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Abstract: Based on Sugeno fuzzy logic system, this paper develops a Neuro-
Fuzzy Direct Torque Control (NFDTC) for a Permanent Magnet Synchronous motor
(PMSM). The main idea of DTC control is motivated by direct choosing the stators
voltage vectors according to the differences between the references of the electromag-
netic torque and the stators flux and their reels values calculated and related only on
the actual-sizes of the stators. The neurofuzzy regulator is synthesized by using the
Sugeno reasoning methods, where the consequences rules are a single order polyno-
mial of inputs defined by three Gaussians fuzzy sets. The parameters of the premises
and the conclusions of the fuzzy rules of Sugeno are determined on the base of the
input-output data provided by a fuzzy regulator of the Mamdani type, where the lin-
guistic variables of inputs-outputs of the torque, flux and position of the stator flux
vectors are of triangular membership functions. The training is based on the extended
Kalman filter concept, which allows the determining of the parameters vector of the
fuzzy rules so that the output of the Sugeno regulator approaches will be the best
possible output of the Mamdani regulator. The simulation results make it possible
an effective evaluation of the Kalman extended based filters training algorithms.
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1 Introduction

The use of the PMSM always continues to extend. The technological development made it
possible that the permanent magnet synchronous machines are more essential in the field
applications of a very high static and dynamic performances demands, especially in the
embedded systems fields (aeronautical and aerospace) because of its high power /weight
ratio. A noiseless linear process with a constant parameters concept can be controlled
accurately by traditional PID regulators; these regulators proved to be sufficient, however
the process is subjected to disturbances and its parameters variations are relatively less,
especially if the requirements on the precision of adjustment and the dynamic response
of the system are not strict. In the contrary case one can have recourse to an auto
adaptative solution, which by readjustment of the parameters of the regulators, allows
preserving performances fixed in advance in the presence of the disturbances and variation
of parameters. Nevertheless, this solution presents the disadvantage of often complex
implementation. It is thus possible to solve this problem by using the method of robust
commands and neurofuzzy control.

In this paper we apply the neurofuzzy control by the method of Sugeno to the speed
regulation of a Permanent Magnet Synchronous Machine. The objective is to synthesize
neurofuzzy regulator of Sugeno to three fuzzy sets for each one of: torque, flux and
position of the flux vector and whose consequences of the rules are the polynomials
of order one. This neurofuzzy regulator is thus deduced by recopying the data inputs
outputs provided by a fuzzy regulator of Mamdani to 132 fuzzy rules [1]. The method of
copy is based on the approach by extended Kalman filter. In [I], the authors introduce a
fuzzy logic controller in conjunction with direct torque control strategy for a permanent
magnet synchronous machine. In this controller there are three inputs, which are the error
of stator flux, the error of torque and the stator flux angle. The total rule number used is
132 rules. The rules base of the proposed approach contains only 27 rules. Consequently,
this approach requires less computing time for its execution compared with the method
that is proposed in [1].

2 Mathematical Model of a Permanent Magnet Synchronous Motor
The PMSM model is considered under the following assumptions.

1. The spatial distribution of stator winding is sinusoidal.

2. The saturation is neglected.

3. The damping effect is neglected.

Thus, in the synchronous d — g reference form, the dynamics of PMSM is represented as
follows [T14]

dl
Vi = Rog+ de—: —w, Lyl
dI,
‘/q = Rqu + Lq% —wrLglg + Wr@Lf, (1)

Tem = p(@dlq_(pqld)a
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with

wa = Lqlg+ @y,
Pq LqlIq,

Ly : direct stator inductance,
Lg : stator inductance in squaring,
@y : flux of the permanents magnets.
The total mathematical model is given in the form of space of following state:

dl, Vi R, .
Sd M Tl T I
dt T, L, 4T, vt
qu ‘/q Rs Ld Pf
Yo Za_ Dsp 21y — Py, 2
dt L, L, Pr,”*1,mP @
dw, 97 PFf 1., Cr
= 2L 2Ly — L)L, fo] —
dt quJFj[p(d q)dqf] pj
do,
—_— = Wy
di p

3 General Principal of DTC

The direct torque control of the permanent magnet synchronous machine is based on
the determination “direct” sequence of order applied to the switches of an inverter of
tension. First, we use a fuzzy regulator. Secondly, we replace the latter by a neurofuzzy
regulator, whose function is to control the state of the system (the amplitude of stator
flux and electromagnetic torque).

3.1 Selection of the voltage vector V;

The voltage vector Vs is delivered by a three-phase of the voltage source inverter and is
given by [5L[6]:

2
V, = \/; (aOVa +aVy + a2VC) (3)
with
G2
=e —).
a = exp(j—

By using the logical variables representing the state of the switches, the voltage vector
can be written in the form:

Ve = \/gUO (Sa+aSy +a®S.) . (4)

As shown in Figure 2] the combinations of the three sizes (S, Sy, S¢) allow to generate
8 fixed positions of the vector Vi, two correspond to the null vectors:

(Sa, S, Se) = (0,0,0) and (Sa, S, Se) = (1,1,1). (5)

Generally, the space of evolution of stator flux ¢ is delimited in the fixed reference frame
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Figure 1: Scheme of the voltage source inverter.

Figure 2: Development of the 8 vectors V; (a3) Stationary reference frame.

Vo | 111
Vi [ (100)
V2 [ (110)
Vs | (010)
Vil (011)
Vs [ (001)
Ve | (101)
V; [ (000)

Table 1: Development of the 8 possible configurations of the vectors V.

(stator) by breaking it up into 6 symmetrical zones compared to the directions of the
nonnull voltage vectors. The position of the flux vector in these zones is determined from
these components.

When the stator flux vector ¢, is in a numbered zone N, the control of flux and
torque can be ensured by selecting one of the nonnull voltage vectors:
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N 112 (3] 4] 5|6
Tcont | 1 | ixC Vol Vs | Vu| Vs | V| Wi
Va [ Va | Vs | Ve | V1| Vo
VW Ve | Ve | W | Ve | W
0| Vr | Vo | W | Ve | W |V
Tcont: Torque Control. fixC: flux Control.

e E=I

Tcont | 0 | IxC

Table 2: Table of commutation for the selection of the voltage vector.

4 Fuzzy Controller

In the hysteresis direct torque control, the errors of torque and flux are directly used to
select the switching state of switches of the inverter voltage with any distinction between
large or relatively small error. The large or small terms are vague terms containing the
concept of fuzzy logic control which allows using a fuzzy controller [IH3]. On the other
hand, the torque ripples will be reduced (Figure [3]).

. | i
inverter [ f Pasy
LLV.V.
[
Fuzzification
Base rules Estimation
and
Etwe  Tem .
R of flux and
decision- g Fuzification
making x tosqus
4 - i Eu. L
Difurification  [#— Fuzzification hi
..
D -

Figure 3: Synoptic scheme of the fuzzy controller of the PMSM.

The studied fuzzy controller has 3 state variables of input and one variable of com-
mand in output.

Each variable is represented by fuzzy set. The number of the fuzzy set for each
variable is selected to obtain a powerful command with a minimal number of fuzzy rules.

The first fuzzy state variable is the difference between the reference stator flux ¢* (in
Webers) and the estimated stator flux magnitude @, given by:

Ep. =5 = lwsl- (6)

The grade of membership distribution is shown in Figure 4(a) which uses a triangular
distribution.

The second fuzzy state variable is the difference between the command electromag-
netic torque T, and the estimated electromagnetic torque T, (error in torque Er,, )
given by:

Er,

em

= Te*m = Tem.- (7)
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The electromagnetic torque is estimated from the flux and current information which are
given in [I]. The grade of membership distribution is shown in Figure 4(b).

The third fuzzy state variable is the angle between stator flux and their reference axis
(stator flux angle #) which is determined by the following relation

0 = tan~! (@) . (8)

Pa

The universe of discourse of this fuzzy variable is divided into 12 fuzzy sets (61 to 612).
The membership distribution of fuzzy variables is shown in Figure 4(c).

01 02 03
BBy [ PTZ N [BerBp [P Z [N [Er~Bo| P Z ] N
PL Vi|Va |V PL Vo | Vo | V3 PL Vo | V3 | V3
PS Vi | Vo| Vs PS Vo |[Va | V3 PS Vo | V3 | Va
7E 0 0 0 7E 0 0 0 7E 0 0 0
NS Ve | O | Vy NS Ve |l Vo | Vs NS Vil 0 | Vs
NL Ve | Vs | Vs NL Vo | Vo | Vs NL Vil Vs | Ve
04 05 06
BBy [ PTZ N [BerBp [P Z [N [Er~EBo | P Z ] N
PL Vs | Va | Vy PL Vs | Vi | Vs PL Vs | Va| Va
PS Vs | Vu | Vy PS Vs | ValVs PS Vil Vs | Vs
7E 0 0 0 7E 0 0 0 7E 0 0 0
NS Vil 0| Vs NS Vol 0 | Vs NS Vol O | W
NL Vil Vil|lVe NL WiV W NL Vo | Vo | Vi
07 0g )
Eior\Ey, | P Z N Eior\Ey, | P y/ N Eior\FEyp, | P y/ N
PL Vil Vs | Vs PL Vs | Vs | Ve PL Vs | Vo | Ve
PS Vil Vs | Ve PS Vs | Vs | Ve PS Vs | Ve | V1
7ZE 0 0 0 7ZE 0 0 0 7ZE 0 0 0
NS V3| 0 | W NS Vol 0 | Vs NS Vil 0 | V5
NL Vs | Vo | Va NL Vs | Vs | Va NL Vi | Vs | V3
10 011 012
Eior\FEy, | P Z N Eior\Ey, | P 7 N Eior\FEyp, | P y/ N
PL Ve | Ve | 1 PL Ve | Vi | V1 PL VilVi|Va
PS Vs | Vi | V4 PS Ve | Vi | Va PS Vi|Va|Va
7ZE 0 0 0 7ZE 0 0 0 7ZE 0 0 0
NS Vil 0 | V3 NS Vs | 0 | V3 NS Vs | 0 | V4
NL Vi | Vu| Vs NL Vs | Vi | Va NL Vs | Vs | Va

Table 3: Set of fuzzy rules for control of PMSM (E,,: error of the stator flux, Eior: torque
error).

In Figure Bl the output has only one variable of command which is the state of
ordering of the switch when the voltage vectors are discrete values.



350 S. BENTOUATI, A. TLEMCANI, M.S. BOUCHERIT AND L. BARAZANE

f{{:arqus

10203 04 030607 08 02 1011 12 01

(c)

Figure 4: Membership distribution of fuzzy variables for fuzzy controller.

J“’ou!

[
L

1 2 3 4 5 6 Vot

Figure 5: Membership functions variables of fuzzy output.

5 The Sugeno Method

The Sugeno fuzzy logic controller is proposed by Takagi and Sugeno [§], who develops
a systematic method of generation of the fuzzy rules starting from a whole of data
input-output. In this case, the consequences of the rules are numerical functions, which
depend on the current values of the variables of inputs. Being given that each rule
has a numerical conclusion, the total output of neurofuzzy controller is obtained by
the calculation of a weighted average, and in this manner the time consuming by the

procedure of defuzzification is avoided.

Let us designate by e, Ae and § inputs of the neurofuzzy controller, and by Aw its
output. The rules base of the neurofuzzy controller has: M = my X ma X mg fuzzy rules

of the form:
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R;: If eis F, and Ae is Fa. and ¢ is Fy, then

Au = fl [6, Aea 6]
= pe+qle+rid+z (9)
with [ =1,2,..., M, where my, mo and mg are the numbers of fuzzy set associate with

e, Ae and 4, respectively. Thus, the output of the neurofuzzy controller is given by the

following relation:
M

>aifi
Au=5L (10)

M
>
=1

where «a; represents the confidence degree or activation of the rule R;, and is given by:

QO = [LF, [LF s JFs- (11)

In our case and for the Sugeno method, the input variables e, Ae and § are characterized
by neurofuzzy set of Gaussian type defined by the relation:

p(z) = exp [—0.5(v;(z — ¢;))?], (12)

where ¢; is the average and v; is the reverse of the variance. Initially, the problem is to
determine the parameters: p; , q;, 7 and z;.

6 Determination by Training of the Parameters Sugeno Regulator

The determination of the parameters of neurofuzzy controller of Sugeno constitutes the
most difficult phase in the design, taking into account a significant number of parameters
to be determined (parameters of the premises and the consequences).

Methods of training, applied specially in neural networks, are more developed for the
approximation of an application input output according to a criterion of training. For our
case we use an algorithm of training based on Extended Kalman Filter which is usually
used to estimate the neural networks parameters. Let us consider a neurofuzzy controller
of Sugeno characterized by a vector of parameters 6. Let data set of input-output be
(x(k),d(k)). Our objective is to find the vectors 6 so that the output of neurofuzzy
regulator approachs the best possible desired output d(k), i.e. to have Au [z(k), 0] = d(k).
Extended Kalman filter approach consists in linearizing the output Au at any time around
the estimated vector 6. This amounts to writing:

ak) = Au (k)00 —1)| + 9T (k) [0 -0k - 1),
w(e) = 22U Gy, (13)

The well-known form of the relation (I3) is:

~ ~

0(k — 1) + p(k)¥(k)e(k),
d(k) — Au [x(k); ok — 1), (14)

Q

2=
>
~— ~—
il
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where p(k) is the gain of the algorithm of estimate. In the method of the modified
gradient, the gain p(k) is selected as a variable. It is given by the following relation [9]:

a1[
p(k) PRENTSTIIAR a1 >0,a0 >0 (15)

We notice as well that this method requires the calculation of the gradient ¥ = %,
this gradient is calculated by the method of the retropropagation used in the artificial
neural network.

For our case, the vector of the parametersis =[c v p ¢ r z]T. Consequently, we

have:
0Au  [0Au O0Au O0Au OAu O0Au 0Au

= 1
00 ¢ O Op Oq¢ Or 0z |’ (16)
where
2
(T — ¢ —-A
SAL vj (2 — ¢ )k% ax(fx — Au)
N M ’ (17)
>
=1
2
i(Ti — ¢ - A
SAw vi(x; — ¢;) k;} ok (fr u)
NV M ’ (18)
>
=1
0Au e 0Au  «a;Ae 0Au  ;d (19)
Api M 7 Ag M Ary M7
> o > o > o
=1 =1 =1
0Au «;
Az ’ (20)

with z; € {e, Ae,d} and I represents the whole of the indices of the fuzzy rules of which
appears the parameter. In our case, the input-output data are obtained by synthesizing a
neurofuzzy regulator, while at exploiting the method of Mamdani the linguistic variables
of inputs e, Ae, § and the output variable Au are described respectively in Figure [ and
Figure

7 Control Algorithm

For the method of Sugeno, the input variables e, Ae, § are characterized by three fuzzy
set Gaussian type:

e: is the input of the electromagnetic torque,

Ae: is the input of the flux,

d : is the input angles (position) of the stator flux vector.

The fuzzy rules, being used to induce the order for the case of the Sugeno neurofuzzy
regulator, are grouped as follows:

if e is NB and Ae is NB and ¢ is NG, then Au is fi;

if e is PB and Ae is PG and § is PB, then Au is fo7.
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Figure 6: Membership functions of fuzzy input variables.

The training is carried out for the electromagnetic torque control and for speed control.
The gains parameters of adaptation are fixed as follows:

a1 = 08, Qo = 1. (21)

Parameters of consequences and premises are gathered in Tables @ and

8 Simulation Results

In order to test the effectiveness of the training algorithm, we carried out the following
sets of control-machines simulation

8 200
6
a4 100
€ Q)
s 2 z
@ =1 0
= Ll [}
S OF - Wittt o
2 [7)
-2 -100
-4
-6 -200
0 05 1 15 0 05 1 15
(s) t(s)
0.4 .
03 wpm———— )
g —
= <
$02 o
0.1 -2
-4
0
0 05 1 15 0 05 1 15
(s) t(s)

Figure 7: Dynamic behavior of the PMSM controlled by a fuzzy regulator (case of Mamdani).

In Figure [ we use the following test with Mamdani fuzzy controler:

— No-load start of the process with a reference speed of 157rd/s. We applied load
torque of (zero) O N.m. The waveforms obtained in this case show clearly that the
revolutions of the machine are followed closely by their references. Both, torque T,, and
stator current is cancel after the transient. And the magnetic flux remains stable by
keeping its value with 0.314 Webes.
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p q r <
f —0.001787 —8.62%107° 0.0005546 0.0009657
fo —0.0001574 —7.894 %106 0.0007904 0.0001191
f3 | —4.157%107° | —4.286 % 10~° 0.002469 8.91%107°
fa —0.739 —0.05672 0.149 3.921
fs 0.5889 —0.02495 0.2139 0.3412
f6 0.01215 —0.009218 0.1277 —0.02831
fr —0.4112 0.01933 0.6928 2.881
fs —0.215 0.02486 0.268 0.03967
fo —0.01169 0.01212 0.1612 0.01257
J1io —0.0001059 —7.292 %106 0.0001513 0.000111
fii | —9.837%1076 | —1.218% 10 0.0004298 3.403x10—-5
fia | —6.92%107% | —2.245% 106 0.001392 5.019% 10~°
Ji3 —0.9648 —0.1822 0.2086 3.159
f1a —0.3653 —0.1021 0.1006 0.9569
J15 0.1277 9.767 % 107° 0.07375 —0.2289
J16 0.1187 —0.03402 —0.03536 0.5158
fi7 0.1603 —0.0358 0.003331 0.496
Jis —0.2666 —0.05353 0.03755 —0.0825
fio | 9.041%x1077 | —1.105% 1073 | 1.19e — 006 | 4.109 % 10—~
fa0 1.644 % 107° —6.729 % 10~° | 5.699¢ — 006 | 4.074 % 10"
Ja1 3.106 % 107 —7.119¢ — 009 | 5.613e — 006 | 2.154 %10~
foo 0.406 —0.00212 0.1018 0.1133
fos3 0.1034 —0.0006938 0.08979 0.01391
Jou 0.02006 3.082 % 107° 0.06282 0.002271
Jos 0.2008 —0.000487 —0.05291 0.0424
Ja26 0.04644 —0.0004289 0.05497 0.001026
Jor 0.01833 —0.0001224 0.09209 0.003566
Table 4: The consequences values.
e Ae )
NG 7 PG NG 7 PG NG 7 PG
c |-2.152| 2.403 | 6.785 -0.1066 [-0.01417{0.00829 c |-0.2462|14.53|29.76
0.2337/0.2652|0.6746 0.00132| 0.012 |0.01495 6.608 [6.102|6.604
(a) (b) ()

Table 5: The premises values.

By using the following test with Sugeno neurofuzzy controller in Figure
— We obtain practically the same reponses of Figure [7}
By using the following test with Mamdani fuzzy controller in Figure
— No-load start of the process with a reference speed of 157rd/s. Both, torque Te,,

and stator current ¢4 cancel after the transient. But from ¢ = 0.5s to ¢t = 1s, it applied

a nominal load torque of 3.5N.m. The waveforms obtained in this case show clearly by

that the revolutions of the machine are followed closely their references.
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Figure 8: Dynamic behavior of the PMSM controlled by a neurofuzzy regulator (case of
Sugeno).
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Figure 9: Dynamic behavior of the PMSM controlled by a fuzzy regulator (case of Mamdani).

Each one of torque T.,,, stator flux and stator current i,.

By using the following test with Sugeno neurofuzzy controller in Figure 10t

— We obtain practically the same reponses as in Figure

In Figures [[1] and 2] we carried out the inversion of direction speed of the PMSM
in the two cases (fuzzy and neurofuzzy), with starting the reference of nominal speed
of 157rd/s without a load torque at ¢ = 2s, it’s reversed the reference with -157rd/s.
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Figure 10: Dynamic behavior of the PMSM

Sugeno).
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Figure 11: Inversion of direction speed of PMSM controlled by a fuzzy regulator (case of

Mamdani).

We notice that the answers on the currents are almost identical too, this shows the
effectiveness of the algorithm of training suggested. Learning has been made to keep the
same dynamic speed regardless of the dynamics of the electromagnetic torque. Ideally
the two results should be identical, but because of the error of learning the results appear

different.
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Figure 12: Inversion of direction speed of PMSM controlled by a neurofuzzy regulator (case of
Sugeno).

9 Conclusion

In this paper we developed the adjustment of DTC neurofuzzy concept by exploiting
the Sugeno methods applied to the PMSM. The DTC strategy is motivated by direct
choosing the stators voltage vectors according to the differences between the references
of the electromagnetic torque and the stators flux and their reels values calculated and
related only on the actual-sizes of the stators. The Sugeno regulator is defined as a
polynomial of order one, and the outputs of the regulator depend on its inputs. The
Parameters of the premises and the consequences of the neurofuzzy rules of Sugeno are
given by re-writing the input-output data obtained by a Mamdani regulator; and the
linguistic variables of the inputs, by 3 fuzzy sets. e, Ae and § are described by 5, 3 and
12 fuzzy sets, respectively. The re-writing concept is obtained by the training while using
the extended Kalman filter shows better performance than Mamdani, and got a reduced
algorithm tasks. The defuzzification time is less for Sugeno regulator, which is designed
only with three membership functions.
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