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Abstract: The paper deals with an integrodifferential operator which models nu-
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1 Introduction

If u = u(x, t), let us consider the following integrodifferential equation

Lu ≡ ut − εuxx + au+ b

∫ t

0

e−β(t−τ) u(x, τ) dτ = F (x, t, u), (1)

where ε, a, b, β are positive constants, x denotes the direction of propagation and t is
the time. According to the meaning of F (x, t, u), equation (1) describes the evolution
of several linear or non linear physical models. For instance, when F = f(x, t), (1) is
related to the following linear phenomena:

• motions of viscoelastic fluids or solids [1–4];
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• heat conduction at low temperature [5–7],

• sound propagation in viscous gases [8].

When F = F (x, t, u), some non linear phenomena involve equation (1) both in supercon-
ductivity and biology.

• Superconductivity – Let u be the difference between the wave functions phases of
two superconductors in a Josephson junction. The equation describing tunnel effects is
the following one:

εuxxt − utt + uxx − αut = sinu − γ, (2)

where constant γ is a forcing term proportional to a bias current, while the ε − term
and the α − term account for the dissipative normal electron current flow, respectively
along and across the junction [9, 10].

Equation (2) can be obtained by (1) as soon as one assumes

a = α − 1

ε
, b = − a

ε
, β =

1

ε
, (3)

and F is such that

F (x, t, u) = −
∫ t

0

e− 1
ε
(t−τ ) [ sen u(x, τ) − γ ] dτ. (4)

Besides, when the case of an exponentially shaped Josephson junction (ESJJ) is con-
sidered, the evolution of the phase inside this junction is described by the third order
equation:

(∂xx − λ∂x ) (εut + u)− ∂t(ut + αu) = sinu − γ, (5)

where λ is a positive constant generally less than one and the terms λuxt and λux
represent the current due to the tapering junction. In particular λux corresponds to
a geometrical force driving the fluxons from the wide edge to the narrow edge. [10–12]
An (ESJJ) provides several advantages with respect to a rectangular junction ( [14] and
reference therein). For instance, in [11] it has been proved that it is possible to obtain
a voltage which is not chaotic anymore, but rather periodic excluding, in this way, some
among the possible causes of large spectral width. It is also proved that the problem
of trapped flux can be avoided. Numerous applications and devices involve Josephson
junctions, for example SQUIDs which are very versatile and can be used in a lot of fields.
(see f.i. [15] and references therein).

Moreover, if u = eλx/2 u, (5) turns into an equation like (2) and hence into (1).

• Biology – Let us consider the FitzHugh-Nagumo system (FHN) which models the
propagation of nerve impulses. [16]:



















∂ u

∂ t
= ε

∂2 u

∂ x2
− v + f(u),

∂ v

∂ t
= b u − β v .

(6)
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Here, u (x, t ) models the transmembrane voltage of a nerve axon at a distance x and
time t, while v (x, t ) is an auxiliary variable acting as a recovery variable. Besides, the
function f(u) has the qualitative form of a cubic polynomial

f(u) = − a u + ϕ(u) with ϕ = u2 ( a+ 1 − u ), (7)

while ε, b, β are non negative and the parameter a, representing the threshold constant,
is generally 0 < a < 1. (see f.i. [17] and references therein)

Denoting by v0 the initial value of v, system (6) (7) can be given the form of the
integrodifferential equation (1) as soon as one puts:

F (x, t, u) = ϕ(u) − v0(x) e
− β t . (8)

In this paper, initial value problems with Neumann, Dirichlet and mixed boundary
conditions for (1) are considered. By means of properties of the fundamental solution
K0(x, t) of the operator L, appropriate estimates are obtained. The function K0(x, t)
has already been determined and analyzed in [18] and an analysis related to a Neumann
boundary problem has been conducted in [19]. The aim of this paper is an asymptotic
analysis for the initial boundary value problem both with Dirichlet conditions and with
mixed conditions. These cases involve x-derivative of theta functions θ(x, t) and θ∗(x, t)
which are determined in Section (3). So, effects of boundary perturbations can be eval-
uated by means of a well known theorem on asymptotic behavior of convolutions. As
an example, according to the equivalence between operator L and the FHN system, an
estimate of the solution related to the reaction-diffusion system (6) is obtained proving
that, for large t, effects determined by boundary disturbance are bounded.

2 Some Models of Superconductivity and Biology

Let T be an arbitrary positive constant and

ΩT ≡ { (x, t) : 0 ≤ x ≤ L ; 0 < t ≤ T.

(I) A first example is related to Neumann boundary conditions (NBC)






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

ux(0, t) = ψ1(t), ux(L, t) = ψ2(t), 0 < t ≤ T.

(9)

In superconductivity, this problem occurs when the magnetic field, proportional to the
phase gradient, is assigned [20,21]. In mathematical biology, it can refer to a two-species
reaction diffusion system subjected to flux boundary conditions [16]. The same conditions
are present in case of pacemakers [22] and are applied also to study distributed (FHN)
systems [23] or to solve FHN systems by means of numerical calculations [24].

(II) Another example concerns Dirichlet boundary conditions (DBC)






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

u(0, t) = g1(t), u(L, t) = g2(t), 0 < t ≤ T.

(10)
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In superconductivity, (10)3 refer to the phase boundary specifications [12–14]. In ex-
citable systems these conditions occur when the behavior of a single dendrite has to be
determined and the voltage level is fixed [22] or when the pulse propagation in a contin-
uum of heart cells is studied [22, 25]. Besides, the Dirichlet problem is also considered
to determine universal attractors both for Hodgkin-Huxley equations and for FHN sys-
tems, [26] and for stability analysis and asymptotic behavior of reaction-diffusion systems
solutions, [27–31], or in hyperbolic diffusion [32].

(III) At last, mixed boundary conditions (MBC) as






















Lu = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ [0, L],

u(0, t) = h1(t), ux(L, t) = h2(t), 0 < t ≤ T,

(11)

occur in many physical examples both in superconductivity (see,f.i. [33] and references
therein) and in biology, as shown in [16, 22]. In particular, in [34], mixed boundary
conditions are considered in order to give qualitative information concerning both the
threshold problem and the asymptotic behavior of large solutions for the FHN system.

When F = f(x, t) is a linear function, problems (9)-(11) can be solved by Laplace
transformation with respect to t. Let z(x, t) be an arbitrary function admitting Laplace
transform ẑ(x, s)

ẑ(x, s) =

∫ ∞

0

e−st z(x, t) dt = Lt z. (12)

Referring to the parameters a, β, b, ε of the operator L, if

σ2 = s + a +
b

s+ β
, σ̃2 = σ2/ε, (13)

we denote by θ(x, s) and θ∗(x, s) the following Laplace transforms:

θ̂ ( y, σ̃) =
cosh [ σ̃ (L− y) ]

2 ε σ̃ sinh ( σ̃ L )
= (14)

=
1

2
√
ε σ

{

e
−

y
√

ε
σ
+

∞
∑

n=1

[

e
−

2nL+y
√

ε
σ
+ e

−
2nL−y

√

ε
σ

]}

,

θ̂∗ ( y, σ̃) =
sinh [ σ̃ (L− y) ]

2 ε σ̃ cosh ( σ̃ L )
= (15)

=
1

2
√
εσ

{

e
−

y
√

ε
σ
+ 2

∞
∑

n=1

(

e
−

4nL+y
√

ε
σ
+ e

−
4nL−y

√

ε
σ

)

−
∞
∑

n=1

(

e
−

2nL+y
√

ε
σ
+ e

−
2nL−y

√

ε
σ

)}

.

Then the Laplace transform solutions of the linear problems (9)-(11) can be obtained by
means of standard techniques and it results:

• Formal solution for initial boundary problem with (NBC)

û(x, s) =

∫ L

0

[ θ̂ ( |x− ξ|, s ) + θ̂ ( |x+ ξ|, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ

− 2 ε ψ̂1 (s) θ̂(x, s) + 2 ε ψ̂2 (s) θ̂ (x− L, s ).

(16)
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• Formal solution for (DBC)

û(x, s) =

∫ L

0

[ θ̂ ( |x− ξ|, s ) − θ̂ (x+ ξ, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ−

− 2 ε ĝ1 (s) θ̂x(x, s) + 2 ε ĝ2 (s) θ̂x (x− L, s ).

(17)

• Formal solution for (MBC)

û(x, s) =

∫ L

0

[ θ̂∗ (x+ ξ, s ) − θ̂∗ ( |x− ξ|, s ) ] [u0( ξ ) + f̂( ξ, s) ] dξ+

− 2 ε ĥ1 (s) θ̂∗x(x, s) + 2 εĥ2 (s) θ̂
∗ (L− x, s ).

(18)

3 K0(x, t) and θ(x, t) Properties

The Neumann boundary value problem has already been solved in [19]. Let us consider
now cases (II) and (III).

Let K0(x, t) be the fundamental solution of the linear operator L defined in (1). It
has already been determined in [18] and one has:

K0(r, t) =
1

2
√
πε

[

e−
r2

4t
−a t

√
t

−
√
b

∫ t

0

e−
r2

4y
−ay

√
t− y

e−β( t− y )J1(2
√

by (t− y) ) dy

]

, (19)

where r = |x| /√ε and Jn(z) is the Bessel function of first kind. Function K0 has
the same basic properties of the fundamental solution of the heat equation, and in the
half-plane ℜe s > max(− a, −β ) it results:

Lt K0 ≡
∫ ∞

0

e−st K0 (r, t) dt =
e− r σ

2
√
ε σ

, (20)

where σ is defined in (13)1.
Among other properties, in [18] the following estimates have been proved:
∫

ℜ

|K0(x− ξ, t)|dξ ≤ e− at +
√
b πte−ω t

∫ t

0

dτ

∫

ℜ

|K0(x − ξ, t)| dξ ≤ β0, (21)

|K0| ≤
e−

r2

4t

2
√
πεt

[ e− at + btE(t) ], (22)

where constants ω, β0 and E(t) are given by:

ω = min(a, β), β0 =
1

a
+ π

√
b

a+ β

2(aβ)3/2
, (23)

E(t) =
e− βt − e− at

a − β
> 0.

Moreover, denoting by

Ki(r, t) =

∫ t

0

e−β ( t−τ) Ki−1 (x, τ ) dτ (i = 1, 2) (24)

kernels K1(x, t) and K2(x, t) have the same properties of K0(x, t). Hence, the following
theorem holds [18]:
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Theorem 3.1 For all the positive constants a, b, ε, β it results:

∫

ℜ

|K1| dξ ≤ E(t);

∫ t

0

dτ

∫

ℜ

|K1| dξ ≤ β1, (25)

∫

ℜ

|K2(x− ξ, t)| dξ ≤ t E(t), (26)

where β1 = (a β)−1.

In order to obtain inverse formulae of (17) and (18), let us apply (20) to (14)(15).
Then, one deduces the following functions which are similar to theta functions:

θ(x, t) =K0(x, t) +

∞
∑

n=1

[K0(x + 2nL, t) + K0(x− 2nL, t) ]

=

∞
∑

n=−∞

K0(x + 2nL, t),

(27)

θ∗(x, t) = 2

∞
∑

n=−∞

K0(x + 4nL, t) −
∞
∑

n=−∞

K0(x + 2nL, t). (28)

Some of the properties of function θ(x, t) have already been evaluated in [19]. Pre-
cisely, denoting by C = 2ε π2/( 6 eL2 ) and letting

C0 =
1

2
√
ε ω

+
b ω− 3/2

4
√
ε |a− β|

[

1 +
C

b
|a− β| + 3C

2ω

]

, (29)

the θ(x, t) function, defined in (27), satisfies the following inequalities:

∫ L

0

|θ(|x− ξ|, t)| dξ ≤ (1 +
√
b π t ) e−ω t , (30)

∫ t

0

dτ

∫ L

0

|θ(|x − ξ|, t)| dξ ≤ β0;

∫ ∞

0

|θ(x, τ)| dτ ≤ C0, (31)

and, it results:

lim
t→∞

θ(x, t) = 0; lim
t→∞

∫ t

0

θ(x, τ) dτ =
1

2 ε σ0

coshσ0 (L− x)

sinh (σ0 L).
, (32)

where σ0 =

√

(

a +
b

β

)

1

ε
.

Furthermore, as for ∂θ
∂x , from (19), it is well-rendered that the x derivative of the integral

term vanishes for x → 0 , while the first term represents the derivative with respect
to x of the fundamental solution related to the heat equation. So, by means of classic
theorems (see,f.i. [35] p. 60), conditions (10)3 are surely satisfied.
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Moreover, one has:

lim
t→∞

∫ t

0

θx(x, τ) dτ =
1

2 ε

sinhσ0 (x − L)

sinh (σ0 L)
,

lim
t→∞

∫ t

0

θ∗x(x, τ) dτ = − 1

2 ε

coshσ0 (L − x)

cosh (σ0 L)
.

(33)

4 Asymptotic Behaviours

When the source term F = f(x, t) is a prefixed function depending only on x and t,
then, initial boundary value problems (10) (11) are linear and can be solved explicitly.
Moreover, when F = F (x, t, u) depends also on the unknown function u(x, t), then
these problems admit integral differential formulations and one has:

• Integro differential equation for problem (10) (DBC):

u(x, t ) =

∫ L

0

[θ (|x− ξ|, t) − θ(x+ ξ, t) ] u0(ξ) dξ −

2 ε

∫ t

0

θx (x, t− τ) g1(τ) dτ + 2 ε

∫ t

0

θx (x− L, t− τ) g2(τ) dτ

+

∫ t

0

dτ

∫ L

0

[ θ (|x− ξ|, t− τ)− θ(x + ξ, t− τ)] F ( ξ, τ, u(x, τ)) dξ.

(34)

• Integro differential equation for (11) (MBC):

u(x, t ) =

∫ L

0

[θ∗ (|x− ξ|, t) − θ∗(x + ξ, t) ] u0(ξ) dξ −

2 ε

∫ t

0

θ∗x (x, t− τ) h1(τ) dτ + 2 ε

∫ t

0

θ∗ (L− x, t− τ) h2(τ) dτ

+

∫ t

0

dτ

∫ L

0

[ θ∗ (|x− ξ|, t− τ)− θ∗(x+ ξ, t− τ)] F ( ξ, τ, u(x, τ)) dξ.

(35)

Now, if BT denotes the Banach space

BT ≡
{

z (x, t ) : z ∈ C (ΩT ), || z || = sup
ΩT

| z (x, t) |, <∞
}

(36)

and D is the following set:

D ≡ {(x, t, u) : (x, t) ∈ ΩT ,−∞ < u <∞,
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then, let us assume the source term F (x, t, u) be defined and continuous on D and
uniformly Lipschitz continuous in (x, t, u) for each compact subset of ΩT . Besides, let F
be a bounded function for bounded u and there exists a constant C such that:

|F (x, t, u1)− F (x, t, u2)| ≤ C |u1 − u2|.

So, by means of standard methods related to integral equations and owing to basic
properties of K0, it is possible to prove that the mappings defined by (34) (35) are a
contraction of BT in BT and so they admit a unique fixed point u(x, t) ∈ BT . [35, 36]

In order to enable a quicker reading, attention will be paid only to the initial boundary
value problem with Dirichlet conditions. However, all the following analysis can be
applied to the mixed problem,too.

At first, let us consider gi = 0 (i = 1, 2) and let

||u0 || = sup
0≤x≤L

|u0 (x ) |, ||F || = sup
ΩT

|F (x, t, u) |.

.
In [18] the following theorem has been proved:

Theorem 4.1 When gi = 0 (i = 1, 2), solution (34), for large t, verifies the fol-
lowing estimate:

|u(x, t)| ≤ 2
[

||F || β0 + ||u0 || (1 +
√
b π t ) e−ω t

]

, (37)

where ω = min (a, β) and β0 is defined by (23)2.

As for contributes of boundary data, the well known theorem will be considered [37]:.

Theorem 4.2 Let h(t) and χ(t) be two continuous functions on [0,∞[. If they satisfy
the following hypotheses

∃ lim
t→∞

χ(t) = χ(∞), ∃ lim
t→∞

h(t) = h(∞), (38)

ḣ(t) ∈ L1[ 0,∞), (39)

then, it results:

lim
t→∞

∫ t

o

χ(t− τ) ḣ(τ) dτ = χ(∞) [ h(∞)− h(0) ]. (40)

According to this, it is possible to state:

Theorem 4.3 Let gi (i = 1, 2) be two continuous functions converging for t→ ∞.
In this case one has:

lim
t→∞

∫ t

0

θx (x, τ) gi (t− τ) d τ = gi,∞
1

2 ε

sinhσ0 (x− L)

sinh σ0 L
, (41)

where σ0 =

√

(

a +
b

β

)

1

ε
.

Proof. Let us apply (40) with h =
∫ t

0
θx(x, τ)dτ and χ = gi (i = 1, 2). Then, (41)

follows by (33)1.
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5 An Example: Estimate for the FitzHugh Nagumo System

When u(x, t) is determined, by means of (6), the v(x, t) component is given by

v (x, t) = v0 e
−β t + b

∫ t

0

e−β ( t−τ ) u(x, τ) dτ. (42)

To achieve the expression of the solution (u, v), let us denote by f1 ∗ f2 the convolution

f1(·, t) ∗ f2(·, t) =

∫ t

0

f1(·, t) f2 (·, t− τ) d τ.

So that, referring to Dirichlet conditions, if

G(x, ξ, t) = θ ( |x− ξ|, t ) − θ (x+ ξ, t ),

and denoting by N(x, t) the following known function depending on the data
(u0, v0, g1, g2):

N(x, t) = −2 ε g1(t) ∗ θx(x, t)+ (43)

+ 2 ε g2(t) ∗ θx(x− L, t) +

∫ L

0

u0 (ξ) G(x, ξ, t) dξ − e− β t ∗
∫ L

0

v0(ξ) G(x, ξ, t) dξ ,

it results:

v (x, t) = v0 e
−β t + b e−β t ∗ N(x, t)

+ b e−β t ∗
∫ L

0

G (x, ξ, t− τ) ∗ ϕ [ ξ, τ, u(ξ, τ)] ]} dξ .
(44)

So, the asymptotic effects due to initial disturbances are vanishing, while the effects
of the source terms are bounded. Indeed, letting

||u0 || = sup
0≤x≤L

|u0 (x ) |, || v0 || = sup
0≤x≤L

| v0 (x ) |,

and

||ϕ || = sup
ΩT

|ϕ (x, t, u) |,

by means of (8) (34) and (44) and owing to the estimates (21)1, (25), (26), the following
theorem holds:

Theorem 5.1 For regular solution (u, v) of the (FHN) model, when g1 = g2 = 0,
the following estimates hold:







|u | ≤ 2 [ ‖u0‖ (1 + π
√
b t) e−ω t + ‖v0‖ E(t) + β0 ‖ϕ‖ ],

|v | ≤ ‖v0‖ e−β t + 2 [ b ( ‖u0‖ + t ‖v0‖ )E(t) + b β1 ‖ϕ‖ ].
(45)
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As for the asymptotic effects of boundary perturbations g1, g2 by means of (41), when
u0 = 0 and F = 0, one has















u = g1,∞
sinhσ0 (L−x)

sinh σ0 L + g2,∞
sinhσ0 x
sinh σ0 L

∣

∣,

v =
b

β

[

g1,∞
sinhσ0 (L−x)

sinh σ0 L + g2,∞
sinhσ0 (x)
sinh σ0 L

]

.

(46)

6 Remarks

• The paper is concerned with the nonlinear integral equation (1) whose kernel is a
Green function with numerous basic properties typical of the diffusion equation.

• Neumann, Dirichlet and mixed boundary conditions are considered, and integro
differential formulations of non linear problems are obtained.

• The asymptotic behavior for initial boundary value problem with Dirichlet con-
ditions is evaluated, showing that effects due to initial disturbances vanish, while the
influences of the source term and boundary perturbations are everywhere bounded.

•The analysis related to Dirichlet conditions can be applied to mixed problem, too.
Indeed, like θ(x, t), also the Green function θ∗(x, t) defined in (15) depends on the fun-
damental solution K0.

• The equivalence among equation (1) and numerous models allow us to apply asymp-
totic theorems to many other problems related to various physical fields.
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