Abstract: In this paper, we study the complexity of group actions from the viewpoint of Furstenberg families, we characterize the \mathcal{F} uniform rigidity and \mathcal{F} equicontinuity using topological sequence complexity function, and we establish the connection between \mathcal{F} mixing and \mathcal{F} scattering.

Keywords: \mathcal{F} uniform rigidity; \mathcal{F} mixing; \mathcal{F} scattering.

Mathematics Subject Classification (2010): 37B05, 54H20.

1 Introduction

Blanchard, Host and Maass used open covers to define a complexity function for a continuous map on a compact metric space, and discussed the equicontinuity and scattering properties. Subsequently, Yang discussed the relations of \mathcal{F} mixing and \mathcal{F} scattering of a continuous map (see [1–3]). We study the complexity of group actions from the viewpoint of Furstenberg families. The results are as follows: we characterize the \mathcal{F} uniform rigidity and \mathcal{F} equicontinuity using topological sequence complexity function, and we establish the connection between \mathcal{F} mixing and \mathcal{F} scattering.

Suppose (X, T) is a semi-dynamical system, where X is a compact metric space, T is a topological semigroup and contains the unit element.

• Suppose X is a topological space, T is a topological semigroup, if a map

$$\pi : X \times T \to X$$

satisfies

$$\pi(\pi(x, t), s) = \pi(x, ts), \forall x \in X, \forall t, s \in T,$$