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Acceleration Control in Nonlinear Vibrating Systems
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Abstract: A discrete time control algorithm using the damped least squares is intro-
duced for acceleration and energy exchange controls in nonlinear vibrating systems.
It is shown that the damping constant of least squares and sampling time step of the
controller must be inversely related to insure that vanishing the time step has little
effect on the results. The algorithm is illustrated on two linearly coupled Duffing
oscillators near the 1:1 internal resonance. In particular, it is shown that varying the
dissipation ratio of one of the two oscillators can significantly suppress the nonlinear
beat phenomenon.
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1 Introduction

The damped least squares is a simple but effective analytical manipulation that helps to
avoid singularity in practical minimization and control algorithms. It is also known as
Levenberg-Marquardt method [11]. In order to illustrate the idea in simple terms, let us
consider the minimization problem

‖E −Aδu‖2 → min, (1)

where E ∈ Rn is a given vector, the notation ‖...‖ indicates the Euclidean norm in
Rn, A is typically a Jacobian matrix of n rows and m columns, and δu ∈ Rm is an
unknown minimization vector. Although a formal solution of this problem is given by
δu = (ATA)−1ATE, the matrix product ATA may appear to be singular so that no
unique solution is possible. This fact usually points to multiple possibilities of achieving
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the same result unless specific conditions are imposed on the vector δu. The idea of
damped least squares is to avoid such conditioning by adding one more quadratic form
to the left hand side of expression (1) as follows

‖E −Aδu‖
2
+ λ ‖δu‖

2
→ min, (2)

where λ is a positive scalar number, which is often called damping constant ; note that
the term ‘damping’ has no relation to the physical damping or energy dissipation effects
in vibrating systems usually characterized by damping ratios.

Now the inverse matrix includes the damping constant λ which can provide the
uniqueness of solution given by

δu = (ATA+ λI)−1ATE, (3)

where I is n× n identity matrix.
Different arguments are discussed in the literature regarding the use of damped least

squares and best choice for the damping parameter λ [1], [2], [3], [4], [6], [7], [9], [10],
[15], [16], [17], [23], [24]. In particular, it was noticed that the parameter λ may affect
convergence properties of the corresponding algorithms. The parameter λ can be used
also for other reason such as shifting the solution δu into desired area in Rm. In this case,
the meaning of λ is rather close to that of Lagrangian multiplier imposing constraints on
control inputs.

In case of dynamical systems, when all the quantities in (2) may depend on time, a
continuous time analogue of (2) can be written in the integral form

min
δu

∫ T

0

(‖E −Aδu‖
2
+ λ ‖δu‖

2
)dt, (4)

where the interval of integration is manipulated as needed, for instance, T can be equal
to sampling time of the controller [12].

However, in the present work, a discrete time algorithm based on the damped least
squares solution (3), which is used locally at every sample time tn, is introduced. Such
algorithm appears to be essentially discrete namely using different time step h may lead
to different results. Nevertheless, if the parameters λ and h are coupled by some condition
then the control input and system response show no significant dependence on the time
step.

A motivation for the present work is as follows. In order to comply with the standard
tool of dynamical systems dealing with differential equations, the methods of control are
often formulated in continuous time by silently assuming that a discrete time analogous
is easy to obtain one way or another whenever it is needed for practical reasons. For
instance, data acquisition cards and on-board computers of ground vehicles usually ac-
quire and process data once per 0.01 sec. Typically, based on the information, which
is known about the system dynamic states and control inputs by the time instance tn,
the computer must calculate control adjustments for the next active time instance, tn+1.
The corresponding computational time should not therefore exceed tn+1 − tn = 0.01
sec. Generally speaking, it is possible to memorize snapshots of the dynamic states and
control inputs at some of the previous times {..., tn−2, tn−1}. However, increasing the
volume of input data may complicate the code and, as a result, slow down the calculation
process. Therefore, let us assume that updates for the control inputs are obtained by
processing the system states, controls, and target states given only at the current time
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instance, tn. The corresponding algorithm can be built on the system model described
by its differential equations of motion and some rule for minimizing the deviation (error)
of the current dynamic states from the target. Recall that, in the present work, such
a rule will be defined according to the damped least squares (2). Illustrating physical
example of two linearly coupled Duffing oscillators is considered. It is shown that the
corresponding algorithm, which is naturally designed and effectively working in discrete
time, may face a problem of transition to the continuous time limit.

2 Problem Formulation

Consider the dynamical system
ẍ = f(x, ẋ, t, u), (5)

where x = x(t) ∈ Rn is the system position (configuration) vector, the overdot indicates
derivative with respect to time t, the right-hand side f ∈ Rn represents a vector-function
that may be interpreted as a force per unit mass of the system, and u = u(t) ∈ Rm is a
control vector, whose dimension may differ from that of the positional vector x so that
generally n 6= m.

In common words, the purpose of control u(t) is to keep the acceleration ẍ(t) of
system (5) as close as possible to the target ẍ∗(t). The term ‘close’ will be interpreted
below through a specifically designed target function of the following error vector

E(t) = ẍ∗(t) − ẍ(t). (6)

As discussed in Introduction, for practical implementations, the problem must be
formulated in terms of the discrete time {tk} as follows. Let xk = x(tk), ẋk = ẋ(tk), and
uk = u(tk) are observed at some time instance tk. The corresponding target acceleration,
ẍ∗

k = ẍ∗(tk), is assumed to be known. Then, taking into account (5) and (6), gives the
following error at the same time instance

Ek = ẍ∗

k − f(xk, ẋk, tk, uk). (7)

Now the purpose of control is to minimize the following target function

Pk =
1

2
ET

k WkEk (8)

=
1

2
[ẍ∗

k − f(xk, ẋk, tk, uk)]
TWk[ẍ

∗

k − f(xk, ẋk, tk, uk)],

where Wk is n× n diagonal weight matrix whose elements are positive or at least non-
negative functions of the system states, Wk = W (xk, ẋk, tk).

Note that all the quantities in expression (8) represent a snapshot of the system at
t = tk while including no data from the previous time step tk−1. Since the control vector
uk cannot be already changed at time tk then quantity Pk is out of control at time tk.
In other words expression (8) summarizes all what is observed now, at the time instance
tk. The question is how to adjust the control vector u for the next step tk+1 based on
the information included in (8) while the system state at t = tk+1 is yet unknown, and
no information from the previous times {..., tn−2, tn−1} is available.

Let us represent such an update for the control vector in the form

uk+1 = uk + δuk, (9)
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were δuk is an unknown adjustment of the control input.
Replacing uk in (8) by (9) and taking into account that

f(xk, ẋk, tk, uk+1) = f(xk, ẋk, tk, uk) +Akδuk +O(‖δuk‖
2
), (10)

Ak = ∂f(xk, ẋk, tk, uk)/∂uk,

gives

Pk =
1

2
(Ek −Akδuk)

TWk(Ek −Akδuk), (11)

where Ak is the Jacobian matrix of n rows and m columns.
Although the replacement uk by uk+1 in (10) may look artificial, this is how the update

rule for the control vector u is actually defined here. Namely, if uk did not provide a
minimum for Pk(ẍ

∗

k, xk, ẋk, tk, uk), then let us minimize Pk(ẍ
∗

k, xk, ẋk, tk, uk + δuk) with
respect to δuk and then apply the adjusted vector (9) at least the next time, tn+1.
Assuming that the variation δuk is small, in other words, uk is still close enough to the
minimum, expansion (10) is applied. Now the problem is formulated as a minimization
of the quadratic form (11) with respect to the adjustment δuk. However, what often
happens practically is that function (11) has no unique minimum so that equation

dPk

dδuk
= 0 (12)

has no unique solution. In addition, even if the unique solution does exist, it may not
satisfy some conditions imposed on the control input due to the physical specifics of
actuators. As a result, some constraint conditions may appear to be necessary to impose
on the variation of control adjustment, δuk. However, the presence of constraints would
drastically complicate the problem. Instead, the target function (11) can be modified in
order to move solution δuk into the allowed domain. For that reason, let us generalize
function (11) as

Pk =
1

2
(Ek −Akδuk)

TWk(Ek −Akδuk)

+
1

2
(Bk + Ckδuk)

TΛk(Bk + Ckδuk), (13)

where Λk = Λ(xk, ẋk, tk) is a diagonal regularization matrix, Bk = B(xk, ẋk, tk) is a
vector-function of n elements, and Ck = C(xk, ẋk, tk) is a matrix of n rows and m
columns.

Note that the structure of new function (13) is a generalization of (2). Substituting
(13) in (12), gives a linear set of equations in the matrix form whose solution δuk brings
relationship (9) to the form

uk+1 = uk + (AT
k WkAk + CT

k ΛkCk)
−1(AT

k WkEk − CT
k ΛkBk). (14)

The entire discrete time system is obtained by adding a discrete version of the dy-
namical system (5) to (14) . Assuming that the time step is fixed, tk+1− tk = h, a simple
discrete version can be obtained by means of Euler explicit scheme as follows

xk+1 = xk + hvk,

vk+1 = vk + hf(xk, vk, tk, uk). (15)
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Finally, equations (14) and (15) represent a discrete time dynamical system, whose
motion should follow the target acceleration ẍ∗

k = ẍ∗(tk).
It will be shown in the next section that the structure of equation (14) does not allow

for the transition to continuous limit of the entire dynamic system (14) through (15),
unless some specific assumption are imposed on the parameters in order to guarantee
that δuk = O(h) as h → 0.

3 Illustrating Example

The algorithm, which is designed in the previous section, is applied now to a two-degrees-
of-freedom nonlinear vibrating system for an active control of the energy exchange (non-
linear beats) between the two oscillators. The problem of passive control of energy
flows in vibrating systems is of great interest [22], and it is actively discussed from the
standpoint of nonlinear beat phenomena [14]. The beating phenomenon takes place when
frequencies of the corresponding linear oscillators are either equal or at least close enough
to each other.

For illustrating purposes, let us consider two unit-mass Duffing oscillators of the
same linear stiffness K coupled by the linear spring of stiffness γ. The system position
is described by the vector-function of coordinates, x(t) = (x1(t), x2(t))

T . Introducing
the parameters Ω = (γ +K)1/2 and ε = γ/(γ +K), brings the differential equations of
motion to the form

ẋ1 = v1,

ẋ2 = v2,

v̇1 = −2ζΩv1 − Ω2x1 + ε(Ω2x2 − αx3
1) ≡ f1(x1, x2, v1), (16)

v̇2 = −2uΩv2 − Ω2x2 + ε(Ω2x1 − αx3
2) ≡ f2(x1, x2, v2, u),

where α is a positive parameter, ζ and u are damping ratios of the first and the second
oscillators, respectively; the damping ratio u, which is explicitly shown as an argument
of the function f2(x1, x2, v2, u), will be considered as a control input.

The problem now is to find such variable damping ratio u = u(t) under which the
second oscillator accelerates as close as possible to the given (target) acceleration, ẍ∗

2(t).
Following the discussion of the previous section, let us consider the problem in the

discrete time {tk}. In order to avoid confusion, the iterator k will be separated from
the vector component indexes by coma, for instance, xk = (x1,k, x2,k)

T . Since only the
second mass acceleration is of interest and the system under consideration includes only
one control input u, then, assuming the weights to be constant, gives

Wk =

[

0 0
0 1

]

, Ak =
∂

∂uk

[

f1,k
f2,k

]

,

where f1,k ≡ f1(x1,k, x2,k, v1,k) and f2,k ≡ f2(x1,k, x2,k, v2,k, uk), and other matrix terms
become scalar quantities, say, Λk = λ, Bk = b, and Ck = 1. The unities in Wk and Ck

can always be achieved by re-scaling the target function and parameters λ and b. Note
that re-scaling the target function by a constant factor has no effect on the solution of
equation (12).

As mentioned in Introduction, the damping (dissipation) ratio should not be confused with the
damping coefficient λ.
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As a result, the target function (13) takes the form

Pk =
1

2

(

ẍ∗

2,k − f2,k −
∂f2,k
∂uk

δuk

)2

+
λ

2
(b+ δuk)

2. (17)

In this case, equation (12) represents a single linear equation with respect to the scalar
control adjustment, δuk. Substituting the corresponding solution in (14) and taking into
account (15), gives the discrete time dynamical system

uk+1 = uk −
(f2,k − ẍ∗

2,k)(∂f2,k/∂uk) + λb

(∂f2,k/∂uk)2 + λ
(18)

and

x1,k+1 = x1,k + hv1,k,

x2,k+1 = x2,k + hv2,k,

v1,k+1 = v1,k + hf1,k, (19)

v2,k+1 = v2,k + hf2,k.

Let us assume now that the target acceleration ẍ∗

2 is zero, in other words, the purpose
of control is to minimize acceleration of the second oscillator at any sample time tk as
much as possible. Let us set still arbitrary parameter b also to zero. Then the target
function (17) and dynamical system (18) and (19) take the form

Pk =
1

2

[

f2(x1,k, x2,k, v2,k, uk) +
∂f2(x1,k, x2,k, v2,k, uk)

∂uk
δuk

]2

+
λ

2
(δuk)

2, (20)

uk+1 = uk +
2Ωv2,k

4Ω2v2
2,k + λ

f2(x1,k, x2,k, v2,k, uk),

x1,k+1 = x1,k + hv1,k,

x2,k+1 = x2,k + hv2,k, (21)

v1,k+1 = v1,k + hf1(x1,k, x2,k, v1,k),

v2,k+1 = v2,k + hf2(x1,k, x2,k, v2,k, uk),

where the functions f1 and f2 are defined in (16).
As follows from the first equation in (21), transition to the continuous time limit for

the entire system (21) would be possible under the condition that

2Ωv2,k
4Ω2v2

2,k + λ
= O(h), as h → 0. (22)

Condition (22) can be satisfied by assuming that Ω = O(h). Such an assumption,
however, makes little if any physical sense. As an alternative choice, the condition
λ = O(h−1) can be imposed by setting, for instance,

λh = λ0, (23)

where λ0 remains finite as h → 0.
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However, condition (23) essentially shifts the weight on control to the second term of
the target function (17) so that the function asymptotically takes the form

Pk ≃
λ0

2h
(δuk)

2, as h → 0. (24)

Such a target function leads to the solution δuk = 0, which effectively eliminates the
control equation. In other words, the iterative algorithm seems to be essentially discrete.
As a result, the control input uk, generated by the first equation in (21), depends upon
sampling time interval h. Let us illustrate this observation by implementing the iterations
(21) under the fixed set of parameters, ε = 0.1, Ω = 1.0, α = 1.5, ζ = 0.025, and initial
conditions, u0 = 0.025, x1,0 = 1.0, x2,0 = 0.1, v1,0 = v2,0 = 0. The values to vary are
two different sampling time intervals, h = 0.01 and h = 0.001, and three different values
of the damping constant, λ = 0.1, λ = 1.0, and λ = 10.0. For comparison reason, Figure
1 shows time histories of the system coordinates under the fixed control variable u = ζ.
This (no control) case corresponds to free vibrations of the model (16) whose dynamics
represent a typical beat-wise decaying energy exchange between the two oscillators. As
mentioned at the beginning of this section, the beats are due to the 1:1 resonance in
the generating system (ε = 0, u = ζ = 0); more details on non-linear features of this
phenomenon, the related analytical tools, and literature overview can be found in [20]
and [14]. In particular, the standard averaging method was applied to the no damping
case of system (16) in [20].

Figure 1: No control beat dynamics with the decaying energy exchange between two Duffing’s
oscillators; u = ζ = 0.025.

Now the problem is to suppress the beat phenomenon by preventing the energy flow
from the first oscillator into the second oscillator. As follows from Figures 2 through
5, such a goal can be achieved by varying the damping ratio of the second oscillator,
{uk}, during the vibration process according to the algorithm (21) ⋆ . First, the diagrams
in Figures 2 and 3 confirm that the sampling time interval h represents an essential
parameter of the entire control loop. In particular, decreasing the sampling interval from
h = 0.01 to h = 0.001 effectively increases the strength of the control; compare fragments

⋆ Note that, although the algorithm is designed to suppress accelerations of the second oscillator,
acceleration and energy levels of vibrating systems are related.
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(b) in Figures 2 and 3. However, if such decrease of the sampling time is accompanied
by the increase of λ according to condition (23), then the strength of control remains
practically unchanged; compare now fragments (b) in Figures 2 and 4. As follows from
fragments (a) in Figures 2 and 4, the above modification of both parameters, h and λ,
also brings some difference in the system response during the interval 80 < t < 150, but
this is rather due to numerical effect of the time step.

Figure 2: Beat suppression under the time increment h = 0.01 and weight parameter λ = 1.0:
(a) the system response, (b) control input - the damping ratio of second oscillator.

Finally, analyzing the diagrams in Figures 3 and 5, shows that reducing the parameter
λ as many as ten times under the fixed time step h leads to a significant increase of the
control input {uk} with a minor effect on the system response though. Therefore the
parameter λ can be used for the purpose of satisfying some constraint conditions on the
control inputs {uk} in case such conditions are due to physical limits of the corresponding
actuators. In addition, let us show that parameter λ may affect the convergence of
algorithm (21) based on the following convergence criterion [18]:

For a fixed point z∗ to be a point of attraction of the algorithm zk+1 = G(zk) a

sufficient condition is that the Jacobian matrix of G at the point z∗ has all its eigenvalues

numerically less than 1, and a necessary condition is that they are numerically at most 1.

The geometric rate of convergence is the numerically largest eigenvalue of this Jacobian.

Applying this criterion to the algorithm (21) at zero point, gives that one of the
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Figure 3: Beat suppression under the reduced time increment h = 0.001 and the same weight
parameter λ = 1.0: (a) the system response, (b) control input - the damping ratio of second
oscillator.

eigenvalues is always zero, q0 = 0, whereas another four eigenvalues, qi (i = 1, ..., 4) are
proportional to the time step, qi = hpi, where the coefficients pi are given by the roots
of algebraic equation

p4 + 2ζΩp3 + 2Ω2p2 + 2ζΩ3p+ (1− ε2)Ω4 = 0. (25)

As follows from (25), the damping coefficient λ has no influence on the convergence
condition near the equilibrium point, and the convergence can always be achieved under
a small enough time step h. Nevertheless, the damping coefficient may appear to affect
the convergence away from the equilibrium point. In this case, analytical estimates for
eigen values of the Jacobian become technically complicated unless ε = 0, when four of
the five eigenvalues vanish as h → 0, except one eigenvalue, which is estimated by

q = −

(

1 +
λ

4Ω2v22

)

−1

. (26)

This root gives q → q0 = 0 as v2 → 0. However, when v2 6= 0, equation (26) gives the
estimate 0 < q ≤ 1 as ∞ > λ ≥ 0. Therefore, only the necessary convergence condition
is satisfied for λ = 0.
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Figure 4: Beat suppression under the reduced time increment h = 0.001 but increased weight
parameter λ = 10.0: (a) the system response, (b) control input - the damping ratio of second
oscillator.

4 Conclusions

In this work, a discrete time control algorithm for nonlinear vibrating systems using the
damped least squares is introduced. It is shown that the corresponding damping constant
λ and sampling time step h must be coupled by the condition λh = constant in order to
preserve the result of calculation when varying the time step. In particular, the above
condition prohibits a direct transition to the continuos time limit. This conclusion and
other specifics of the algorithm are illustrated on the nonlinear two-degrees-of-freedom
vibrating system in the neighborhood of 1:1 resonance. It is shown that the dissipation
ratio of one of the two oscillators can be controlled in such way that prevents the energy
exchange (beats) between the oscillators. From practical standpoint, controlling the
dissipation ratio can be implemented by using devices based on the physical properties
of magnetorheological fluids (MRF) [8], [19]. In particular, different MRF dampers are
suggested to use for semi-active ride controls of ground vehicles and seismic response
reduction.
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Figure 5: Beat suppression under the reduced time increment h = 0.001 and vanishing weight
parameter λ = 0.1: (a) the system response, (b) control input - the damping ratio of second
oscillator.
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