Nonlinear Dynamics and Systems Theory, 13 (3) (2013) 299-315

Numerical Research of Periodic Solutions for a Class of Noncoercive Hamiltonian Systems

M. Timoumi

Dpt of Mathematics-Faculty of Sciences-5000 Monastir-Tunisia

Received: July 30, 2012; Revised: July 11, 2013

Abstract: In this paper, we are interested in the existence of periodic solutions and approximative solutions to the Hamiltonian system $\dot{x} = JH'(t,x)$ when H is non-coercive of the type $H(t,r,p) = G(p - Ar) + h(t) \cdot (r,p)$. For the proof we use the Dual Action Principle and Critical Point Theory.

Keywords: Hamiltonian systems; periodic solutions; non-coercive; dual action principle; discrete dual action principle; critical point theory; numerical research.

Mathematics Subject Classification (2010): 34K28, 34K07, 34C25, 35A15.

1 Introduction

Let $G : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuously differentiable function such that $G' : \mathbb{R}^n \longrightarrow G'(\mathbb{R}^n)$ be an homeomorphism. Let A be a matrix of order n and $h : \mathbb{R} \longrightarrow \mathbb{R}^n$ be a continuous T- periodic (T > 0) function with zero mean value. Consider the non-coercive Hamiltonian

$$H(t, r, p) = G(p - Ar) + h(t) \cdot (r, p).$$

Here x.y is the usual inner product of $x, y \in \mathbb{R}^{2n}$. We are interested in the boundary value problem

$$\dot{x} = JH'(t, x) \tag{H}$$

with

$$c(0) = x(T). \tag{C}$$

The goal of this work is to prove the existence of solutions to the problem $(\mathcal{H})(\mathcal{C})$ and to approximate these solutions.

6

© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua299

Corresponding author: mailto:m_timoumi@yahoo.com