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Abstract: In this paper, we elaborate new methods for model-order reduction of
linear time invariant (LTI) and time variant (LTV) systems by using orthogonal func-
tions. These techniques which can be efficiently applied in SISO (single-input single-
output) and MIMO (multi-input multi-output) cases are based on the projection of
the system parameters and variables on an orthogonal functions basis. The useful
properties of the orthogonal functions basis such as operational matrices combined
with the Kronecker product permit the conversion of the system differential equations
into algebraic ones allowing the determination of the reduced model parameters.

Keywords: model-order reduction; LTI and LTV systems; orthogonal functions;

operational matrices; shifted Legendre polynomials.

Mathematics Subject Classification (2010): 78M34, 42C05.

1 Introduction

In all engineering fields, an accurate modeling is necessary to have good results in control
and analysis of complex systems. If the system is internally complex, the use of modern
control techniques such as optimal control, µ-synthesis or robust control may lead to a
controller having a comparable order as the considered system. In order to study, simulate
and control those systems and to avoid time consuming in computing procedures, it is
convenient and sometimes necessary to reduce their complexity, preserving the input-
output behavior.

The primary problem of interest in model reduction is the efficient computation of an
accurate low-order model approximating a given dynamical system. The low-order model
must match the original one in some sense. However, the conditions of accuracy, speed,
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stability and low order cannot always be reached at the same time. The model-order
reduction (MOR) reaches far from electrical engineering and touches various disciples
of science and engineering fields such as aerospace science [1, 2], chemical processes [3],
protection of civil structures, modeling of biological systems [4], power systems [47] and
mechanical engineering [5].

So far, the main MOR techniques were introduced and developed for linear systems
and precisely LTI systems and were lately extended to LTV systems and nonlinear sys-
tems [6, 7]. The main MOR methods fall into three classes [8]:

– Singular Value Decomposition (SVD) or Gramian-based methods including optimal
Hankel MOR [9, 10], and balanced truncation realization first introduced by Moore [11]
and improved during the last decades [12–14].

– Krylov subspace-based methods [15] including techniques based on Lanczos proce-
dure [16, 17] or Arnoldi algorithm [18,19].

– Proper orthogonal decomposition (POD) or Karhunen-Loève expansion [2, 20].

Many recent techniques give an alternative to these classical methods such as the
MOR by least squares [21] and using LMIs [22]. The MOR techniques for LTI systems
were later extended to modeling linear time varying (LTV) systems [7, 23, 24].

In this paper, we introduce new analytic methods for model-order reduction (MOR)
of linear time invariant (LTI) and time variant (LTV) systems starting from a state
space realization or a transfer function system description. Those approaches using
the orthogonal functions as a tool of approximation can be applied not only for SISO
systems but also for the MIMO ones. This paper is organized as follows: in Section 2,
the orthogonal functions are presented with their interesting properties. The dynamical
systems description by orthogonal functions is introduced in Section 3. The proposed
methods for model order reduction of LTI and LTV systems using orthogonal functions
are derived in Section 4. The last section is devoted to simulation examples to emphasize
the effectiveness of the presented approaches.

2 Orthogonal Functions for Dynamical Systems Description

In recent decades, the approximation of time functions by orthogonal functions has been
considered by many researchers to solve modeling and control problems [48]. The main
characteristic of this technique is that it reduces the differential equations to algebraic
ones, thus greatly simplifying the problem.

This approach originated from the use of Walsh [25] and block-pulse [26] functions was
later extended to orthogonal polynomial series such as the Laguerre [27], the Chebychev
[28], the Hermite [29] and the Legendre polynomials [30]. They were also used with
nonlinear systems [31] and for PID control of LTI [32] and LTV systems [33]. The
development in Fourier or Taylor polynomial series can give convenient results but their
quick convergence is not always guaranteed or their use can be sometimes inadequate.

2.1 Orthogonal functions and properties

2.1.1 Approximation using orthogonal functions

Orthogonal functions were introduced in the field of system control because of their
interesting properties as a sharp tool of approximation. Given Φ = {φi(t), i ∈ N} a set
of functions defined over a certain interval [a, b]. Any function f(t) absolutely integrable
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over [a, b] can be developed as follows

f(t) =

∞∑

i=0

fiφi(t), (1)

where fi =

∫ b

a

w(t)f(t)φi(t) dt , for i ∈ N, w(t) is a positive and integrable function as

the weighting function of the scalar product. For practical use, the development (1) is
truncated up to an order N , thus giving the following time approximation of the function

f(t) ∼=

N−1∑

i=0

fiφi(t) = FT
NΦN (t) (2)

with

FN =
[
f0 f1 . . . fN−1

]T
, ΦN (t) =

[
φ0(t) φ1(t) . . . φN−1(t)

]T
,

where ΦN (t) is the vector of the orthogonal functions basis. The coefficients fi and the
orthogonal functions {φi(t), i ∈ N} have the particularity to minimize the error:

ε =

∫ b

a

(

f(t)−

N−1∑

i=0

fi φi(t)

)2

dt. (3)

The orthogonal functions obey the orthogonality relation

< φi(t), φj(t) >=

∫ b

a

w(t)φi(t)φj(t) dt = δij ci, (4)

where δij is the Kronecker delta. If ci = 1, then the functions are not only orthogonal,
but orthonormal.

2.1.2 Shifted definition interval

If the function f(t) is defined over an interval [t0, tf ] and the orthogonal functions φi(t)
over the interval [a, b], we can shift the defining domain by considering the functions :

∀i ∈ N, ψi(t) = φi

(
t− µ

λ

)

with t ∈ [t0, tf ], λ =
t0 − tf

a− b
and µ =

atf − bt0

a− b
.

The functions ψi(t), ∀i ∈ N are also orthogonal over [t0, tf ] with the weighting function

w′(t) = w(
t − µ

λ
).

2.1.3 Matrix functions approximation

A time dependent matrix function A(t) ∈ Rn×m given by A(t) = [aij(t)] where aij(t)
are integrable over an interval [a, b]. The matrix A(t) can be developed into orthogonal
functions series with a truncation to an order N under the following relation

A(t) ∼=

N−1∑

i=0

ANiφi(t), (5)

where ANi ∈ Rn×m for i ∈ {0, 1, . . . , N − 1} are matrices with constant coefficients.
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2.1.4 Operational matrix of integration

The operational matrix of integration is a constant coefficient function PN ∈ RN×N

verifying the integral property of the orthogonal functions basis vector ΦN (t):

∫

· · ·

∫ t

α
︸ ︷︷ ︸

k times

ΦN (t) dtk ∼= P k
NΦN (t). (6)

Clearly, the form of PN depends on the particular choice of the basis vector ΦN(t).

2.1.5 Operational matrix of product

The operational vectors of product Kij [35] have constant coefficients and verify the
property:

∀ i, j ∈ {0, 1, · · · , N − 1}, φi(t)φj(t) ∼= KT
ijΦN (t). (7)

From the relationship (7), we can readily get the operational matrix of product:

MiN =






KT
0i

...
KT

N−1,i




 (8)

that allows the approximation

φi(t)ΦN (t) ∼=MiNΦN (t). (9)

2.1.6 Legendre polynomials

The Legendre polynomials may have advantages over other orthogonal functions. This
was shown by way of examples [30] where Legendre polynomials converge to the exact
solution of a differential equation faster than the other types of orthogonal functions, such
as, for example, Walsh functions, Hermite and Laguerre polynomials. The Legendre
polynomials are defined for the time interval x ∈ [−1, 1] and they have the following
analytical form given by the Olinde-Rodrigues formula [36]:

Ln(x) =
1

2nn!

dn(x2 − 1)n

dxn
. (10)

Using the above expression for Ln(x), one may readily determine the first few Legendre
polynomials : L0(x) = 1, L1(x) = x, ... .

The Legendre polynomials are also given by the recursive formula [34]:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x). (11)

The polynomials Li(x) form a complete set and are orthogonal [30] with

∫ 1

−1

Li(x)Lj(x)dx =
2

2i+ 1
δij . (12)
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2.1.7 Shifted Legendre polynomials

For practical use of Legendre polynomials in the time interval t ∈ [0, tf ], it is necessary
to shift the defining domain of Legendre polynomials from the interval [−1, 1] to [0, tf ]
through the variable transformation:

x =
2t

tf
− 1, 0 ≤ t ≤ tf . (13)

Thus, the shifted Legendre polynomials si(t) (∀i ∈ N) for 0 ≤ t ≤ tf are thus given by

sn+1(t) =
2n+ 1

n+ 1

2t− tf

tf
sn(t)−

n

n+ 1
sn−1(t) (14)

with s0(t) = 1 and s1(t) =
2t

tf
− 1.

It is apparent that polynomials sn(t) also constitute a complete set and are orthogonal
[37] with

∫ tf

0

si(t)sj(t) dt =
tf

2i+ 1
δij . (15)

Any time function f(t) that is absolutely integrable on the time interval [0, tf ] may be
expanded into shifted Legendre series as follows

f(t) =

∞∑

i=0

fisi(t), (16)

where [38]

fi =
2i+ 1

tf

∫ tf

0

f(t)si(t) dt. (17)

If equation (16) is truncated up to its first N terms, then it may be written as

f(t) ∼=

N−1∑

i=0

fisi(t) = FT
NSN (t) (18)

with FN =
[
f0 f1 . . . fN−1

]T
and SN (t) =

[
s0(t) s1(t) . . . sN−1(t)

]T
.

The shifted Legendre polynomials and coefficients fi, (i = 0, 1, . . . , N − 1) have the
particularity to minimize the integral squared-error:

ε =

∫ tf

0

(

f(t)−

N−1∑

i=0

fisi(t)

)2

dt. (19)

2.1.8 Operational matrix of integration

Since the shifted Legendre polynomials si(t), (i = 0, 1, . . . ) satisfy [34] the differential
equation:

si(t) =
tf

2(2i+ 1)

[
dsi+1

dt
−
dsi−1

dt

]

(20)



120 B. AYADI AND N. BENHADJ BRAIEK

and si(0) = (−1)i , it can be easily shown that the integrals of si(t), (i = 0, 1, . . . ) are
given by

∫ t

0

si(τ)dτ =

{
tf
2 [s1(t)− s0(t)] , for i = 0,

tf
2(2i+1) [si+1(t)− si−1(t)] , for i > 0.

(21)

From equation (21) we can obtain the integral of truncated shifted Legendre vector as
follows ∫ t

0

SN (τ)dτ ∼= PNSN (t), (22)

where PN is the constant operational matrix of integration given in [39] and [40].

3 Dynamical systems description using orthogonal functions

3.1 LTI systems described by a transfer function

Given a linear time invariant system described by a transfer function:

Y (s)

U(s)
=
b0 + b1s+ ...+ bms

m

a0 + a1s+ ...+ ansn
(23)

with m ≤ n, or a linear differential equation in time domain with constant coefficients,
the input u(t) and the output y(t):

a0y(t) + a1y
′(t) · · ·+ any

(n)(t) = b0u(t) + b1u
′(t) · · ·+ bmu

(m)(t). (24)

Upon integration of both sides of equation (24) n times, we have:

a0

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

y(τ)dτn + a1

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

y(τ)dτn−1 + · · ·+ any(t) =

b0

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

u(τ)dτn + b1

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

u(τ)dτn−1 + · · ·+ bm

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−m times

u(τ)dτn−m.

(25)

The projection of the input u(t) and the output y(t) on an orthogonal functions basis
with truncated developments to an order N over a time interval [0, tf ] yields:

y(t) ∼= YNΦN (t), (26)

u(t) ∼= UNΦN(t), (27)

where YN and UN are constant coefficient vectors.
By introducing the projections (26) and (27) in equation (25) and considering the

case where the initial conditions are equal to zero, we obtain the relation

a0YN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

ΦN (τ)dτn + a1YN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−1 times

ΦN (τ)dτn−1 + · · ·+ any(t) =

b0UN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n times

ΦN (τ)dτn + · · ·+ bmUN

∫

· · ·

∫ t

0
︸ ︷︷ ︸

n−m times

ΦN (τ)dτn−m.

(28)
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In the case where the initial conditions are different from zero, they can be projected on
the orthogonal basis and then integrated in the equation (28). By using the operational
matrix of integration and the property (6), the equation (28) yields:

YN
(
a0P

n
N + a1P

n−1
N · · ·+ anIN

)
ΦN (t) =

UN

(
b0P

n
N + b1P

n−1
N + · · ·+ bmP

n−m
N

)
ΦN (t).

(29)

This equality is available for all time t ∈ [0, tf ] then the simplification by ΦN (t) in the
equality (29) leads to the following description of the considered system:

YN M = UN T or YN = UN T M
−1 (30)

with

M = a0P
n
N + a1P

n−1
N + ...+ anIN , (31)

T = b0P
n
N + b1P

n−1
N + ...+ bmP

n−m
N .

3.2 LTI systems described by a state representation

Consider a linear time invariant (LTI) MIMO system given by the following state real-
ization: {

Ẋ(t) = A X(t) +B U(t), X(0) = 0,
Y (t) = C X(t), t ∈ [0, tf ],

(32)

with the state vector X(t) ∈ Rn, the inputs vector U(t) ∈ Rm and the output one
Y (t) ∈ Rp. The matrices A, B, and C have respectively the dimensions n × n, n ×m

and p× n. The integration of the state equation (32) with zero initial conditions gives:

X(t) = A

∫ t

0

X(τ)dτ +B

∫ t

0

U(τ)dτ . (33)

The projection of the state vector X(t), the input U and the output Y , on an orthogonal
basis functions {ϕi(t), i ∈ {0, 1, . . . , N − 1}} with a truncated development to an order
N over the interval [0, tf ] leads to:

X(t) ∼= XNΦN (t), (34)

U(t) ∼= UNΦN (t), (35)

Y (t) ∼= YNΦN (t), (36)

where the matricesXN and UN are constant coefficients matrices. With the developments
(34) and 35), the integrated state equation (33) can be written under the following form

XNΦN (t) = A

∫ t

0

XNΦN (τ)dτ +B

∫ t

0

UNΦN (τ)dτ . (37)

The use of the operational matrix of integration that approximates the integration of the
orthogonal basis vector ΦN (t):

∫ t

0

ΦN (τ) dτ ∼= PN ΦN (t) (38)
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leads to the relation:

XN ΦN (t) = A XN PNΦN (t) +B UN PN ΦN (t). (39)

Simplifying by the orthogonal functions basis vector ΦN (t) yields:

XN − A XN PN = B UN PN . (40)

For rearranging the equation (40), we use the V ec operator [41] that reshapes a matrix
by stacking its columns into a long vector. This vector denoted by V ec(A) is associated
with a matrix A and has the following property:

V ec(E F G) =
(
GT ⊗ E

)
V ec(F ), (41)

where E, F and G are matrices having appropriate dimensions and ⊗ is the Kronecker
product.

Mathematically, let R = [rij ] ∈ Rm×n and W = [wij ] ∈ Rp×q, the Kronecker product
of R and W , denoted by R⊗W ∈ R

mp×nq is defined by [41]:

R⊗W =








r11W r12W . . . r1nW

r21W r21W . . . r2nW
...

...
...

...
rm1W rm1W . . . rmnW







. (42)

By applying the property (41) to the equation (40), we get the following algebraic relation

V ec(XN ) =
[
In×N −

(
PT
N ⊗A

)]−1 (
PT
N ⊗B

)
V ec(UN ) (43)

and in the same way, the output relation in (32) can be written as:

V ec(YN ) = (IN ⊗ C)V ec(XN ). (44)

3.3 LTV systems described by a state representation

In this section, we consider the linear time varying (LTV) systems described by the
following state space realization

{

Ẋ(t) = A(t) X(t) +B(t) U(t),
Y (t) = C(t) X(t),

(45)

with A(t), B(t) and C(t) varying in time t with respective dimensions n× n, n×m and
p× n. The expressions of matrices A(t), B(t) and C(t) are supposed to be known with:

A(t) =





a11(t) . . . a1n(t)
. . . . . . . . .

an1(t) . . . ann(t)



 , B(t) =






b1(t)
...

bn(t)




 , C(t) =

[
c1(t) . . . cn(t)

]
.

Notice that this state description can be derived from an input-output LTV differ-
ential equation. A technique of LTV systems identification was proposed in [42]. The
integration of the state equation gives:

X(t) =

∫ t

0

A(τ)X(τ)dτ +

∫ t

0

B(τ)U(τ)dτ . (46)
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By exploiting the matrix functions approximation (5), the variable in time parameters of
the system can be projected into th orthogonal basis and then written under the form:

A(t) ∼=

N−1∑

i=0

ANi ϕi(t), (47)

B(t) ∼=

N−1∑

i=0

BNi ϕi(t), (48)

C(t) ∼=

N−1∑

i=0

CNi ϕi(t), (49)

where ANi, BNi and CNi are constant coefficients matrices having respectively the same
dimensions as A(t), B(t) and C(t).

With the same projections (34), (35) and (36) of the state vector, the input vector
and the output vector, the equation (46) becomes:

XN ΦN (t) =

∫ t

0

N−1∑

i=0

AiNφi(τ)XNΦN (τ)dτ +

∫ t

0

N−1∑

i=0

BiNφi(τ)UNΦN (τ)dτ . (50)

The orthogonal functions φi(t) are scalar functions, so:

XN ΦN (t) =

∫ t

0

N−1∑

i=0

AiNXNφi(τ)ΦN (τ)dτ +

∫ t

0

N−1∑

i=0

BiNUNφi(τ)ΦN .(τ)dτ (51)

By using the operational matrix of product [35] and the property (9), one has:

XN ΦN (t) =

∫ tf

0

N−1∑

i=0

AiNXNMiNΦN (t)dt+

∫ tf

0

N−1∑

i=0

BiNUNMiNΦN (t)dt (52)

and with the operational matrix of integration [39, 40], it comes out:

XN ΦN (t) =

N−1∑

i=0

AiNXNMiNPNΦN (t) +

N−1∑

i=0

BiNUNMiNPNΦN (t). (53)

We can simplify by the orthogonal function basis vector and eliminate the time depending
parameters in the equation (53). The application of the property of the V ec operator
(41) yields:

[

In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)]

V ec (XN ) =
(

N−1∑

i=0

(MiNPN )
T
⊗BiN

)

V ec (UN )

(54)

or
V ec (XN ) = G

−1
H V ec (UN) (55)

with the constant matrices

G = In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)

, H =

N−1∑

i=0

(MiNPN )
T
⊗BiN .
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On the other hand, we have

Y (t) ∼= YN ΦN (t) =

N−1∑

i=0

CiN φi(t)XNΦN (t) ∼=

N−1∑

i=0

CiN XN MiNΦN (t). (56)

The application of the V ec operator yields:

V ec(YN ) =

(
N−1∑

i=0

MT
iN ⊗ CiN

)

V ec (XN ) . (57)

4 Model-order reduction (MOR) using orthogonal functions

4.1 MOR with a transfer function representation

Consider a linear time invariant system described by the transfer function (23). The order
of reduction can be chosen by the Hankel singular values. The reduced-order model have
an order k and the following transfer function:

Yr(p)

U(p)
=

d0 + d1p+ ...+ dlp
l

c0 + c1p+ ...+ cq−1pq−1 + pq
(58)

with l ≤ q < n. The input-output differential equation of the reduced order system will
be written as:

c0yr(t) + c1y
′

r(t) · · ·+ cq−1y
(q−1)
r (t) + y(q)r (t) = d0u(t) + d1u

′(t) · · ·+ dlu
(l)(t), (59)

where u(t) is the input and yr(t) is the output of the reduced order system.
The description of the reduced order system by orthogonal functions will have an

analogue form to (30), given by the following relation:

YrN = UNTr M
−1
r , (60)

where Mr(c0, . . . , cq−1) = c0P
q
N + c1P

q−1
N + ... + cq−1PN + IN and Tr(d0, . . . , dl) =

d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N are matrices depending on the parameters of the reduced

order system and PN the operational matrix of integration depending of the chosen
orthogonal functions basis.

The reduced-order system is computed such that it has a similar input-output dy-
namical behavior to the original system for all inputs u(t). When projected into the
orthogonal functions basis, this condition yields:

YN ΦN (t) = YrN ΦN (t) ⇔ YN = YrN . (61)

The developments (60) and (30) lead to:

UNTM
−1 = UNTrM

−1
r , (62)

where T and M are constant matrices depending on the known parameters of the original
system and the operational matrix of integration PN given by (31).

The relation (62) must be verified for any input u(t) (i.e. to any UN ). Therefore, we
can formulate the equality (62) as:

TM
−1
(

c0P
q
N + c1P

q−1
N + ...+ cq−1PN + IN

)

= d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N (63)
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or
(

d0P
q
N + d1P

q−1
N + ...+ dlP

q−l
N

)

− TM−1
(

c0P
q
N + c1P

q−1
N + ...+ cq−1PN

)

= TM−1.
(64)

Let Θ be the vector of reduced order system parameters:

ΘT =
[
d0 d1 · · · dl c0 · · · cq−1

]
, (65)

A =
[
Al Ar

]
with

Al =
[

V ec(P q
N ) V ec(P q−1

N ) · · · V ec(P q−l
N )

]
,

Ar =
[
V ec(−TM−1P

q
N ) · · · V ec(−TM−1PN )

]
,

and

B = V ec(TM−1).

Then the equation (64) can be written as

A Θ = B. (66)

The vector of the unknown parameters Θ are derived by means of least square resolution

Θ = (AT
A)−1

A
T
B. (67)

Remark 4.1 Extension to the MIMO LTI system case.
For MIMO LTI system described by a transfer matrix

H(s) =





H11(s) · · · H1p(s)
· · · · · · · · ·

Hk1(s) · · · Hkp(s)



 (68)

the order reduction of H(s) can be led by considering the order reduction of each par-
tial transfer function Hij(s) between the i-input and j-output. Note that the reduced
order choice of each transmittance Hij(s) can be made using the Hankel singular values
technique [44].

4.2 Model order reduction with a state space LTI realization

Consider a linear time invariant (LTI) system described by the state realization (32).
We are searching for a reduced order system having an order r < n and the following
realization {

Ẋr(t) = Ar Xr(t) +Br U(t),
Yr(t) = Cr Xr(t).

(69)

Using the orthogonal functions (43) for the reduced-order model description, one obtains:

V ec(XNr) =
[
Ir×N −

(
PT
N ⊗Ar

)]−1 (
PT
N ⊗Br

)
V ec(UN ). (70)
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The reduced system is computed such that it has the same dynamical output as the
original system for any input U(t). This condition is equivalent to

Y = Yr or C X = Cr Xr. (71)

By projecting the relation (71) in the orthogonal functions basis, one has:

CXNΦN (t) = CrXNrΦN (t). (72)

The simplification by the vector of orthogonal functions ΦN (t) and the application of the
V ec operator yields:

(IN ⊗ C)V ec(XN ) = (IN ⊗ Cr)V ec(XNr). (73)

With combination by substitution of the equations (43), (70) and (73), we obtain the
relation

(IN ⊗ C)(In×N − PT
N ⊗A)−1(PT

N ⊗B)V ec(UN ) =
(IN ⊗ Cr)(Ir×N − PT

N ⊗Ar)
−1(PT

N ⊗Br)V ec(UN).
(74)

The relation (74) must be verified to get a convenient reduced system for any input U
(i.e. for any matrix UN ΦN (t)). Therefore, it gives the following equation which must
be verified by the parameters of the reduced system:

(IN ⊗C)(In×N −PT
N ⊗A)−1(PT

N ⊗B) = (IN ⊗Cr)(Ir×N −PT
N ⊗Ar)

−1(PT
N ⊗Br). (75)

The parameters of the reduced system with the realization (Ar, Br, Cr) derived [45] by
minimizing the norm ξ of the difference between both parts of the equation (75). This
unconstrained minimization can be led by using the functions of the optimization tools
or genetic algorithms. Then, the reduced model determination is brought back to the
following optimization problem: derive Ar, Br and Cr such that they minimize:

ξ =

∥
∥
∥
∥

(IN ⊗ C)(In×N − PT
N ⊗A)−1(PT

N ⊗B)
−(IN ⊗ Cr)(Ir×N − PT

N ⊗Ar)
−1(PT

N ⊗Br)

∥
∥
∥
∥
. (76)

4.3 Model order reduction of LTV systems

In this section, we consider the order model reduction of the LTV systems defined by
the realization (45). The reduced order system is taken equal to r and the state space
description of the reduced system is the following:

{
˙̃
X(t) = Ã(t) X̃(t) + B̃(t) U(t),

Ỹ (t) = C̃(t) X̃(t),
(77)

with Ã(t), B̃(t) and C̃(t) varying in time with respective dimensions r × r, r ×m and
p × r. The description of the original system (45) using an orthogonal functions basis
ΦN (t) is given by the relations (55) and (57).

In the same manner, the variable in time parameters of the reduced LTV system will
be defined by their projections on the orthogonal functions basis truncated to an order
N :

Ã(t) ∼=

N−1∑

i=0

ÃNi ϕi(t), B̃(t) ∼=

N−1∑

i=0

B̃Ni ϕi(t), C̃(t) ∼=

N−1∑

i=0

C̃Ni ϕi(t), (78)
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where ÃNi, B̃Ni and C̃Ni are constant with the same dimensions as Ã(t), B̃(t) and C̃(t).
Then, the description of the reduced-order model using the orthogonal functions basis
can be written as:

[

Ir×N −

(
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

)]

V ec
(

X̃N

)

=
(

N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

V ec (UN )

(79)

and

V ec(ỸN ) =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

V ec
(

X̃N

)

. (80)

The equalization between the original system and the reduced system outputs can be
expressed by the following relation : ỸN = YN which can be written as

(
N−1∑

i=0

MT
iN ⊗ CiN

)

V ec (XN ) =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

V ec
(

X̃N

)

. (81)

The substitution in (81) of V ec(XN ) and V ec(X̃N ) by their expressions (55) and (79)
yields the following equality:

(
N−1∑

i=0

MT
iN ⊗ CiN

)

G−1HV ec (UN ) =
(

N−1∑

i=0

MT
iN ⊗ C̃iN

)

Q

(
N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

V ec (UN ) ,

(82)

where Q =

[

Ir×N −

(
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

)]−1

. This relation must be verified for any

input U(t). Then, one obtains:
(

N−1∑

i=0

MT
iN ⊗ CiN

)

G
−1

H =

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)[

Ir×N −
N−1∑

i=0

(MiNPN )
T
⊗ ÃiN

]−1(
N−1∑

i=0

(MiNPN )
T
⊗ B̃iN

)

(83)
with the constant matrices

G = In×N −

(
N−1∑

i=0

(MiNPN )
T
⊗AiN

)

, H =

N−1∑

i=0

(MiNPN )
T
⊗BiN .

The parameters of the reduced order system ÃiN , B̃iN and C̃iN can be derived by
the minimization of the norm of the difference between both sides of the equation (83).
Thus, the problem of the reduced model determination can be formulated as follows:
determine ÃiN , B̃iN and C̃iN in order to minimize

ξ =

∥
∥
∥
∥
∥
∥
∥
∥

(
N−1∑

i=0

MT
iN ⊗ CiN

)

G−1H

−

(
N−1∑

i=0

MT
iN ⊗ C̃iN

)

Q

(
N−1∑

i=0

(MiNPN )T ⊗ B̃iN

)

∥
∥
∥
∥
∥
∥
∥
∥

. (84)
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Remark 4.2 Stability of the reduced model.
The reduced-order model is determined such that the error between its output vector and
that of the original full-order system is minimized regardless the input signals. When the
time horizon of approximation is sufficiently large to take in consideration the transient
response and the steady state, then one may conclude that if the original system is stable,
the reduced order one will be also stable.

Remark 4.3 Number of the orthogonal basis functions.
The accuracy and validity of the reduced model depend on the number of the orthogonal
basis functions. The higher is the number of the basis functions, the more accurate is
the obtained reduced order model. However, the size of the matrices interfering in the
computation of the reduced order parameters and the calculus time cost increase with
respect to the orthogonal basis dimension. Thus, the number of the basis functions is
generally chosen such that it satisfies a compromise between the accuracy of the searched
model and the computational constraints.

5 Simulation study

In order to illustrate the availability of the developed approaches for system order re-
duction, we consider in this section different examples of high order systems that we will
reduce using a set of shifted Legendre polynomials with order N = 16 as an orthogonal
functions basis.

5.1 LTI SISO system example

We consider the LTI system studied in [46] and given by the following transfer function

G(s) = s4+35s3+291s2+1093s+1700
s9+9s8+66s7+294s6+1029s5+2541s4+4689s3+5856s2+4620s+1700 . (85)

The order reduction of this system has been led by both approaches developed in
paragraph 4.1 using the transfer function representation and paragraph 4.2 using the
state space description. The reduced order is taken r = 3.

The first approach yields the following reduced transfer function:

Hr(p) =
0.3298 s2 − 1.713 s+ 3.232

s3 + 3.05 s2 + 4.992 s+ 3.232

and by the second approach technique, we obtain the reduced state space description
(32) with

Ar =





0.01032 1.349 8.391
0.08643 −0.1717 3.45
−0.5394 0.07006 −2.741



, Br =





3.508
3.375
−1.235



,

Cr =
[
2.338 1.138 9.559

]
.

Figure 1 shows the step responses of the original system (85) and the reduced systems
(by transfer function and by state space methods). It appears from these simulations
that the behavior of the reduced models obtained by the developed methods in this paper
is very close to that of the original system which shows the availability of the proposed
techniques. This property can also be verified with different inputs applied to the reduced
order model.
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Figure 1: Step responses of the original system order n = 9 and reduced order models r = 3
obtained by the proposed techniques : starting from a state space realization and from a transfer
function.

5.2 LTI MIMO system example: CD player

The proposed technique using orthogonal functions has been applied to the model of a
CD player. This example is widely treated in many papers concerning MOR [49]. The
considered model of CD player describes the dynamics between the lens actuator and
the radial arm position as shown in Figure 2 and it is obtained using finite element
approximation. Detailed description can be found in [50].

disc

motor

radial arm

optical pick-up

Figure 2: CD player model. Source [50].

The full-order model of the CD player is LTI MIMO having 120 states, 2 inputs and
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2 outputs [21]. Gugercin and Antoulas proposed a reduced model having an order r = 12
by considering the system as LTI SISO. Chu and al. [51] reduced the LTI MIMO model
to an order r = 12. The proposed technique has been applied to the full-order MIMO
model and the reduction order is chosen to r = 10. The simulation of the error between
the step responses of the original model and the reduced order ones obtained by the
following techniques:
– The proposed technique using a shifted Legendre polynomials basis truncated to an
order 10 on the time domain [0, 50s],
– Balanced Hankel based (HMR) model reduction via square root method,
– Stochastic model truncation via Schur method (BST),
shows that the proposed reduction technique using orthogonal functions gives a minimal
error converging to zero and the behavior of the obtained reduced model is close to the
original 120-states full-model for any control input.

5.3 LTV system example

We consider now the LTV SISO system described by the state space realization (45) with

A(t) =







0 1 0 0
0 0 1 0
0 0 0 1

−1 + e−t −2 + 1
8t −3− 0.7 cos(−0.01t) −2 + 0.5 cos(t)






,

B(t) =







0
0
0

1 + 0.15 cos(1.2t− 0.5)






, C(t) =

[
1 0 0 0

]
.

The variable in time system parameters are projected on the orthogonal functions basis.
The obtained matrices AiN ∈ R4×4, i ∈ {0, 1, . . . , 15} and vectors BiN ∈ R4×1, i ∈
{0, 1, . . . , 15} resulting from this truncated development to the order 16, are used for
computing the reduced order LTV model as shown in Section 4.3. The reduced order is
chosen equal 2 (r = 2).

Figure 3 represents the time plot of the variable in time parameters of the reduced
order model. Figure 4 shows that the step response of the reduced-order model (order
r = 2) is close to the original system with order n = 4.

6 Conclusion

In this paper, new approaches have been introduced for the model order reduction of LTI
and LTV systems using orthogonal functions as a tool of approximation. The proposed
techniques can be applied to the order simplification of models defined either by an input-
output relation or a state representation. Indeed, the projection of the input, the output
and system variables on an orthogonal functions basis and the use of the operational
matrices of integration and product have permitted the conversion of the system model
from differential equations to algebraic ones. The minimization of the difference between
the algebraic original system description and the algebraic reduced model have allowed
the determination of the reduced order parameters.

Notice that the proposed order reduction techniques constitute an important contri-
bution in the field of dynamical model simplification. These techniques come to reinforce
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Figure 3: Time plots of the reduced order LTV system parameters obtained by the proposed
technique.
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Figure 4: Step responses of the original LTV system, the projected system into Legendre
shifted polynomials and the reduced order LTV model.

the existing approaches, especially in the case of LTV systems where only few methods
with limited efficiency are published on the order reduction subject.

Finally, let us point out that the presented results in this paper are concerned with
linear systems in both cases : time invariant and time variant parameters. However, it
seems that they can be extended to some classes of nonlinear systems as bilinear systems.
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This subject will be considered in our further works.
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the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 14 (5) (1995) 639–649.

[18] Balk, I. On a Passivity of the Arnoldi based model order reduction for full-wave electro-
magnetic modeling IEEE Transactions on Advanced Packaging 24 (3) (2001) 304–308.

[19] Willcox, K., Peraire, J. and White, J. An Arnoldi approach for generation of reduced-order
models for turbomachinery. Computers and Fluids 31 (3) (2002) 369–389.

[20] Willcox, K. and Peraire, J. Balanced model reduction via the proper orthogonal decompo-
sition. AIAA Journal 40 (11) (2002) 2323–2330.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 115–134 133

[21] Gugercin, S. and Antoulas, A.C. Model reduction of large scale systems by least squares.
Linear algebra and its applications 415 (2006) 290–321.

[22] Ebihara, Y. and Hagiwara, T. On H∞ model reduction using LMIs. IEEE Trans. Aut.

Cont. 49 (7) (2004) 1187–1191.

[23] Shokoohi,S., Silverman, L.M. and Van Dooren, P.M. Linear time-variable systems: balanc-
ing and model reduction IEEE Trans. Automat. Contr. 28 (8) (1983) 810–822.

[24] Farhood, M., Beck, C.L. and Dullerud, G.E. Model reduction of periodic systems: A lifting
approach. Automatica. (41) (2005) 1085–1090.

[25] Chen, C. and Hsiao, H. Time-domain synthesis via Walsh functions. IEEE 122 (1975) 565
– 570.

[26] Shih, L.S., Yeung, C.K. and McInis, B.G. Solution of state-space equations via Block-pulse
functions. it Int. J. Contr. 28 (1978) 383–392.

[27] King, R.E. and Paraskevopoulos, P.N. Parametric identification of discrete-time SISO sys-
tems. Int. J. Contr. 30 (1979) 1023–1029.

[28] Paraskevopoulos, P.N. Chebychev series approach to system identification, analysis and
optimal control. J. Frankin. Inst. 316 (1983) 135–157.

[29] Paraskevopoulos, P.N. and Kekkeris, G.Th. Hermite series approach to system identifica-
tion, analysis and optimal control. In: Proc. Meas. Contr. Conf. Vol. 2, Athens Greece,
1983, 146–149.

[30] Paraskevopoulos, P.N. Legendre series approach to identification and analysis of linear
systems. Trans. IEEE. Automat. Contr. AC-30 (6) (1985) 585–589.

[31] Benhadj Braiek, N. Application des fonctions de Walsh and des fonctions modulatrices à
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