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Abstract: A class of nonlinear nonstationary systems of Persidskii type is studied.
The right-hand sides of the systems are represented in the form of linear combinations
of sector nonlinearities with time-varying coefficients. It is assumed that the coeffi-
cients possess mean values. By means of the Lyapunov direct method, it is proved that
if the investigated systems are essentially nonlinear, i.e. the right-hand sides of the
systems do not contain linear terms with respect to phase variables, then the asymp-
totic stability of the zero solutions of the corresponding averaged systems implies
the local uniform asymptotic stability of the zero solutions for original nonstationary
systems. We treat both cases of delay free and time delay systems. Furthermore, it
is shown that the proposed approaches can be used as well for the stability analysis
of some classes of nonlinear systems with nontrivial linear approximation.
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1 Introduction

A general approach for the stability analysis of nonlinear systems is the Lyapunov direct
method (the Lyapunov functions method). By means of this approach, the stability
conditions for many types of systems were obtained, see, for example, [9, 11, 17–19,
26] and the references cited therein. However, it should be noted that until now there
are no general constructive methods for the finding of Lyapunov functions for nonlinear
systems.
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This problem is especially complicated for nonstationary systems [8, 10, 11, 17, 26].
An effective approach for the investigation of dynamical properties of such systems is the
averaging technique [10, 11, 13, 17]. This technique allows to reduce stability analysis of
time-varying differential equations to the analysis of time-invariant differential equations,
possibly resulting in an important simplification. However, it is worth mentioning that
the application of the averaging technique is well developed only in the case when original
systems are fast time-varying.

In [1, 2], nonlinear nonstationary systems with homogeneous with respect to phase
variables right-hand sides have been studied. For such systems, the approach for the
Lyapunov functions constructing was proposed. Its application permits to show that if
the order of the homogeneity of right-hand sides of the considered time-varying system is
greater than one, then the asymptotic stability of the zero solution of the corresponding
averaged system implies the same property for the zero solution of the original system.
These results have got a further development in [3, 21, 23, 24, 27]. In particular, in [27],
a modification of the approach for the Lyapunov functions constructing was suggested.
Another techniques for the determination of similar asymptotic stability conditions for
time-varying homogeneous systems have been developed in [21, 23]. Recently, these
approaches have been extended to nonlinear nonstationary systems with time delay [4–
6]. The delay independent asymptotic stability conditions were found on the basis of the
stability analysis of corresponding averaged delay free systems.

The principal novelty of the results of the papers [1–6, 21, 23, 24, 27], as compared
to the known stability conditions obtained by the application of averaging technique,
is that, to guarantee the asymptotic stability for a nonstationary homogeneous system,
right-hand sides of the system need not be fast time-varying. It is shown that in the
averaging technique, instead of a small parameter providing the fast time-variation of a
vector field, the orders of homogeneity can be used.

In the present paper, a class of nonlinear nonstationary systems of Persidskii type
[16] is studied. The right-hand sides of the systems are represented in the form of linear
combinations of sector nonlinearities with time-varying coefficients. It is assumed that
the coefficients possess mean values. By means of the Lyapunov direct method, it is
proved that if the investigated systems are essentially nonlinear, i.e. the right-hand sides
of the systems do not contain linear terms with respect to phase variables, then the
asymptotic stability of the zero solutions of the corresponding averaged systems implies
the local uniform asymptotic stability of the zero solutions for original nonstationary
systems. We treat both cases of delay free and time delay systems. Furthermore, it is
shown that the proposed approaches can be used as well for the stability analysis of some
classes of nonlinear systems with nontrivial linear approximation.

2 Statement of the Problem

Consider the ordinary differential equations system

ẋi(t) =

n∑

j=1

pij(t)fj(xj(t)), i = 1, . . . , n. (1)

Here the functions fj(xj) are continuous for |xj | < H , 0 < H ≤ +∞, and belong to a
sector-like constrained set defined as follows: xjfj(xj) > 0 for xj 6= 0; the coefficients
pij(t) are continuous and bounded for t ≥ 0. Such systems are widely used in both
automatic control [9, 16, 17] and neural networks [15, 16].
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We assume that the functions pij(t) possess mean values p̄ij , and the tendencies

1

T

∫ t+T

t

pij(s)ds → p̄ij as T → +∞, i, j = 1, . . . , n,

are uniform with respect to t ≥ 0. Hence, the coefficients pij(t) can be represented in
the form pij(t) = p̄ij + p̃ij(t), with the mean values of the functions p̃ij(t) equal to zero,
i, j = 1, . . . , n.

Thus,

ẋi(t) =

n∑

j=1

p̄ijfj(xj(t)), i = 1, . . . , n, (2)

is the averaged system for (1).
It follows from the properties of functions f1(x1), . . . , fn(xn) that systems (1) and

(2) admit the zero solution. We will look for the conditions under which the asymptotic
stability of the zero solution of the averaged system implies the same property for the
zero solution of original system.

In what follows, we impose some additional restrictions on the right-hand sides in
(1).

Assumption 2.1 The matrix P = {p̄ij}
n
i,j=1 is diagonally stable [16], i.e. there exist

positive numbers λ1, . . . , λn such that the quadratic form

W (x) = xT
(
P

T
Λ+ΛP

)
x

is negative definite. Here x = (x1, . . . , xn)
T , Λ = diag{λ1, . . . , λn}.

Remark 2.1 The problem of matrix diagonal stability is well investigated, see, for
example, [16] and references therein.

Remark 2.2 If Assumption 2.1 is fulfilled, then the zero solution of (2) is asymp-
totically stable, and, for this system, a Lapunov function can be chosen in the form

V (x) =

n∑

i=1

λi

∫ xi

0

fi(s)ds. (3)

Remark 2.3 It is well known [28] that if system (1) is linear (fj(xj) = xj , j =
1, . . . , n), it may be unstable, despite of the asymptotic stability of the corresponding
averaged system.

In view of Remark 2.3, hereinafter we consider only the case when the following
assumption is fulfilled.

Assumption 2.2 Functions fj(xj) can be represented in the form

fj(xj) = βjx
µj

j + gj(xj), j = 1, . . . , n,

where βj are positive constants, µj > 1 are rational numbers with odd numerators and
denominators, and gj(xj)/x

µj

j → 0 as xj → 0.
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Remark 2.4 Without loss of generality, we assume that βj = 1, j = 1, . . . , n, and
µ1 ≤ . . . ≤ µn.

Thus, the investigated equations are essentially nonlinear, and the systems

ẋi(t) =
n∑

j=1

(p̄ij + p̃ij(t)) x
µj

j (t), i = 1, . . . , n, (4)

ẋi(t) =

n∑

j=1

p̄ijx
µj

j (t), i = 1, . . . , n, (5)

can be considered as systems of the first, in a broad sense, approximation for (1) and (2)
respectively.

Let Assumption 2.1 be fulfilled. Then the zero solution of (5) is globally asymptoti-
cally stable, and, for this system, the Lyapunov function (3) takes the form

V (x) =

n∑

i=1

λi
xµi+1
i

µi + 1
.

First, we will show that the zero solution of (4) is locally asymptotically stable. Next,
we will determine the stability conditions for a perturbed system, and, on the basis of
these conditions, the asymptotic stability of the zero solution of (1) will be proved.
Furthermore, along with (1), we will consider the corresponding time-delay system

ẋi(t) =

n∑

j=1

pij(t)fj(xj(t− τ)), i = 1, . . . , n, τ = const ≥ 0. (6)

By the usage of the Lyapunov direct method and the Razumikhin approach [25], for (6),
delay independent stability conditions will be found.

3 Sufficient Conditions of Asymptotic Stability

In [3], it was shown that if Assumption 2.1 is fulfilled, and the integrals

∫ t

0

p̃ij(s)ds, i, j = 1, . . . , n, (7)

are bounded for t ∈ [0,+∞), then the zero solution of (4) is asymptotically stable.
In the present paper, we consider the case when

1

T

∫ t+T

t

p̃ij(s)ds → 0 as T → +∞, i, j = 1, . . . , n,

uniformly with respect to t ≥ 0. It is well known [11], that, in this case, integrals (7)
may be unbounded.

Theorem 3.1 Let Assumption 2.1 be fulfilled. Then the zero solution of (4) is uni-
formly asymptotically stable.
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Proof. By means of the approaches proposed in [1, 2, 27], construct a Lyapunov
function for (4) in the form

Ṽ (t,x) =

n∑

i=1

λi
xµi+1
i

µi + 1
−

n∑

i,j=1

λiLij(t, ε) x
µi

i x
µj

j . (8)

Here positive numbers λ1, . . . , λn are chosen in accordance with Assumption 2.1,

Lij(t, ε) =

∫ t

0

exp(ε(s− t)) p̃ij(s)ds, i, j = 1, . . . , n,

and ε is a positive parameter.
Differentiating Ṽ (t,x) with respect to system (4), we obtain

˙̃
V
∣∣
(4)

=
n∑

i,j=1

λip̄ijx
µi

i x
µj

j + ε
n∑

i,j=1

λiLij(t, ε) x
µi

i x
µj

j

−
n∑

i,j=1

λiµiLij(t, ε) x
µi−1
i x

µj

j

n∑

k=1

pik(t)x
µk

k

−

n∑

i,j=1

λiµjLij(t, ε) x
µi

i x
µj−1
j

n∑

k=1

pjk(t)x
µk

k .

Hence, the estimates

a1

n∑

i=1

xµi+1
i −

a3
ε

n∑

i=1

x2µi

i ≤ Ṽ (t,x) ≤ a2

n∑

i=1

xµi+1
i +

a3
ε

n∑

i=1

x2µi

i ,

˙̃
V
∣∣
(4)

≤ −a4

n∑

i=1

x2µi

i + a5ψ(t, ε)

n∑

i=1

x2µi

i +
a6
ε

n∑

i,j=1

x2µi

i x
µj−1
j

are valid for t ≥ 0, x ∈ R
n. Here a1, . . . , a6 are positive constants independent of chosen

value of ε, and
ψ(t, ε) = max

i,j=1,...,n
ε |Lij(t, ε)| . (9)

With the aid of the results of [10], it is easy to verify that ψ(t, ε) → 0 as ε →
0 uniformly with respect to t ≥ 0. Therefore, we can find and fix ε > 0 such that
a5ψ(t, ε) < a4/3.

Then, for chosen ε and sufficiently small values of δ > 0, the inequalities

a1
2

n∑

i=1

xµi+1
i ≤ Ṽ (t,x) ≤ 2a2

n∑

i=1

xµi+1
i ,

˙̃
V
∣∣
(4)

≤ −
a4
2

n∑

i=1

x2µi

i

hold for t ≥ 0 and ‖x‖ < δ (hereinafter ‖ · ‖ denotes the Euclidean norm of a vector).
Thus, the Lyapunov function (8) satisfies all the assumptions of the Lyapunov asymptotic
stability theorem [9, 26]. This completes the proof. ✷

Consider now, along with (4), the perturbed system

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t))x
µj

j (t) + qi(t,x(t)), i = 1, . . . , n. (10)
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Here functions q1(t,x), . . . , qn(t,x) are defined and continuous in the region t ≥ 0, ‖x‖ <
H , and, for any H̃ ∈ (0, H), the estimates

|qi(t,x)| ≤ c(H̃)
n∑

j=1

|xj |
µj , i = 1, . . . , n,

are valid for t ≥ 0, ‖x‖ < H̃, with c(H̃) → 0 as H̃ → 0. Thus, system (10) admits the
solution x(t) ≡ 0, as well.

Theorem 3.2 Let Assumption 2.1 be fulfilled. Then the zero solution of (10) is
uniformly asymptotically stable.

Proof. Consider the derivative of the Lyapunov function (8) with respect to the
perturbed equations. We obtain

˙̃
V
∣∣
(10)

≤ −ā1

n∑

i=1

x2µi

i + ā2

(
ψ(t, ε) +

c(H̃)

ε

)
n∑

i=1

x2µi

i +
ā3
ε
(1 + c(H̃))

n∑

i,j=1

x2µi

i x
µj−1
j

for t ≥ 0, ‖x‖ < H̃ . Here ā1, ā2, ā3 are positive constants independent of chosen values
of ε and H̃ , and the function ψ(t, ε) is determined by the formula (9).

In a similar way as in the proof of Theorem 3.1, it is easy to show that if ε and H̃
are sufficiently small, then the estimate

˙̃
V
∣∣
(10)

≤ −
ā1
2

n∑

i=1

x2µi

i

holds for t ≥ 0 and ‖x‖ < H̃ . This completes the proof. ✷

Corollary 3.1 Let Assumptions 2.1 and 2.2 be fulfilled. Then the zero solution of
(1) is uniformly asymptotically stable.

4 Delay-Independent Stability Conditions

In this section, we will show that the results of Section 3 can be extended to the case of
time-delay systems.

Consider the system (6), where τ ≥ 0 is a constant delay. Let PC([−τ, 0],Rn)
be the space of piece-wise continuous functions ϕ(θ) : [−τ, 0] → R

n with the uni-
form (supremum) norm ‖ϕ‖τ = supθ∈[−τ,0] ‖ϕ(θ)‖, and ΩH be the set of functions
ϕ(θ) ∈ PC([−τ, 0],Rn) satisfying the inequality ‖ϕ‖τ < H .

By x(t, t0, ϕ) we denote a solution of system (6) with the initial conditions t0 ≥ 0,
ϕ(θ) ∈ ΩH , while xt(t0, ϕ) is the restriction of the solution to the segment [t − τ, t], i.e.
xt(t0, ϕ) : θ → x(t + θ, t0, ϕ), θ ∈ [−τ, 0]. In some cases, when the initial conditions
are not important, or well defined from the context, we write x(t) and xt, instead of
x(t, t0, ϕ) and xt(t0, ϕ), respectively. We will study the impact of delay on the stability
of the zero solution of (6).

Consider the averaged system

ẋi(t) =

n∑

j=1

p̄ijfj(xj(t− τ)), i = 1, . . . , n. (11)
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Under Assumption 2.1, the zero solution of the corresponding delay free system (2) is
asymptotically stable. In [4], it was proved that if no additional restrictions are imposed
on the right-hand sides of (11), then an arbitrary small delay may destroy the stability.

In many applications, it is important to have stability conditions under which a system
remains stable for any nonnegative value of delay [14, 22]. Such conditions are known as
delay-independent ones.

Let Assumption 2.2 be fulfilled. Then the systems

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t)) x
µj

j (t− τ), i = 1, . . . , n, (12)

ẋi(t) =

n∑

j=1

p̄ijx
µj

j (t− τ), i = 1, . . . , n, (13)

are the systems of the first approximation for (6) and (11) respectively.
Delay-independent stability conditions for systems (12) and (13) have been studied in

[4]. It was shown that, under Assumption 2.1, the zero solution of (12) is asymptotically
stable for any τ ≥ 0. Furthermore, if, in addition to Assumption 2.1, the integrals (7)
are bounded for t ∈ [0,+∞), then the zero solution of (13) is asymptotically stable for
any τ ≥ 0 as well.

As it was mentioned in Section 3, in the present paper, we consider the case when
integrals (7) may be unbounded.

Theorem 4.1 Let Assumption 2.1 be fulfilled. Then the zero solution of (12) is
uniformly asymptotically stable for any τ ≥ 0.

Proof. Choose a Lyapunov function for (12) in the form (8) where positive coefficients
λ1, . . . , λn are determined in accordance with Assumption 2.1.

Consider the derivative of the function with respect to system (12). We obtain

˙̃
V
∣∣
(12)

=

n∑

i,j=1

λip̄ijx
µi

i (t)x
µj

j (t) + ε

n∑

i,j=1

λiLij(t, ε) x
µi

i (t)x
µj

j (t)

−

n∑

i,j=1

λiµiLij(t, ε) x
µi−1
i (t)x

µj

j (t)

n∑

k=1

pik(t)x
µk

k (t− τ)

−
n∑

i,j=1

λiµjLij(t, ε) x
µi

i (t)x
µj−1
j (t)

n∑

k=1

pjk(t)x
µk

k (t− τ)

+

n∑

i,j=1

λipij(t) x
µi

i (t)
(
x
µj

j (t− τ)− x
µj

j (t)
)
.

Hence, if a solution x(t) of (12) is defined on an interval [t0, t̂], 0 ≤ t0 < t̂, then the
estimates

a1

n∑

i=1

xµi+1
i (t)−

a3
ε

n∑

i=1

x2µi

i (t) ≤ Ṽ (t,x(t)) ≤ a2

n∑

i=1

xµi+1
i (t) +

a3
ε

n∑

i=1

x2µi

i (t),
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˙̃
V
∣∣
(12)

≤ −a4

n∑

i=1

x2µi

i (t) + a5ψ(t, ε)
n∑

i=1

x2µi

i (t)

+
a6
ε

n∑

i,j,k=1

∣∣∣xµi

i (t)x
µj−1
j (t)xµk

k (t− τ)
∣∣∣+ a7

n∑

i,j=1

|xµi

i (t)|
∣∣xµj

j (t− τ) − x
µj

j (t)
∣∣

hold for t ∈ [t0, t̂]. Here a1, . . . , a7 are positive constants independent of the value of ε,
and the function ψ(t, ε) is defined by the formula (9).

Choose and fix ε > 0 for which the inequality a5ψ(t, ε) < a4/3 is valid. Let us prove
that, for such ε, the Lyapunov function (8) satisfies all the conditions of Theorem 4.2 in
[14].

Assume that, for a solution x(t) of (12), the estimate ‖x(ξ)‖ < δ, and the Razumikhin

condition Ṽ (ξ,x(ξ)) ≤ 2Ṽ (t,x(t)) are fulfilled for ξ ∈ [t−(m+1)τ, t]. Here δ = const > 0,
and m is a positive integer such that

(m(µ1 − 1) + µ1)(µn + 1)

(µ1 + 1)µn

> 1.

If the value of δ is sufficiently small, then

xµi+1
i (ξ) < 8

a2
a1

n∑

j=1

x
µj+1
j (t), i = 1, . . . , n, (14)

for ξ ∈ [t− (m+ 1)τ, t].
With the aid of inequalities (14), it is easy to show that

|x
µj

j (t− τ)− x
µj

j (t)| = τµj x
µj−1
j (t− ηjτ)

∣∣∣∣∣

n∑

l=1

pjlx
µl

l (t− ηjτ − τ)

∣∣∣∣∣

≤ b1

(
n∑

l=1

xµl+1
l (t)

) µj−1

µj+1
(

n∑

l=1

|xµl

l (t)|+

n∑

l=1

|xµl

l (t− ηjτ − τ)− xµl

l (t)|

)

≤ b2

(
n∑

l=1

|xµl

l (t)|

) (µ1−1)(µn+1)

(µ1+1)µn
(

n∑

l=1

|xµl

l (t)| +

n∑

l=1

|xµl

l (t− ηjτ − τ)− xµl

l (t)|

)
,

where b1 > 0, b2 > 0, 0 < ηj < 1, j = 1, . . . , n.
Further, for the functions |xµl

l (t− ηjτ − τ)− xµl

l (t)|, l = 1, . . . , n, the similar esti-
mates can be found.

Successively applying this procedure m times, we obtain

∣∣xµj

j (t− τ) − x
µj

j (t)
∣∣

≤ b3

(
n∑

s=1

|xµs
s (t)|

)1+
(µ1−1)(µn+1)

(µ1+1)µn

+ b4

(
n∑

s=1

|xµs
s (t)|

) (m(µ1−1)+µ1)(µn+1)

(µ1+1)µn

,

where b3 and b4 are positive constants, j = 1, . . . , n.
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Thus, for sufficiently small values of δ, the inequality

˙̃
V (t,x(t)) ≤ −

a4
2

n∑

i=1

x2µi

i (t)

holds. Hence [14], the zero solution of (12) is uniformly asymptotically stable. This
completes the proof. ✷

Consider now the perturbed system

ẋi(t) =

n∑

j=1

(p̄ij + p̃ij(t))x
µj

j (t− τ) + qi(t,x(t),x(t − τ)), i = 1, . . . , n. (15)

Here functions q1(t,x,y), . . . , qn(t,x,y) are defined and continuous in the region t ≥ 0,
‖x‖ < H , ‖y‖ < H , and, for any H̃ ∈ (0, H), the estimates

|qi(t,x,y)| ≤ c(H̃)
n∑

j=1

(|xj |
µj + |yj|

µj ) , i = 1, . . . , n,

are valid for t ≥ 0, ‖x‖ < H̃ , ‖y‖ < H̃ , with c(H̃) → 0 as H̃ → 0.

Theorem 4.2 Let Assumption 2.1 be fulfilled. Then the zero solution of (15) is
uniformly asymptotically stable for any τ ≥ 0.

The proof of the theorem is similar to that of Theorem 4.1.

Corollary 4.1 Let Assumptions 2.1 and 2.2 be fulfilled. Then the zero solution of
(6) is uniformly asymptotically stable for any τ ≥ 0.

5 Stability Conditions for an Automatic Control System

In Sections 3 and 4, it was assumed that the considered systems are essentially nonlinear,
i.e. the right-hand sides of the systems do not contain linear terms with respect to phase
variables. In this section, we will show that the approaches proposed in the present paper
can be used as well for the stability analysis of some classes of nonlinear time-varying
systems with nontrivial linear approximations. Right-hand sides of such systems may
include linear terms, but linear approximations are critical in the Lyapunov sense [9, 17].

Let the dynamic nonlinear feedback system [17, 26]

{
ẋ(t) = Ax(t) + b f(σ(t)),

σ̇(t) = cTx(t)− f(σ(t)),
(16)

be given. Here x(t) ∈ R
n and σ(t) ∈ R, A is a constant Hurwitz matrix, b and c

are constant vectors, f(σ) is a sector nonlinearity, which is continuous for |σ| < H ,
0 < H ≤ +∞, and satisfies the condition σf(σ) > 0 for σ 6= 0.

Assume that, for system (16), there exists a Lyapunov function of the form

V (x, σ) = xTDx +

∫ σ

0

f(s) ds,
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where D is a constant symmetric positive definite matrix, such that the estimate

V̇
∣∣
(16)

≤ −b
(
‖x(t)‖2 + f2(σ(t))

)
, b = const > 0,

holds. The conditions for the existence of the Lyapunov function are well known, see,
for instance, [17, 26]. The fulfilment of this assumption implies the asymptotic stability
of the zero solution of (16).

Consider now the case when the control law includes a delay and a nonstationary
perturbation. Let the system be of the form

{
ẋ(t) = Ax(t) + b f(σ(t− τ)),

σ̇(t) = cTx(t) − (1 + p̃(t))f(σ(t − τ)).
(17)

Here τ ≥ 0 is a constant delay, while the perturbation p̃(t) is continuous and bounded
for t ∈ [0,+∞) function, such that

1

T

∫ t+T

t

p̃(s)ds → 0 as T → +∞

uniformly with respect to t ≥ 0.
Furthermore, we assume that the nonlinearity f(σ) can be represented as follows

f(σ) = βσµ + g(σ), where µ > 1 is a rational number with odd numerator and denomi-
nator, β is a positive constant, and g(σ)/σµ → 0 as σ → 0.

It is worth mentioning that essentially nonlinear control laws were considered in [7,
12, 20]. In particular, in [20], controls of such type were used for solving the problem of
angular stabilization of an airplane, whereas, in [12], they were applied for the developing
of seismic mitigation devices.

Theorem 5.1 The zero solution of (17) is uniformly asymptotically stable for any
value of τ ≥ 0.

Proof. Construct a Lyapunov function for (17) in the form

Ṽ (t,x, σ) = xTDx+ β
σµ+1

µ+ 1
+ β2σ2µ

∫ t

0

exp(ε(s− t)) p̃(s)ds,

where ε is a positive parameter. With the aid of this function the subsequent proof is
similar to that of Theorem 4.1. ✷

6 Conclusion

In this paper, for a special class of nonlinear nonstationary systems, new sufficient asymp-
totic stability conditions of the trivial solution are obtained via the averaging technique.
It is proved that, for the considered essentially nonlinear systems, this technique can
be applied without requirement of fast time-varying vector field – typical for averaging
results.

It is easy to verify that the results obtained for time delay systems remain valid
when the systems delays are continuous nonnegative and bounded functions of the time
variable. Moreover, these results can be extended to systems with distributed delays as
well.

An important direction of future research is application of the developed approaches
for the stability analysis of nonlinear nonstationary complex (multiconnected) systems.
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