Numerical Research of Periodic Solutions for a Class of Noncoercive Hamiltonian Systems

M. Timoumi

Dpt of Mathematics-Faculty of Sciences-5000 Monastir-Tunisia

Received: July 30, 2012; Revised: July 11, 2013

Abstract: In this paper, we are interested in the existence of periodic solutions and approximative solutions to the Hamiltonian system \(\dot{x} = JH'(t, x) \) when \(H \) is non-coercive of the type \(H(t, r, p) = G(p - Ar) + h(t) \cdot (r, p) \). For the proof we use the Dual Action Principle and Critical Point Theory.

Keywords: Hamiltonian systems; periodic solutions; non-coercive; dual action principle; discrete dual action principle; critical point theory; numerical research.

Mathematics Subject Classification (2010): 34K28, 34K07, 34C25, 35A15.

1 Introduction

Let \(G : \mathbb{R}^n \to \mathbb{R} \) be a continuously differentiable function such that \(G' : \mathbb{R}^n \to G'(\mathbb{R}^n) \) be an homeomorphism. Let \(A \) be a matrix of order \(n \) and \(h : \mathbb{R} \to \mathbb{R}^n \) be a continuous \(T \)-periodic (\(T > 0 \)) function with zero mean value. Consider the non-coercive Hamiltonian

\[
H(t, r, p) = G(p - Ar) + h(t) \cdot (r, p).
\]

Here \(x, y \) is the usual inner product of \(x, y \in \mathbb{R}^{2n} \). We are interested in the boundary value problem

\[
\dot{x} = JH'(t, x) \quad (\mathcal{H})
\]

with

\[
x(0) = x(T). \quad (\mathcal{C})
\]

The goal of this work is to prove the existence of solutions to the problem \((\mathcal{H})(\mathcal{C})\) and to approximate these solutions.

Corresponding author: \mailto{m_timoumi@yahoo.com}

© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/\http://e-ndst.kiev.ua\299