg} = αM{f}+ βM{g}, α, β ∈ C, f, g ∈ AP (R, C);

(c) f(t) ≥ 0 on R implies M{f} ≥ 0, f ∈ A(P,R) and M{f} = 0 implies f ≡ 0;

(d) |M{f}| ≤ M{|f |}, f ∈ AP (R, C).

Let us notice that the map f → M{|f |}, from AP (R,R) into R is a norm. Indeed, for
f, g ∈ AP (R, C), one has |f+g| ≤ |f |+|g|, which leads to M{|f+g|} ≤ M{|f |}+M{|g|}.
Property (c) is a consequence of the uniqueness.

Lemma 4.1 In the topology induced by the mean value norm, the space AP (R, C) is
always incomplete ( denoted by APM (R, C)).
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Proof. The proof will be conducted on the principle of reductio ad absurdum. Hence,
let us assume that the set of elements in AP (R, C), with the norm M{|f |}, is complete.
Therefore, it is a Banach space. Then the identity map, which is one-to-one, is a linear
operator acting from the Banach space AP (R, C), in its associate APM (R, C), endowed
with the mean-value normM{|f |}. According to the Banach theorem on the continuity of
the inverse operator, we derive that the identity map (which coincides with its inverse) is
continuous from APM (R, C) onto AP (R, C). This fact implies the existence of a constant
C > 0, such that

sup{|f(t)|; t ∈ R} ≤ CM{|f |}, f ∈ AP (R, C). (38)

By an example, we shall prove now that (38) is impossible, and therefore our assumption
that APM (R, C) is complete is false.

Let us consider the sequence of periodic functions, defined by fn(t+1) = fn(t), t ∈ R,
n ≥ 2, and for t ∈ [0, 1) by

fn(t) =





1− nt, 0 ≤ t < n−1,

0, n−1 ≤ t < 1− n−1,

1− n+ nt, 1− n−1 ≤ t ≤ 1.

(39)

Since periodic functions are almost periodic (Bohr), i.e. in AP (R,R) ⊂ AP (R, C), we
obtain M{fn} = n−1, n ≥ 2, while sup fn = 1, n ≥ 2. Hence, one should have 1 ≤ C/n,
n ≥ 2, which is obviously impossible. This ends the proof of Lemma 4.1.

Further, on our way to construct the space B = B(R, C), we shall complete the
space APM (R, C), following the usual procedure (see, for instance, Trénoguine [30], or
Yosida [31]).

Let us denote by B the linear complete space which is the (unique, up to isomorphism)
completion of the space APM (R, C). One has APM (R, C) ⊂ B(R, C), more precisely
APM (R, C) can be identified with a set which is everywhere dense in B(R, C).

Applying the Hahn-Banach theorem on extension of functionals, from subspaces to
a larger space, we can infer that the seminorm M{|f |}, which is defined on APM (R, C),
admits an extension to B(R, C), with preservation of its basic properties. If one denotes

by M̃{|f |} the extension of M from APM (R, C) to B(R, C), then M̃{|f |} = M{|f |} for

each f ∈ APM (R, C) and M̃ satisfies on B the properties (a), (b), (c), (d), excepting the
part of (c) which makes APM (R, C) a normed space (not a seminormed one!).

A natural question arises at this point in our discussion. Namely, how do we know
that the new elements in the completed space are functions locally integrable onR, so
that M̃{|f |} makes sense.

The answer to this question results from the following considerations (also encoun-
tered when constructing B2(R, C), in the preceding section). If one considers a Cauchy se-

quence in APM (R, C), say {fk; k ≥ 1} ⊂ APM , from lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fn(t)−fm(t)|dt < ε,

for n,m ≥ N(ε), one derives the inequality

∫ ℓ

−ℓ

|fn(t)− fm(t)|dt < (2ℓ+ 1)ε, (40)

for n,m ≥ N(ε) and ℓ ≥ L(ε). As proceeded in the preceding section, one obtains
that F (t) = lim fm(t), as m → ∞, in L1

loc(R, C). Hence, we are assured that in order
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to complete the normed space APM (R, C), it is sufficient to add functions which are in
L1
loc(R, C). Of course, this situation takes place when the Cauchy sequence {fk; k ≥ 1}

does not have its limit in APM (R, C).
So far, we have constructed a complete seminormed space, not a Banach space yet,

denoted by B(R, C), the seminorm being the mean-value functional f → M̃{|f |}.
The last step to achieve the construction of the Besicovitch space B(R, C), as a

Banach space, is to take the factor space B/N0, where N0 stands for the null space of
the functional

M̃{|f |} = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|dt. (41)

For the construction of the factor space B/N0, in order to obtain by means of this proce-
dure a normed complete space (Banach), we need to show that N0 is a closed subspace

of B. Indeed, assume that {fk; k ≥ 1} ⊂ B is such that M̃(|fk|) = 0, k ≥ 1, and

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|fk(t)− f(t)|dt = 0. (42)

We need to prove that f ∈ N0, i.e., M̃(|f |) = 0. Taking into account the relationship
|f(t)| ≤ |f(t)− fk(t)|+ |fk(t)|, we obtain

M̃(|f |) ≤ M̃(|f − fk|) + M̃(|fk|), k ≥ 1, (43)

and since M̃(|fk|) = 0, k ≥ 1, while M̃(|f−fk|) → 0 as k → ∞, there results M̃(|f |) = 0.
This means f ∈ N0, and this is what we wanted to prove. Summarizing the discussion
about the construction of the space B = B(R, C), carried out above, we can formulate
the following

Theorem 4.1 The Besicovitch space B = B(R, C) is constructed by the following
procedure:

1) One starts with the Bohr space of almost periodic functions AP (R, C) (see Theorem
2.1 above), which generates the incomplete normed space APM (R, C), according to
Lemma 4.1.

2) The (unique) completion of APM (R, C), denoted by B = B(R, C), is a seminormed

complete space, with the seminorm f → M̃(|f |) =the extended mean value/norm
in APM (R, C), defined by (41).

3) The Banach space B = B(R, C) is the factor space B/N0, with N0 the null space

of the seminorm M̃{|f |}, f ∈ B.

The proof of Theorem 4.1 has been completed above, in this section, while the
construction procedure is motivated by the known results on completion of seminormed
spaces, as well as on the construction of the factor space. For details in this regard, see
Yosida [31] and Swartz [29].

In concluding this section, we shall briefly discuss some properties of the space B,
including its relationships with other spaces of almost periodic functions.

From the construction of the space B(R, C) described above, there results several
properties that we shall consider below.
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First, let us notice the fact that the approximation property is valid, in the norm of
the space B(R, C). This means that for f ∈ B and each ε > 0, one can determine a
trigonometric polynomial of the form (5), such that

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− Tε(t)|dt < ε, (44)

is satisfied.
Second, the mean value of any function g ∈ B(R, C) exists, being given by (4).
The proof of this statement can be found in Besicovitch [4] or Corduneanu [11].

Third, the mean value f → M̃{f} satisfies conditions (a), (b), (d) mentioned above
in this section, while in (c) only the first statement remains true.

Indeed, M̃(|f |) = 0 does not imply f = 0, but only f ∈ N0. One has to take into

account that |M̃(t)| ≤ M̃(|f |), which is an obvious property. The property also shows

that f → M̃(f) is a continuous functional on B (or B).

Fourth, once established the existence of the mean value M̃(f), for each f ∈ B(R, C),
one can find the Fourier series associated to f ∈ B(R, C), which represents the trigono-
metric series of the form (7), characterizing not only f (as an individual function), but
the equivalence class which contains f , i.e., any other g for which

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)− g(t)|dt = 0.

Fifth, besides the spaces AP (R, C) and B2(R, C), B(R, C) is also containing the
Stepanov’s space of almost periodic functions, S = S(R, C), which is defined as the
set of all f ∈ L1

loc(R, C), such that

sup

{∫ t+1

t

|f(s)|ds; t ∈ R

}
= |f |S < ∞. (45)

Since for large ℓ > 0 we can write for f ∈ S

ℓ−1

∫ ℓ

0

|f(s)|ds ≤ ℓ−1

(∫ 1

0

|f(s)|ds+

∫ 2

1

|f(s)|ds+ ...+

∫ [ℓ]+1

[ℓ]

|f(s)|ds

)
≤ ℓ−1([ℓ]+1)|f |S,

one obtains, as ℓ → ∞, the inequality

|f |B ≤ |f |S, f ∈ S(R, C), (46)

which tells us that S ⊂ B.
We took into account that one has

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|ds = lim
ℓ→∞

ℓ−1

∫ ℓ

0

|f(s)|ds = lim
ℓ→∞

ℓ−1

∫ 0

−ℓ

|f(s)|ds,

which can be found in most books on almost periodic functions (for instance, Corduneanu
[11]).

As far as the inclusion B2 ⊂ B is concerned, it follows from the inequality

(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|ds ≤

[
(2ℓ)−1

∫ ℓ

−ℓ

|f(s)|2ds

]1/2
,
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valid for ℓ > 0 and each f ∈ B2(R, C) ⊂ L2
loc(R, C), on behalf of Cauchy’s integral

inequality (special case of Hölder’s inequality).
Sixth, because the approximation property by trigonometric polynomials is assured

for functions in B(R, C), there results that the property B, mentioned in Introduction,
is valid. As it is known, the Bochner’s property (i.e., relative compactness) of the family
of translates if f , F = {f(t+ h); h ∈ R}, implies Bohr’s property. Of course, all these
properties are meant in the sense of the norm of the space B(R, C). More precisely, for
f ∈ B(R, C), to any ε > 0 there corresponds ℓ = ℓ(ε), such that each interval (a, a+ℓ) ∋ τ ,
such that |f(t+ τ)− f(t)|B < ε, t ∈ R.

Seventh, the space B(R, C) has been already involved in work pertaining to the third
stage of the development of the theory of oscillatory functions. See the book by Ch.
Zhang [33], which contains the theory of pseudo-almost periodic functions. When defining
the space PAP (R, C) of these functions, the B-norm is involved, together with that of
BC-space (the supremum norm, on R). One has the inclusion PAP (R, C) ⊂ BC(R, C),
but the pseudo-almost periodicity appears as perturbation of the classical case of Bohr.
An example of the use of space B(R, C) in proving existence of almost periodic solutions
to certain functional equations is given in Corduneanu [9]. The solutions are in B2(R, C).

Eighth, the interest for oscillatory functions/solutions comes from their significance in
the physical problems, and their frequent use. In the paper of Staffans [28], an example of
a function belonging to the Weyl’s space (see Besicovitch [4]) is provided, which does not
present the oscillatory character. It is understood that the space B(R, C) may contain
functions whose behaviour may not be classified as oscillatory.

We shall make a final remark about the manner of introducing the space B(R, C).
Namely, if we start again from the set of trigonometric series, of the form (7), the Cauchy’s
type convergence condition

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n+1

ak exp(iλkt)

∣∣∣∣∣ dt < ε, (47)

for n ≥ N(ε), p ≥ 1, is, very likely, leading to the space B(R, C) after the operations used
already (completion, factor space). We have used this approach in constructing the space
B2(R, C). In that case, we have been essentially helped by condition (22) imposed on the
coefficients of the candidate series. It is obvious that (47) is the condition guaranteeing
the convergence of the series (7) in the space B or B (after factorization). The approach
we have used in this section relies substantially on the facts known in the classical theory.

5 Some Preliminaries for Oscillatory Functions Spaces

Both classes of oscillatory functions, amply investigated during the last two centuries,
are representable by means of series of the form (7). It does not mean that the series
are convergent in the usual sense, but the procedure that can be associated to them,
in various ways, allow the construction of corresponding functions (e.g., by summability
methods or by convergence in certain nonclassical norms, usually inducing a weaker type
of convergence than the sup norm). They are useful, because they permit the construction
of the function, in a manner that leads to results that can be used in applications.

We have in mind the Fourier Analysis in the classical framework, but also its extension
to various classes of almost periodic functions, starting with the functions in AP (R, C),
or AP (R,R).
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Let us point out that the problem of convergence of Fourier series, which constitute
a special form of series (7), has been in the attention of famous mathematicians for
a long time. An example constructed by Kolmogorov (see the treatises by Bary and
Zygmund, quoted in Introduction) shows that there exists Fourier series, in the classical
sense, nowhere convergent on the interval [−π, π]. It is also worth mentioning the fact
that the attention paid to the convergence of series of the form (7) is directed to their
convergence on the finite interval [−π, π], even though each term of the series is defined
on the whole R. This feature is not, generally, agreeing with the needs of applications,
when large interval of time can be involved, such as it happens in Celestial Mechanics or
in other types (could be man made) of evolutionary systems.

Some of the latest example of oscillatory systems/functions led to the investigation
of series of a much more general form than (7), namely

∞∑

k=1

ak exp[iλk(t)] (48)

with {ak; k ≥ 1} ⊂ C, and λk(t), k ≥ 1, some real functions defined on R, and such that
certain orthogonality conditions are verified.

We shall use again the Poincaré’s mean value on R, and write these conditions in the
form

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[i(λk(t)− λj(t))]dt =

{
1, j = k,

0, j 6= k,
(49)

where k, j ≥ 1, and λk(t) 6= λj(t) for k 6= j, with λk(t) ∈ L1
loc(R,R), k ≥ 1,

while {ak; k ≥ 1} < C satisfy (22).
The following assertion shows how a certain type of convergence, applied to the series

(48), can help to associate a function or set of functions to it.

Lemma 5.1 Consider the series (48), under the above stated conditions for the func-
tions λk(t), k ≥ 1, and {ak; k ≥ 1} ⊂ ℓ2(N, C). Then the series (48) converges on R,
with respect to the B2-seminorm, i.e.,

f →

[
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

]1/2
, (50)

which implies convergence in L2
loc(R,R).

The proof of Lemma 5.1 is completely similar to that given in the section of this
paper dedicated to the construction of the space B2(R, C), where λk(t) = λkt, t ∈ R,
λk ∈ R, k ≥ 1. As shown there, one can write

f(t) =

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (51)

the convergence (on R) being that of the space L2([−ℓ, ℓ], R), for each ℓ > 0.
An important aspect in the development of the approach of constructing classes/

spaces of oscillatory functions, starting from series of the form (51), under condition (22)
for the coefficients, is the finding/construction of sets consisting of function λ(t) : R → R,
from which we can recruit sequences satisfying the conditions stipulated in Lemma 5.1.
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We owe to Ch. Zhang [34], [35], [36] the finding of such a set of functions (polyno-
mials), which allowed him to construct spaces of oscillatory functions, called strong limit
power functions. These functions are obtained by the uniform approximation procedure
from a set of polynomials, forming a group, under usual addition. These polynomials,
actually ”generalized polynomials”, are defined as follows:

λ(t) =





m∑

j=1

cjt
αj , t ≥ 0,

−
m∑

j=1

cj(−t)αj , t < −0,

(52)

where cj ∈ C, j ≥ 1 and α1 > α2 > ... > αm > 0 are arbitrary positive numbers. Then,
one considers generalized polynomials of the form

P (t) =

n∑

k=1

ak exp[iλk(t)], t ∈ R, (53)

with each λk(t) as described in (52). It is obvious that each λ(t) in (52) is an odd function
(like sin t), a property which plays an important role in existence of the mean value on R.

Then, the orthogonality conditions (49) are satisfied, and one can proceed to the
construction of the space SLP (R, C) – strong limit power – as follows: f ∈ SLP (R, C) if
for every ε > 0, there exists a generalized polynomial of the form(53), such that

|f(t)− Pε(t)| < ε, t ∈ R. (54)

From (54) we read that sup-norm is the one for SLP (R, C).
The SLP space defined above is a Banach space, and each f ∈ SLP (R, C) can be

related to a generalized Fourier series, such that

f(t) ∼
∞∑

k=1

ak exp[iλk(t)], t ∈ R, (55)

which satisfies the Parseval equality

∞∑

k=1

|ak|
2 = M{|f |2} (56)

with the coefficients
ak = M{f(t)e−iλk(t)}. (57)

Many properties of AP (R, C) can be adapted to the SLP (R, C) space. We can say
that the space SLP (R, C) is a ”copy” of the Bohr space, with considerable extension of
the class of functions involved.

The mean value functional M{f} is the Poincaré’s mean value on R, and possesses
other properties that appear in the case of the space AP (R, C). See also the papers by
Ch. Zhang and C. Meng [37], [38].

We can now proceed to construct a space of almost periodic functions, relying on
Lemma 5.1, and using the same procedure as in case of the space B2(R, C). In this way,
we shall obtain a larger space than SLP (R, C), because we shall use the seminorm that
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appears in (50). This space will be richer than the space SLP (R, C), possessing less
properties, but still pertaining to the oscillatory type.

We will denote this space, to be constructed, by B2
λ(R, C), where the index λ desig-

nates the fact that only polynomials of the form (53) will be used as exponents for the
complex exponentials involved.

The space B2
λ(R, C) will be a space of oscillatory functions, and as SLP (R, C), will

be part of the third period in the development of classical Fourier Analysis.

6 Construction of the Space B2
λ(R, C)

The space B2
λ(R, C) will be constructed in the manner used in case of the Besicovitch

space B2(R, C). The first step is to start with formal generalized series of the form

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (58)

instead of the trigonometric series (7). The function λk(t), k ≥ 1, are generalized poly-
nomials as those defined by the formula (52) and used in constructing the SLP -space
of Ch. Zhang [35], [36]. By applying Lemma 5.1, we shall associate a function f in
L2
loc(R, C), such that

f(t) =
∞∑

k=1

ak exp[iλk(t)], a.e. on R, (59)

and following step by step the construction of the space B2(R, C) in a previous section,
we find the equation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣∣∣∣∣

n+p∑

k=n

ak exp[iλk(t)]

∣∣∣∣∣

2

dt =

n+p∑

k=n

|ak|
2, n ≥ 1, p ≥ 1, (60)

which, on behalf of (22), assures the convergence of the series (59) in L2
loc(R, C). Hence,

we can write the formula

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt =
∞∑

k=1

|ak|
2, (61)

which is the same as (56).

Formula (61) is the Parseval equation for the function f ∈ B̃2
λ(R, C), which is defined

as the set of functions respresentable in the form (59), with {ak; k ≥ 1} ∈ ℓ2(N, C), and

convergence in L2
loc(R, C). The connection between f ∈ B̃2

λ(R, C) and the coefficients ak
is given by (57), formulas easy to obtain from (59) and the above procedure.

The set of functions, we have denoted by B̃2
λ(R, C), is naturally organized as a

seminormed linear space, with the seminorm in the left hand side of (61), taken at
power 1/2, i.e.,

f →

{
lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

}1/2

. (62)

In order to prove the completeness of this seminormed space, one needs to proceed
again like in the case of construction of the Besicovitch space B2(R, C). The key condition
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is again the assumption (22) on the coefficients of complex exponentials, and the validity
of Parseval’s type formula (61). In other words, everything reduces to the structure of
the space ℓ2(N, C). See Remark 3.3 to Theorem 2.1.

The last step in constructing the space B2
λ(R, C) consists in taking the factor space

of B̃2
λ(R, C), modulo the subspace of zero-seminorm elements in this space.
If the subspace above, say N0λ is closed in the topology induced by the seminorm

(62), then the factor space is a Banach space. Apparently, this is the case, but it is to be
seen if the argument used in case of Besicovitch space B2(R, C) is valid in this situation.
Otherwise, the final result is a seminormed complete space, which is widely accepted in
Functional Analysis (see, for instance, Yosida [31] or Swartz [29]).

In other words, the last step may not be necessary in the construction of B2
λ(R, C),

the space B̃2
λ(R, C) constituting the complete seminormed space, which can be useful in

various applications.
A few final remarks, related to the content of this paper, may be in order to con-

clude it.
First, this paper (a continuation of Corduneanu [9]), pursues the idea of construc-

ting spaces of oscillatory functions, generalizing those encountered in the study of pe-
riodic functions (classical Fourier Analysis), of almost periodic functions and, lately, of
new spaces of oscillatory functions, taking as starting point the set (say T S) of formal
trigonometric series (in complex form). By imposing various conditions to the formal
series, one obtains old or new classes/spaces of oscillatory functions, with properties that
allow their use in applications (particularly, in Engineering, whose impulse has been felt
in mathematical research). See references to Zhang [34].

Second, this approach in constructing new spaces of oscillatory functions led to various
classes of almost periodic functions, as the APr(R, C), r ∈ [1, 2], allowing to obtain a scale
of almost periodic function spaces, with a good potential of applications to the theory of
functional equations and the introduction of new concepts, like the generalization of the
convolution product (see Corduneanu [8], for instance).

Third, the series characterizing various classes, generally, are not convergent in the
classical sense (i.e., uniformly or in Lebesque’s spaces), and in order to have a better tool
for investigation, it would be desirable to ”descend” from these rather abstract functions,
to more affordable ones, necessary in numerical analysis and in many applications. For
instance, to each series in APr(R, C) or in APr(R,R), with r ∈ (1, 2), one can attach the

series (in AP1(R, C)),
∞∑

k=1

|ak|
r exp(iλkt), i.e., an absolutely convergent series. Can we

take some advantage from the investigation of the operator Tr : APr → AP1,

∞∑

k=1

ak exp(iλkt) →
∞∑

k=1

|ak|
r exp(iλkt)?

We have also formulated this problem in Corduneanu [9].
Fourth, the approach based on dealing with formal series in order to obtain new classes

of oscillatory functions, appears to be adequate in advancing the study of more and more
intricate functions occurring in applied fields. The work of Ch. Zhang [34–36] is highly
illustrative in this regard. One has to note also the contribution of V.F. Osipov [25],
who presented a special case of the oscillatory functions of Fresnel type (for instance, the
type of oscillations corresponding to the sin t2), and who dedicated a whole volume to
this kind of problems.
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Fifth, the method of formal series must be used, in particular, for finding oscillatory
solutions of various classes of functional equations. In order to be applicable to partial
differential equations, a theory of oscillatory functions, with values in Hilbert or Banach
spaces, appears necessary. We will finish soon a paper, dedicated to the existence of such
solutions, in which hyperbolic equations are tested – these representing the natural type
to possess such solutions (but not only).

Sixth, one problem of great importance in constructing new spaces of oscillatory
functions is finding adequate systems {λk(t); k ≥ 1}, satisfying the orthogonality condi-
tion (49).
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African Diaspora Math. J. 12 (2012) 44–47.

[25] Osipov, V.F. Almost Periodic Functions of Bohr-Fresnel. Univ. of Sankt Petersburg Press,
1992. [Russian]

[26] Sansone, G. Orthogonal Functions. Dover Publ., 1991.

[27] Shubin. M.A. Almost periodic functions and partial differential operators. Usp. Mat. Nauk

33 (2) (1978) 3–47.

[28] Staffans, O. On almost periodicity of solutions of an integrodifferential equation. J. Integral
Equations 8 (1985) 249–260.

[29] Swartz, C. Elementary Functional Analysis. World Scientific, Singapore, 2010.

[30] Trénoguine, V. Analyse Fonctionnelle. Editions Mir, Moscow, 1985.

[31] Yosida, K. Functional Analysis. 5th Ed., Springer, 1978.

[32] Zaidman, S. Almost Periodic Functions in Abstract Spaces. Pitman, London, 1985.

[33] Zhang, Ch. Almost Periodic Type Functions and Ergodicity. Science Press/Kluwer, 2003.

[34] Zhang, Ch. Strong limit power functions. Journal of Fourier Analysis Appl. 12 (2006)
291–307.

[35] Zhang, Ch. New limit power functions spaces. IEEE Trans. AC 49 (2004) 763–766.

[36] Zhang, Ch. Generalized Kronecker’s theorem and strong limit power functions. In: Alexan-
dru Myller Mathematical Seminar Centennial Conference. AIP Conference Proceedings

1329 (2011) 281–299.

[37] Zhang, Ch. and Meng, C. C∗-algebra of strong limit power functions. IEEE Trans. AC 51
(2006) 828–831.

[38] Zhang, Ch. and Meng, Chenhui. Two new spaces of vector-valued limit power functions.
Studia Sci. Math. Hungarica 44 (4) (2007) 423–443.


	Introduction
	A Remark and Its Consequences
	The Besicovitch Space B2(R,C)
	The Besicovitch Space B(R,C)
	Some Preliminaries for Oscillatory Functions Spaces
	Construction of the Space B2(R,C)

