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Existence of Almost Periodic Solutions to Some

Singular Differential Equations

M. Arienmughare and T. Diagana ∗

Department of Mathematics, Howard University,

2441 6th Street N.W., Washington, D.C. 20059, USA

Received: March 26, 2012; Revised: January 20, 2013

Abstract: In this paper we make use of the well-known Drazin inverse to study and
obtain the existence of almost periodic solutions to some singular systems of first-
and second-order differential equations with complex coefficients in the case when
the forcing term is almost periodic. In order to illustrate our abstract results, an
example will be discussed at the end of the paper.

Keywords: Drazin inverse; almost periodic; singular system of differential equation;

singular system of second-order differential equation.

Mathematics Subject Classification (2010): 34A30, 34C20.

1 Introduction

Let Cm be the m-dimensional complex space, which we equip with its natural Euclidean
norm | · | and inner product < ·, · >. Let M(m,C) stand for the collection of all m×m-
square matrices with complex entries. If A ∈ M(m,C) then its index which we will
denote by i(A) is the smallest nonnegative integer k such that

rank(Ak) = rank(Ak+1).

If A ∈ M(m,C), then the Drazin inverse AD of A is the matrix X ∈ M(m,C)
satisfying the following three properties:

AX = XA, XAX = X, XAk+1 = Ak,

where k = i(A).

∗ Corresponding author: mailto:tdiagana@howard.edu

c© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1
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2 M. ARIENMUGHARE AND T. DIAGANA

If we denote the zero matrix of Cm by O, and if we assume that the Jordan decom-
position of A ∈M(m,C) is given by

A = T

(

C O

O N

)

T−1,

where C ∈M(r,C) is (nonsingular) invertible and N ∈M(n− r,C) is nilpotent of order
k (Nk = O and Nk−1 6= O), then AD is given by

AD = T

(

C−1 O

O O

)

T−1.

It should be mentioned that if A is nilpotent, then AD = O. Similarly, if A is
(nonsingular) invertible, then AD = A−1. Now, the special case i(A) = 1 is equivalent
to N = O. In this event, AD is called the group inverse of A and is denoted by A#.

The Drazin inverse is a powerful tool when it comes to studying singular systems of
differential equations, singular systems of difference equations, Markov Chains, see for
instance Campbell [6]. For more on the Drazin inverse and related issues we refer the
reader to the landmark books of Campbell [3, 4].

In this paper we make use of the Drazin inverse to study and obtain the existence of
almost periodic solutions to the singular system of differential differential equation

Au′(t) +Bu(t) = f(t), t ∈ R, (1)

where A,B are (possibly singular) m × m-square matrices with complex entries and
f : R 7→ Cm is C(k)-almost periodic with k = i(A) (Theorem 3.5).

Next, we make use of Theorem 3.5 and its consequences to study and obtain the
existence of almost periodic solutions to some general singular systems of second-order
differential equations (Corollary 3.2).

Our work will be heavily based upon that of Campbell [3, 4] on the existence of
solutions to singular systems of differential equations. In particular, we will consider two
important cases. We first consider the case when AB = BA and N(A) ∩ N(B) = {0}.
The second case which will be a consequence of the first one requires the existence of a
λ ∈ C such that (λA+B)−1 exists.

An important assumption that we will make consists of assuming that ADB (respec-
tively, AD

z Bz) is symmetric, has a spectral decomposition, and that σ(ADB) − {0} 6= ∅
with ℜe λ > 0 for all λ ∈ σ(ADB)−{0}. This assumption excludes in particular the case
when ADB (respectively, AD

z Bz) is nilpotent.
The existence of almost periodic solutions to differential equations is one of the most

attractive topics in qualitative theory of differential equations due to applications [1, 8,
10, 11]. However, to the best of the authors knowledge, the existence of almost periodic
solutions to singular systems of differential equations of the form (1) remains an untreated
question, which is the mean motivation of this paper.

This paper is organized as follows. Section 2 will cover almost periodic and C(n)-
almost periodic functions [10]. Section 3 discusses our main results and its consequences.
Section 4 will be devoted to the case of singular systems of second-order differential
equations. In Section 5, we consider an illustrative example.

2 Almost Periodic and C(l)-Almost Periodic Functions

Most of the material of this section is taken from [1, 8, 10]. Let C(R,Cm) stand for the
collection of continuous functions from R into Cm. Define C(l)(R,Cm) as the collection of
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functions f : R 7→ Cm such that f (k) exists and belongs to C(R,Cm) for k = 0, 1, 2, ..., l.
(The symbol f (k) being the k-derivative of f with f (0) corresponding to the continuity
of the function f .)

Define BC(l)(R,Cm) as the collection of all functions f ∈ C(l)(R,Cm) such that

‖f‖(l) := sup
t∈R

l
∑

k=0

|f (k)(t)| <∞.

Clearly, (BC(l)(R,Cm), ‖ · ‖(l)) is a Banach space.

In this paper, the symbols f (0), ‖ · ‖(0), C(0)(R,Cm), BC(0)(R,Cm), and AP (0)(Cm)
stand respectively for f , ‖ · ‖∞, C(R,Cm), BC(R,Cm), and AP (Cm).

2.1 Almost periodic functions

Definition 2.1 [1, 8] (Bor) A function f ∈ C(R,Cm) is called almost periodic if
for each ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a
number τ with the property that |f(t+ τ) − f(t)| < ε for all t ∈ R. The collection of
those functions is denoted by AP (Cm).

Definition 2.2 [1, 8] (Bochner) A continuous function f : R → Cm is said to be
Bochner almost periodic if for every sequence of real numbers (σ′

n)n∈N has a subsequence
(σn)n∈N such that {f(σn + t)} converges uniformly in t ∈ R.

It is well-known that Definition 2.1 and Definition 2.2 are equivalent (see Cor-
duneanu [8]). In what follows we give another equivalent definition using trigonometric
polynomials.

Basic properties of almost periodic functions include the following:

Theorem 2.1 If f : R → Cm is almost periodic, then f is uniformly continuous in

t ∈ R. Moreover, the range R(f) =
{

f(t) : t ∈ R

}

is precompact in Cm.

Corollary 2.1 Any almost periodic function is bounded on R.

Theorem 2.2 If f, g ∈ AP (Cm) and µ ∈ C, then

(i) µf and f ± g belong to AP (Cm).

(ii) If f, g are C-valued, then fg ∈ AP (C).

(iii) If g ∈ AP (C) and inf
t∈R

|g(t)| = m > 0, then
f

g
∈ AP (Cm).

(iv) If h ∈ L1(C), then (h ∗ f), the convolution between h and f defined by

(h ∗ f)(t) =
∫ +∞

−∞

h(s)f(t− s) ds

belongs to AP (Cm).

Theorem 2.3 The space AP (Cm) equipped with the supnorm ‖ · ‖∞ is a Banach
space.
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2.2 C(n)-almost periodic functions

Definition 2.3 A function f ∈ C(l)(R,Cm) is said to be C(l)-almost periodic if
f (k) ∈ AP (Cm) for k = 0, 1, ..., l. The collection of C(l)-almost periodic functions is
denoted by AP (l)(Cm), which turns out to be a Banach space when equipped with the
norm ‖ · ‖(l).

Clearly, the following inclusions hold

... →֒ AP (l+2)(Cm) →֒ AP (l+1)(Cm) →֒ AP (l)(Cm) →֒ ... →֒ AP (1)(Cm) →֒ AP (Cm).

Theorem 2.4 [10] The space AP (l)(Cm) equipped with the norm
∥

∥ ·
∥

∥

(l)
is a Banach

space.

Theorem 2.5 [10] If f ∈ AP (l)(Cm) and if g ∈ L1(C), then their convolution
f ∗ g ∈ AP (l)(Cm).

Proposition 2.1 [10] If (fn)n∈N ⊂ AP (Cm) converges uniformly to f on R, then
f ∈ AP (Cm).

Theorem 2.6 [10] If f ∈ AP (l)(Cm) such that f (l+1) is uniformly continuous, then
f ∈ AP (l+1)(Cm).

3 Existence of Almost Periodic Solutions

In this paper if C ∈ M(m,C), we then denote the collection of its eigenvalues
λ1, λ2, ..., λm by σ(C).

In this section we first recall some of the results obtained by Campbell [5] on the
existence of solutions to Eq. (1). We then make extensive use of those results to study
the existence of almost periodic solutions to Eq. (1) in the case when f ∈ AP (k)(Cm).
We next use the results for Eq. (1) to study the existence of almost periodic solutions to
some general singular second-order differential equations formulated through Eq. (10).

It is well-known that real symmetric matrices can be diagonalized. That is not always
the case for complex symmetric matrices [9].

Definition 3.1 A symmetric matrix C ∈ M(m,C) with r distinct eigenvalues λj is
said to have a spectral decomposition if there exist matrices Pj for j = 1, 2, ..., r such
that

C =

r
∑

j=1

λjPj =

r
∑

j=1,λj 6=0

λjPj , (2)

where PiPj = 0 if i 6= j, and P 2
j = Pj for all i, j = 1, ..., r, and I =

r
∑

j=1

Pj .

This setting requires the following assumptions: let f , A,B ∈ M(m,C) satisfy the
following assumptions:

(H.1) AB = BA.

(H.2) N(A) ∩N(B) = {0}.
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(H.3) f ∈ AP (k)(Cm) where k = i(A).

(H.4) σ∗(ADB) := σ(ADB)− {0} 6= ∅ with ℜeλ > 0 for all λ ∈ σ∗(ADB).

(H.5) ADB is symmetric and has a spectral decomposition.

Remark 3.1 The case when A is non-singular will not be considered here as this is
well-understood. Indeed, if A−1 exists, then Eq. (1) can be written as follows

u′ +B1u = f1, (3)

where B1 = A−1B, and f1 = A−1f .

In the rest of the paper, we associate with Eq. (1), its homogeneous equation given
by

Au′ +Bu = 0. (4)

Theorem 3.1 [5] Under assumption (H.1), u = e−ADBtAADξ is a solution to Eq.
(4) where ξ is an arbitrary vector in Cm.

Proof. Indeed, Au′ = −AADBe−ADBtAADξ = −Be−ADBtAADξ = −Bu. The proof
is complete.

Corollary 3.1 [5] If assumption (H.1) holds and if ADAf = f , then

u = e−ADBt

∫

e−ADBtf(t) dt

is a particular solution to Eq. (1).

Lemma 3.1 [5] If assumptions (H.1)–(H.2) hold, then (I−AAD)BBD = (I−AAD).

Theorem 3.2 [5] If assumptions (H.1)–(H.2) hold, then u = e−ADBtAADξ where
ξ ∈ Cm, is the general solution to Eq. (4).

Theorem 3.3 [5] Suppose (H.1)–(H.2) hold and let k = Ind(A). If f is of class Ck

and Cm-valued, then Eq. (1) is consistent and a particular solution of it is given

u = ADe−ADBt

∫ t

a

eA
DBsf(s) ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l),

where a ∈ R is arbitrary.

Theorem 3.4 [5] Suppose (H.1)–(H.2) hold and let k = Ind(A). If f is of class Ck

and C
m-valued, then the general solution to Eq. (1) is explicitly given by

u = e−ADBtADAξ +ADe−ADBt

∫ t

a

eA
DBsf(s) ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l),

where ξ is arbitrary constant vector, and a ∈ R is arbitrary.
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Lemma 3.2 If C ∈ M(n,C) is symmetric, has a spectral decomposition, and
σ∗(C) 6= ∅ with ℜeλ > 0 for all λ ∈ σ∗(C), then there exist M > 0 and ω > 0 such that

‖e−tC‖ ≤Me−ωt

for t ≥ 0.

Proof. Using Definition 3.1, one can write C =

r
∑

j=1

λjPj =

r
∑

j=1, λj 6=0

λjPj and hence

e−tC =

r
∑

j=1, λj∈σ∗(C)

e−λjtPj , t ≥ 0.

Now

‖e−tC‖ = ‖
r

∑

j=1, λj∈σ∗(C)

e−λjtPj‖ ≤
r

∑

j=1, λj∈σ∗(C)

e−ℜe λjt‖Pj‖

≤
r

∑

j=1, λj∈σ∗(C)

e−ωt‖Pj‖ ≤Me−ωt

for t ≥ 0, where ω = min{ℜeλj : λj 6= 0, j = 1, 2, ..., r} and M =
∑r

j=1 ‖Pj‖ <∞.

Lemma 3.3 Suppose (H.1)–(H.2) hold. Then all the solutions to Eq. (4) on the real
number line R are of the form

w0(t) = e−ADB(t−s)w0(s) for all t, s ∈ R, t ≥ s. (5)

Proof. Let w be an arbitrary solution to Eq. (4). Now from Theorem 3.2, it follows

that the solution w can be written as w(t) = e−ADBtAADξ where ξ ∈ Cn is an arbitrary

vector. Similarly, w(s) = e−ADBsAADξ. Thus for t ≥ s,

e−ADB(t−s)w(s) = e−ADB(t−s)e−ADBsAADξ = e−ADBtAADξ = w(t).

Theorem 3.5 Under assumptions (H.1)–(H.2)–(H.3)–(H.4)–(H.5), Eq. (1) has a
unique almost periodic solution which is explicitly given by

u0(t) = AD

∫ t

−∞

e−ADB(t−s)f(s)ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t) (6)

for all t ∈ R.

Proof. We first show that the function u0 given by

u0(t) = AD

∫ t

−∞

e−ADB(t−s)f(s)ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t), t ∈ R,
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is a solution to Eq. (1). Indeed,

Au′0(t) = −AADADB

∫ t

−∞

e−ADB(t−s)f(s)ds+AADe−ADBteA
DBtf(t)

+ A(I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l+1)(t)

= −AADADB

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)
k−1
∑

l=0

(−1)l(ABD)l+1f (l+1)(t)

= −B(ADAAD)

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)[

k−2
∑

l=0

(−1)l(ABD)l+1f (l+1)(t) + (−1)k−1(ABD)k−1+1f (k−1+1)(t)]

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)[

k−2
∑

l=0

(−1)l(ABD)l+1f (l+1)(t) + 0]

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

− (I −AAD)

k−2
∑

l=0

(−1)l+1(ABD)l+1f (l+1)(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

j=1

(−1)j(ABD)jf (j)(t) +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)[

k−1
∑

j=0

(−1)j(ABD)jf (j)(t)− f(t)] +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

j=0

(−1)j(ABD)jf (j)(t) + (I −AAD)f(t) +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lf (l)(t) + f(t)

(7)
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= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABDBBD)lf (l)(t) + f(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)l(BBD)lf (j)(t) + f(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)
k−1
∑

l=0

(−1)l(ABD)l(BBD)f (l)(t) + f(t)

= −B[AD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)] + f(t) = −Bu0(t) + f(t),

and hence u0(t) is a solution to Eq. (1).
We next show that u0 given above is bounded. Indeed, since by assumption Reλ > 0

for all λ ∈ σ(ADB) − {0}, then using Lemma 3.2 it follows that there exist M > 0 and
ω > 0 such that

‖e−tADB‖ ≤Me−ωt, t ≥ 0.

First of all, note that

∣

∣

∣

∣

∣

(I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)

∣

∣

∣

∣

∣

≤
(

1 + ‖AAD‖
)

‖f‖(k)
k−1
∑

l=0

‖ABD‖l‖BD‖ <∞,

where ‖f‖(k) = sup
t∈R

k
∑

l=0

|f (l)(t)| <∞ as f ∈ AP (k)(Cm). Similarly,

∣

∣

∣

∣

AD

∫ t

−∞

e−ADB(t−s)f(s)ds

∣

∣

∣

∣

≤ ||AD||
∫ t

−∞

||e−ADB(t−s)|| · |f(s)|ds

≤ ||AD|| · ||f ||∞
∫ t

−∞

Me−ω(t−s)ds

= M ||AD|| · ||f ||∞ω−1 <∞

and hence u0 ∈ BC(R,Cm).
The next step consists of showing that the function u0 given above is the unique

(bounded) solution to Eq. (1). Indeed, suppose u1, u2 ∈ BC(R,Cm) are two solutions
to Eq. (1). Thus w = u1 − u2 ∈ BC(R,Cm) is a solution to Eq. (4). Using Lemma 3.3

it follows that w(t) = e−ADB(t−s)w(s) for t ≥ s.
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Now

|w(t)| = |e−ADB(t−s)w(s)|
≤ Me−ω(t−s) · |w(s)|
≤ Me−ω(t−s) · ‖w‖∞ for all t ≥ s.

Now let (sl)l∈N be a sequence of real numbers such that sl → −∞ as l → ∞. Clearly,
for any fixed t ∈ R, there exists a subsequence (slp)p∈N of (sl)l∈N such that slp < t for
all p ∈ N. In view of the above, letting p → ∞ yields w(t) = 0 for all t ∈ R. Therefore,
u1 = u2.

We next show that the function u0 given above is almost periodic. Indeed, since
f ∈ AP (k)(Cm) and all the operators involved in the sum

ϕ(t) := (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)

are matrices (hence are bounded linear operators), it follows that t 7→ ϕ(t) ∈
AP (k)(Cn) ⊂ AP (Cm).

Now since f ∈ AP (Cm), it follows that for all ε > 0 there exists l(ε) > 0 such that
every interval of length l(ε) > 0 contains a τ with the property

|f(t+ τ)− f(t)| ≤ εω

M‖AD‖
for all t ∈ R.

Now setting ψ(t) := AD

∫ t

−∞

e−ADB(t−s)f(s)ds it follows that

|ψ(t+ τ)− ψ(t)| ≤ ‖AD‖ · |
∫ t+τ

−∞

e−ADB(t+τ−s)f(s)ds−
∫ t

−∞

e−ADB(t−s)f(s)ds|

= ‖AD‖ · |
∫ t

−∞

e−ADB(t−s) (f(s+ τ)− f(s)) ds|

≤ ‖AD‖ · εω

M‖AD‖

∫ t

−∞

‖e−ADB(t−s)‖ds

≤ εω

M
M

∫ t

−∞

e−ω(t−s)ds

= ε

and hence ψ ∈ AP (Cm) which yields u0 = ϕ+ ψ ∈ AP (Cm).

We now consider the case when A and B may or may not commute. Moreover, both
A and B can be taken nonsingular. In what follows, we set

ρA,B = {λ ∈ C : (λA+B)−1 exists}.
If λ ∈ ρA,B, we also set

Aλ = (λA+B)−1A, Bλ = (λA +B)−1B, and fλ = (λA+B)−1f.

Consider

Azu
′ +Bzu = fz, t ∈ R. (8)
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Corollary 3.2 Suppose ρA,B 6= ∅. Let z ∈ ρA,B such that AD
z Bz is symmetric, has

a spectral decomposition, σ∗(AD
z Bz) 6= ∅ with Reλ > 0 for all λ ∈ σ∗(AD

z Bz). Moreover,
we suppose that f ∈ AP (k)(Cm) with i(Az) = k. Then Eq. (8) has a unique almost
periodic solution which is explicitly given by

uz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)fz(s)ds+ (I −AzA

D
z )

k−1
∑

l=0

(−1)l(AzB
D
z )lBD

z f
(l)
z (t) (9)

for all t ∈ R.
Therefore, Eq. (1) has a unique almost periodic solution.

Proof. Since ρA,B 6= ∅, suppose ρA,B contains a z ∈ C. To complete the proof we
have to show that Eq. (8) has a unique almost periodic solution. For that, we have to
show that assumptions (H.1)–(H.2)—(H.3) are fulfilled when A is replaced with Az , B
with Bz, and f with fz.

Let us first show that Az and Bz commute. This is based upon the fact zAz+Bz = I,

which yields Bz = I − zAz.
Now

AzBz = Az(I − zAz) = Az − zA2
z and BzAz = (I − zAz)Az = Az − zA2

z.

We next show that N(Az) ∩N(Bz) = {0}. First of all, note that

N(Az) ∩N(Bz) = N(A) ∩N(B).

Now, if u ∈ N(A)∩N(B), then (zA+B)u = 0, which yields (zA+B)−1(zA+B)u =
u = 0. Therefore, N(A) ∩N(B) = {0}.

Since f ∈ AP (k)(Cm), it easy follows that fz ∈ AP (k)(Cm).

To complete the proof it suffices to apply Theorem 3.5 to the case when A replaced
by Az, B with Bz, and f with fz. Doing so yields the existence and uniqueness of an
almost periodic solution to Eq. (8), which is explicitly given by

uz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)fz(s)ds+(I−AzA

D
z )

k−1
∑

m=0

(−1)m(AzB
D
z )mBD

z f
(m)
z (t), t ∈ R.

Therefore, Eq. (1) has a unique almost periodic solution.

4 Second-Order Singular Differential Equations

In this Section we study and obtain the existence of almost periodic solutions to the
singular system of second-order differential differential equations given by

Au′′(t) +Bu′(t) + Cu(t) = f(t), t ∈ R, (10)

where A,B,C (possibly singular) are m ×m-square matrices with complex entries and
f : R 7→ C

m is C(k)-almost periodic with k = i(A). For that, our strategy consists of
following the work of Campbell [3, p. 161] and rewriting Eq. (10) as a first-order singular
differential equation and making extensive use of the results of the previous Section to
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establish the existence and uniqueness of an almost periodic solution to Eq. (10). Indeed,
assuming that u : R 7→ Cm is twice differentiable and setting

w :=
( u

u′

)

,

then Eq. (10) can be rewritten on Cm × Cm in the following form

Aw′(t) + Bw = F(t), t ∈ R, (11)

where A, B, and F are defined by

A =

(

B A

I 0

)

, B =

(

C O

O −I

)

, and F =

(

f

O

)

.

Let ρA,B = {λ ∈ C : (λA+ B)−1 exists}. If λ ∈ ρA,B, we then set

Aλ = (λA + B)−1A, Bλ = (λA + B)−1B, and Fλ = (λA+ B)−1F .

Consider

Azw
′ + Bzw = Fz, t ∈ R. (12)

Corollary 4.1 Suppose ρA,B 6= ∅. Let z ∈ ρA,B such that AD
z Bz is symmetric, has

a spectral decomposition, and σ∗(AD
z Bz) 6= ∅ such that Reλ > 0 for all λ ∈ σ∗(AD

z Bz).
Moreover, we suppose F ∈ AP (k)(Cm ×Cm) with k = i(A). Then Eq. (12) has a unique
almost periodic solution which is explicitly given by

wz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)Fz(s)ds+ (I −AzAD

z )

k−1
∑

l=0

(−1)l(AzBD
z )lBD

z F (l)
z (t) (13)

for all t ∈ R.
Therefore, Eq. (10) has a unique almost periodic solution u. Moreover, since u, u′ ∈

AP (Cm), it follows that u ∈ AP (1)(Cm).

The proof of Corollary 4.1 follows along the same lines as that of Corollary 3.2 and
hence is omitted.

5 Example

In this section we give an example to illustrate Theorem 3.5. For that, let m = 3 and fix
α, β, γ ∈ C such that ℜe α > 0, ℜe β > 0, and ℜe γ > 0.

Consider the singular system of differential equations given by











αu′(t) + βv′(t) + αu(t) + βv(t) = sin t+ i sin
√
2t,

αv′(t) + αv(t) = cos t+ i cosπt,

γw(t) = cos t+ i sin
√
3t,

(14)

for all t ∈ R.



12 M. ARIENMUGHARE AND T. DIAGANA

Clearly the matrices A,B ∈M(3,C) and f : R 7→ C3 associated with the system Eq.
(14) are given by

A =





α β 0
0 α 0
0 0 0



 , B =





α β 0
0 α 0
0 0 γ



 , and f(t) =





sin t+ i sin
√
2t

cos t+ i cosπt

cos t+ i sin
√
3t



 .

Moreover, assumptions (H.1)–(H.2), (H.4)–(H.5) hold as

AD =





1
α

− β
α2 0

0 1
α

0
0 0 0



 , and ADB =





1 0 0
0 1 0
0 0 0



 is symmetric with σ∗(ADB) = {1}.

Furthermore, i(A) = 1 and f ∈ AP (1)(C3). Therefore, from Theorem 3.5 the singular
system of first-order differential equation

Az′(t) +Bz(t) = f(t), t ∈ R,

has a unique almost periodic solution, that is,

zα,β,γ(t) =





u(t)
v(t)
w(t)



 ∈ AP (C3).
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1 Introduction

The method of integral inequalities of motion stability theory (see [8,9] and bibliography
therein) has been developed in terms of linear and nonlinear integral inequalities treated
in numerous papers (see [2,14] and bibliography therein). Appearance of dynamic equa-
tions on time scale [6] gave an impetus to the investigations in the theory of dynamic
integral inequalities (see [3] and bibliography therein). The inequalities of Gronwall -
Bellman type established by now and some types of nonlinear inequalities (see [4]) have
been applied in the stability analysis of solutions to dynamic equations on time scale.
It is of interest to further generalize nonlinear dynamic inequality of Stakhursky type
(see [4, 10, 13]) for dynamic equations in the case of arbitrary real nonlinearity expo-
nent larger than one. Such generalization makes possible the analysis of various types of
stability of zero solution for a new class of quasilinear dynamic equations.
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In the present paper a new nonlinear dynamic integral inequality is obtained in view
of the results of [10]. The new inequality is applied to establish sufficient conditions
for stability, uniform stability and asymptotic stability of trivial solutions to a class of
quasilinear dynamic equations. All the necessary information from the mathematical
analysis on time scale can be found in monographs [3, 7] or paper [4] and so is omitted
here.

2 Statement of the Problem

Consider a quasilinear dynamic equation of the type

x∆ = A(t)x + f(t, x), f(t, 0) = 0, (1)

where x ∈ Rn, t ∈ T, and the matrix-valued function A : T → Rn×n and the vector-
function f : T× Rn → Rn satisfy the following hypotheses:

(H1) functions A(t) and f(t, x) are rd-continuous and A ∈ R(T,Rn×n);

(H2) function f(t, x) satisfies Lipschitz condition with respect to spatial variable in Rn,
i.e. there exists L > 0 such that

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, for all (t, x1), (t, x2) ∈ T× R
n; (2)

(H3) there exist functions α(t), ϕ(t), ψ(t) ∈ Crd(T,R+) and a constant m > 1 such that:

(a) ‖f(t, x)‖ ≤ α(t)‖x‖m;

(b) ‖eA(t, t0)‖ ≤ ϕ(t)ψ(t0),

for all t ≥ t0, belonging to T, and x ∈ Rn, where eA(t, t0) denotes the matrix
exponential function [3] of the linear dynamic equation: x∆ = A(t)x.

It should be noted that the conditions of hypotheses (H1) and (H2) ensure existence
and uniqueness of solution for the dynamic equation with given initial conditions. Fur-
ther, under hypotheses (H1) — (H3), we investigate the problem on stability, uniform
stability and asymptotic stability of zero solution for dynamic equation (1). For quasi-
linear systems of ordinary differential equations of (1) type the conditions similar to
condition (a) for integer nonlinearity exponents have been considered in a number of
papers (see [5], p.266-270, [7], [12] and bibliography therein).

3 Generalized Nonlinear Dynamic Inequality

Nonlinear dynamic inequality has been a subject of investigation in paper [4] for the inte-
ger nonlinearity exponents larger than one. Here we deal with a more general situation.

Let µ(t) be a graininess function on the time scale T. The following assertion holds.

Lemma 3.1 Assume that the functions a(t), b(t) are positive rd-continuous on T,

the function h(t) is nonnegative rd-continuous on T and m > 1 is a real number. If the

function
a(t)
b(t) is non-decreasing on T, for any function u(t), satisfying the inequality

u(t) ≤ a(t) + b(t)

t
∫

t0

h(s)um(s)∆s, t ≥ t0, (3)
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the estimate

u(t) ≤ a(t)
[

1 +
t
∫

t0

am−1(σ(s)) − (a(σ(s)) + µ(s)b(σ(s))am(s)h(s))m−1

µ(s)(a(σ(s)) + µ(s)b(σ(s))am(s)h(s))m−1
∆s
]

1

m−1

(4)

is valid on the interval [t0,˜t), where ˜t is the first point from the interval [t0,+∞) ∩ T,

at which the denominator base number in the right-hand part of inequality (4) becomes

non-positive.

Proof. Assume that the function u(t) satisfies inequality (3) which is written as

u(t) ≤ a(t)
(

1 +
b(t)

a(t)

t
∫

t0

h(s)um(s)∆s
)

= a(t)w(t), for all t ≥ t0.

According to the rule of ∆-differentiation of a product of two functions, we have for w(t):

w∆(t) =
( b(t)

a(t)

)∆
t
∫

t0

h(s)um(s)∆s+
( b(t)

a(t)

)σ

h(t)um(t) ≤ b(σ(t))

a(σ(t))
h(t)um(t),

due to the function b(t)/a(t) decreasing. Further

w∆(t) ≤ b(σ(t))

a(σ(t))
h(t)um(t) ≤ b(σ(t))

a(σ(t))
h(t)am(t)wm(t) = r(t)wm(t),

for all t ≥ t0. Consider the dynamic comparison equation

v∆(t) = r(t)vm(t) (5)

and study the behavior of its solution starting from the point v(t0) = 1 + ε, where
ε > 0 is a sufficiently small number. To this end in (5) we make the change of variable
ξ(t) = v1−m(t), and by definition of ∆-derivative of a function obtain

ξ∆(t) =
ξ(σ(t)) − ξ(t)

µ(t)
=
v1−m(σ(t)) − v1−m(t)

µ(t)
=

=
(v(t) + µ(t)v∆(t))1−m − v1−m(t)

µ(t)
=
v1−m(t)

µ(t)

((

1 + µ(t)
v∆(t)

v(t)

)1−m

− 1
)

=

=
v1−m(t)

µ(t)

(

(1 + µ(t)r(t)v1−m(t))1−m − 1
)

=
ξ(t)

µ(t)

((

1 +
µ(t)r(t)

ξ(t)

)1−m

− 1
)

≡

≡ F (t, ξ), ξ(t0) = (1 + ε)1−m.

Besides, it is assumed that the expression ξ(σ(t))−ξ(t)
µ(t) in the case µ(t) = 0 is equal to the

limit lim
τ→0

ξ(t+τ)−ξ(t)
τ

. Further we find that

∂F (t, ξ)

∂ξ
=

1

µ(t)

(

1 + mµ(t)r(t)
ξ

−
(

1 + µ(t)r(t)
ξ

)m

(

1 + µ(t)r(t)
ξ

)m

)

≤ 0,
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for all t ∈ [t0,+∞), i.e. the function F (t, ·) does not increase on the set (0,+∞). Since
ξ(t) ∈ (0, 1) for all t ∈ [t0,+∞) (due to connection with the function v(t)), for the
indicated values of t the chain of inequalities holds true

F (t, 0) ≥ F (t, ξ(t)) ≥ F (t, 1) > F (t,∞). (6)

We find that F (t, 1) = (1+µ(t)r(t))1−m−1
µ(t) . It is easy to verify that the function F (t, ξ)

satisfies all conditions of the theorem on existence and uniqueness of solution to Cauchy
problem for dynamic equation on time scale (see [6]). Therefore, the Cauchy problem

ξ∆(t) = F (t, ξ(t)), ξ(t0) = (1 + ε)1−m

possesses the only solution ξ(t), which can be presented in the integral form

ξ(t) = (1 + ε)1−m +

t
∫

t0

F (s, ξ(s))∆s. (7)

Further, using formula (7) and inequalities (6) we arrive at the estimate

ξ(t) = (1 + ε)1−m +

t
∫

t0

F (s, ξ(s))∆s ≥ (1 + ε)1−m +

t
∫

t0

F (s, 1)∆s =

= (1 + ε)1−m +

t
∫

t0

(1 + µ(s)r(s))1−m − 1

µ(s)
∆s,

(8)

which is valid for all t ∈ [t0,˜t). For the values of t from the scale T the expression in the
right-hand part of inequality (8) is positive by Lemma 3.1, and therefore, inequality (8)
is equivalent to the inequality

v(t) = v(t; t0, 1 + ε) ≤
(

(1 + ε)1−m +

t
∫

t0

(1 + µ(s)r(s))1−m − 1

µ(s)
∆s

)
1

1−m

,

for all t ∈ [t0,˜t).
In view of the comparison principle [6] and the passage to the limit for ε→ 0 we get

inequality (4). Lemma 3.1 is proved. ✷

Designate h(t) = ψ(σ(t))ϕm(t)α(t),

D(t, a, ρ) =

t
∫

a

1

µ(s)

(

1− 1

(1 + µ(s)h(s)ψm−1(a)ρm−1)m−1

)

∆s.

The following lemma provides estimate of solution to equation (1) by means of inequality
(4).

Lemma 3.2 For equation (1) let hypotheses (H1) — (H3) be satisfied. Then for

arbitrary t0 ∈ T and x0 ∈ R
n the following estimate of solution x(t; t0, x0) to equation

(1) holds

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

, (9)

for all t ∈ [t0,+∞) ∩ T, for which D(t, t0, ‖x0‖) < 1.
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Proof. As noted, hypotheses (H1) — (H2) ensure the existence and uniqueness of
solution x(t; t0, x0) to equation (1) found by the Cauchy formula [6]:

x(t; t0, x0) = eA(t, t0)x0 +

t
∫

t0

eA(t, σ(s))f(s, x(s; t0, x0))∆s, (10)

where the integration is made on the scale T within the limits from t0 to t. From (10)
and hypothesis (H3) we have the estimate of the norm x(t; t0, x0) (further denoted as
x(t))

‖x(t)‖ ≤ ϕ(t)ψ(t0)‖x0‖+
t
∫

t0

ϕ(t)ψ(σ(s))α(s)‖x(s)‖m∆s.

Having designated u(t) = ‖x(t)‖
ϕ(t) , a(t) = ψ(t0)‖x0‖, we get the inequality

u(t) ≤ a(t) +

t
∫

t0

h(s)um(s)∆s, t ≥ t0.

Since the functions in this inequality satisfy all conditions of Lemma 3.1, we get the
estimate

u(t) ≤ a(t)
(

1−D(t, t0, ‖x0‖)
)1/1−m

,

which is valid for all t, such that D(t, t0, ‖x0‖) < 1. Lemma 3.2 is proved. ✷

4 Stability Analysis of Quasilinear System.

In this section sufficient conditions of stability, uniform stability and asymptotic stability
of zero solution to dynamic equations of (1) type are established in terms of generalized
nonlinear dynamic inequality.

Theorem 4.1 If for equation (1) for all s ≥ t0 there exists K(s) such that ϕ(t) ≤
K(s) for all t ≥ s ≥ t0 and

˜D(t0, ρ) = lim
t→∞

D(t, t0, ρ) <∞, (11)

for all t0 ∈ T and ρ > 0, the solution x = 0 of equation (1) is stable.

Proof. We study properties of the function D(t, a, ρ), defined above. Direct com-
putation gives that the function D(t, a, ·) increases on the set R+, uniformly in t and a.

Consequently, the function ˜D(a, ·) from (11) does not decrease on R+, uniformly in a,

and, moreover, ˜D(a, 0) = 0. Then, for some λ ∈ (0, 1) the equation ˜D(a, ρ) = λ possesses
the largest solution ρ = ρλ(a) for all a ∈ T. We consider λ1 to be the largest of the
mentioned ones.

Then consider the function G(t, a, ρ) = ρ
(

1−D(t, a, ρ)
)

1

1−m

. We find that

∂G

∂ρ
=
(

1−D
)

m
m−1

(

1−D +
ρ

m− 1
· ∂D
∂ρ

)

=
(

1−D
)

m
m−1

(1−G1), (12)
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where G1(t, a, ρ) = D(t, a, ρ)− ρ
m−1 · ∂D(t,a,ρ)

∂ρ
. Having computed the derivative ∂G1

∂ρ
, we

make sure that the function G1(t, a, ·) does not decrease on R+, uniformly in t and a as
well.

It can be easily seen that the function ˜G1(a, ρ) = ˜D(a, ρ) − ρ
m−1 · ∂D̃(a,ρ)

∂ρ
does not

decrease in the second argument on the set R+, uniformly in a, and ˜G1(a, 0) = 0. Then,
there exists the largest value ω1 of the parameter ω from the interval (0, 1], such that

the equation ˜G1(a, ρ) = ω possesses the largest solution ρ = ρω(a) for all a ∈ T.

Also, for the derivative ∂G̃
∂ρ

of the function ˜G(a, ρ) = ρ
(

1 − ˜D(a, ρ)
)

1

1−m

make sure

that an equality similar to (12) takes place

∂ ˜G

∂ρ
=
(

1− ˜D
)

m
m−1

(

1− ˜D +
ρ

m− 1
· ∂
˜D

∂ρ

)

=
(

1− ˜D
)

m
m−1

(1− ˜G1). (13)

Proceeding from the above arguments we find that on the set ρ ∈ (0, ρω1
(a)] the derivative

∂G̃
∂ρ

is nonnegative for all a ∈ T, and hence, the function ˜G(a, ·) is nondecreasing.
Now let us choose some ε > 0 and t0 ∈ T. Designate by ξ1 the largest value of

the parameter ξ from the interval (0, ε/ψ(t0)K(t0)), such that the equation ˜G(a, ρ) = ξ

possesses the largest solution ρ = ρξ(a), not larger than ρω1
(a) for all a ∈ T. Set

δ = min{ρλ1
(t0), ρξ1(t0)} and show that if ‖x0‖ < δ, then ‖x(t, t0, x0)‖ < ε, for all

t ≥ t0.
By the condition of the theorem for all t ≥ t0 from the scale we have

D(t, t0, ‖x0‖) ≤ lim
t→∞

D(t, t0, ‖x0‖) = ˜D(t0, ‖x0‖). (14)

Since it is proved that the function ˜D(a, ·) does not decrease on R+, inequalities (14) can
be continued as

D(t, t0, ‖x0‖) ≤ ˜D(t0, δ) ≤ ˜D(t0, ρλ1
(t0)) = λ1 < 1. (15)

From (15) we conclude that by Lemma 3.2 for all t ≥ t0 from the scale estimate (9)

is valid. Using (9), the established properties of functions D, ˜D, ˜G and the method of
choosing of δ, we arrive at the estimates

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

≤

≤ K(t0)ψ(t0)‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

≤

≤ K(t0)ψ(t0)‖x0‖
[

1− ˜D(t0, ‖x0‖)
]1/1−m

= K(t0)ψ(t0) ˜G(t0, ‖x0‖) ≤

≤ K(t0)ψ(t0) ˜G(t0, δ) ≤ K(t0)ψ(t0) ˜G(t0, ρξ1(t0)) = K(t0)ψ(t0)ξ1 ≤
≤ K(t0)ψ(t0)ξ < K(t0)ψ(t0)

ε

K(t0)ψ(t0)
= ε,

which are valid for all t ≥ t0 from the scale. This completes the proof. ✷

Theorem 4.2 If for equation (1) there exist a positive constant K1 and a continuous

nondecreasing function K2(ρ) such that ϕ(t)ψ(s) ≤ K1 for all t ≥ s ≥ t0 and

˜D(s, ρ) = lim
t→∞

D(t, s, ρ) ≤ K2(ρ),

for all s ≥ t0 ρ > 0, then solution x = 0 of equation (1) is uniformly stable.
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Proof. Let ε > 0, t0 ∈ T. Due to the properties of function K2(ρ) there exists
a value of the parameter η from the interval (0, 12 ] such that the equation K2(ρ) = η

possesses the largest solution ρ(η). Designate by η1 the largest of the mentioned values

of parameter η. We set δ = min{ρ(η1), ε(2
1

m−1 k1)
−1} and show that if ‖x0‖ < δ, then

‖x(t; t0, x0)‖ < ε, for all t ≥ t0.
By the condition of the theorem, for all t ≥ t0 from the time scale we have

D(t, t0, ‖x0‖) ≤ lim
t→∞

D(t, t0, ‖x0‖) ≤ K2(‖x0‖) < k2(δ) << K2(ρ(η1)) = η1 ≤ 1

2
< 1.

(16)
From (16) we conclude that estimate (9) is fulfilled for all t ≥ t0 from the time scale.
Therefore,

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

≤

≤ K1‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

≤ K1‖x0‖
[

1− ˜D(t0, ‖x0‖)
]1/1−m

≤

≤ K1‖x0‖
(

1−K2(‖x0‖)
)1/1−m

< K1δ2
1

m−1 ≤ ε,

for all t ≥ t0 from the scale. The theorem is proved. ✷

Theorem 4.3 If for equation (1) the conditions

˜D(s, ρ) = lim
t→∞

D(t, s, ρ) <∞,

are satisfied for all s ≥ t0 and ρ > 0, and lim
t→∞

ϕ(t) = 0, then the solution x = 0

of equation (1) is asymptotically stable. Besides, the domain of attraction of solution

x = 0 contains a sphere B(0, ρλ(t0)), where ρλ(t0) is the largest solution of the equation
˜D(t0, ρ) = λ, λ ∈ (0, 1).

Proof. Let ε > 0, t0 ∈ T. Since the value of function ϕ(t) vanishes for t → ∞, the
function is bounded. Then, by Theorem 4.2 the solution x = 0 of equation (1) is stable.
Let us show that there exists a δ0 > 0 such that if ‖x0‖ < δ0, then the limit equality
lim

t→+∞
‖x(t; t0, x0)‖ = 0 holds true. It can be easily verified that the function D(t, s, ρ)

increases in the last variable on R+. Therefore, the function ˜D(s, ρ) does not decrease

in ρ on R+. Then, there exists a λ ∈ (0, 1), for which the equation ˜D(a, ρ) = λ possesses
the largest solution designated by ρλ(a). We set δ0 = ρλ(t0), then for all t ≥ t0 and
‖x0‖ < δ0 the following inequalities hold true

D(t, t0, ‖x0‖) ≤ ˜D(t0, ‖x0‖) ≤ ˜D(t0, δ0) = λ < 1.

By Lemma 3.2 for solution x(t; t0, x0) of equation (1) estimate (9) is valid. Using the
above inequality and inequality (9) we get

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[

1−D(t, t0, ‖x0‖)
]1/1−m

≤

≤ ϕ(t)ψ(t0)‖x0‖
[

1− ˜D(t0, ‖x0‖)
]1/1−m

<

< ϕ(t)ψ(t0)δ0

[

1− ˜D(t0, δ0)
]1/1−m

→ 0,
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whenever t→ ∞.
Thus, the neighborhood of the point x = 0 with the radius ρλ(t0) is contained in the

domain of attraction of the solution x = 0 of equation (1). ✷

5 Applications

Consider system of dynamic equations (1) on time scale, satisfying hypotheses (H1) —
(H3) for any real m > 1, for the following values of functions ϕ(t), ψ(t), α(t) :

ϕ(t) =Meλ(t, 0), ψ(t) = eλ(0, t), α(t) = Aeγ(t, 0). (17)

Here A and M are positive constants and the real numbers λ and γ satisfy positive
regressivity conditions [3]

1 + µ(t)λ > 0, 1 + µ(t)γ > 0, for all t ∈ T. (18)

Assume that the scale T has a bounded graininess function µ(t) (i.e. there exists
µ∗ ≥ 0 v µ(t) ≤ µ∗ for all t ∈ T) and for arbitrary integrable function f(t) and any scale
segment 〈a, b〉 the representation

b
∫

a

f(t)∆t =
∑

i

bi
∫

ai

f(t)dt+
∑

k

f(tk)µ(tk), (19)

is valid, where the segments 〈ai, bi〉 and the points tk belong to 〈a, b〉.
Applying Theorem 4.3 one can easily establish additional conditions, which the con-

stants λ and γ must satisfy to, so that the solution x = 0 of equation (1) be asymp-
totically stable under assumptions (17) and (18). Such result is contained in Corollary
5.1. Recall that for any function F = F (µ(t)) under consideration it is assumed that
F (0) = lim

µ→0
F (µ) if the value F (0) is not defined.

Corollary 5.1 Let equation (1) satisfy assumptions (H1) — (H3), and the functions

ϕ(t), ψ(t) and α(t) from these assumptions, in their turn, satisfy assumptions (17) and

(18). Then, if there exist positive constants δ1, δ2, δ3 such that for all t ∈ T the following

conditions are fulfilled:

1) ln(1 + µ(t)λ)
1

µ(t) ≤ −δ1;

2) ln
(

(1 + µ(t)λ)m−1(1 + µ(t)γ)
)

1

µ(t) ≤ −δ2;

3) 1 + µ(t)λ ≥ δ3,

then the solution x = 0 of equation (1) is asymptotically stable.

Proof. Since by the definition of an exponential function ϕ(t) = Meλ(t, 0) =

Mexp
{ t
∫

0

Log(1+µ(s)λ)
µ(s) ∆s

}

, where Log is the main logarithmic function (if µ(s) = 0,

then the integrand equals to λ by definition), due to (18) we have ϕ(t) = Meλ(t, 0) =

Mexp
{ t
∫

0

ln(1+µ(s)λ)
µ(s) ∆s

}

. According to condition 1) of Corollary 5.1 we find that
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ϕ(t) ≤ Me−tδ1 → 0, for t → ∞. Consider further the integrand R(t, a, ρ) =
1
µ(t)

(

1 − 1
(1+µ(t)h(t)ψm−1(a)ρm−1)m−1

)

of the integral in the expression for D(t, a, ρ). If

the inequality µ(t)h(t)ψm−1(a)ρm−1 < 1 is fulfilled, then the function R(t, a, ρ) can be
presented in the form of a sum of the convergent series

R(t, a, ρ) =
1

µ(t)

(

1−
∞
∑

k=0

(1−m)(−m) · ... · (2−m− k)

k!
×

×
(

µ(t)h(t)ψm−1(a)ρm−1
)k)

= −
∞
∑

k=1

(1−m)(−m) · ... · (2−m− k)

k!
×

×µk−1(t)(h(t)ψm−1(a)ρm−1)k =

∞
∑

k=1

rk(t).

(20)

We shall establish conditions under which the series in (20) converges uniformly in t. To
this end we find a convergent numerical series majorizing the series in (20). In view of
assumptions (17) and (18) and the properties of exponential functions we find that

|µk−1(t)hk(t)| = |µk−1(t)ψk(σ(t))ϕkm(t)αk(t)| =
= AkMkmµk−1(t)ekλ(0, σ(t))e

km
λ (t, 0)ekγ(t, 0) = AkMkmµk−1(t)×

×
ekmλ (t, 0)ekγ(t, 0)

ekλ(t, 0)e
k
λ(σ(t), t)

= AkMkmµ
k−1(t)eβ(t, 0)

(1 + µ(t)λ)k
,

where β(t) = 1
µ(t)

(

(1 + µ(t)λ)k(m−1)(1 + µ(t)γ)k − 1
)

. We estimate the expression

obtained for |µk−1(t)hk(t)| in view of conditions 1) – 2) of Corollary 5.1:

|µk−1(t)hk(t)| ≤ AkMkm µk−1(t)

(1 + µ(t)λ)k
×

×exp
{

t
∫

0

ln(1 + µ(s)λ)k(m−1)(1 + µ(s)γ)k

µ(s)
∆s
}

≤

≤ AkMkm (µ∗)k−1

δk3
exp
{

t
∫

0

−kδ2∆s
}

=
AkMkm(µ∗)k−1

δk3
e−ktδ2 ,

for all t ∈ T. The obtained estimate implies that when choosing the values of the
parameter ρ from sufficiently small neighborhood of zero, the series in (20) is uniformly
convergent in t, therefore, by the theorem from [11] the series for R(t, a, ρ) allows the
term-by-term integration. As a result, we have

D(t, a, ρ) =

t
∫

a

R(s, a, ρ)∆s =

t
∫

a

∞
∑

k=1

rk(s)∆s =

∞
∑

k=1

t
∫

a

rk(s)∆s.
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∣

∣

∣

t
∫

a

rk(s)∆s
∣

∣

∣ ≤ 1

δk3k!
AkMkm|(1−m)(−m) · ... · (2−m− k)|×

×(ψm−1(a)ρm−1)k
t
∫

a

exp
{

k

s
∫

0

ln(1 + µ(τ)λ)k(m−1)(1 + µ(τ)γ)k

µ(s)
∆τ
}

∆s ≤

≤ r̃k

t
∫

a

µk−1(s)e−ksδ2∆s.

The integral Ik =
t
∫

a

µk−1(s)e−ksδ2∆s is bounded with respect to t. Really, by virtue of

(19)

Ik =
∑

i

bi
∫

ai

µk−1(s)e−ksδ2ds+
∑

j

µk−1(tj)e
−ktjδ2µ(tj),

where (ai, bi) ⊂ (a, t), tj ∈ (a, t). Further,

Ik =
∑

j

µk−1(tj)e
−ktjδ2µ(tj) ≤ (µ∗)k−1

∑

j

e−ktjδ2µ(tj) =

= (µ∗)k−1ekµ
∗δ2
∑

j

e−kδ2(tj+µ
∗)µ(tj) ≤ (µ∗)k−1ekµ

∗δ2
∑

j

e−kδ2(tj+µ(tj))µ(tj) =

= (µ∗)k−1ekµ
∗δ2
∑

j

e−kδ2σ(tj)µ(tj) ≤ (µ∗)k−1ekµ
∗δ2

t
∫

0

e−ksδ2ds =

=
(µ∗)k−1ekµ

∗δ2

kδ2

(

e−kaδ2 − e−ktδ2
)

.

It can be easily seen that for sufficiently small ρ the series for D(t, a, ρ) is uniformly
convergent in t and it can be estimated by a function of a and ρ. Thus, when conditions
of Corollary 5.1 are fulfilled, all hypotheses of Theorem 4.3 are fulfilled too, and therefore,
the solution x = 0 of equation (1) is asymptotically stable. ✷

Note, that the conditions of asymptotic stability obtained in Corollary 5.1 for zero
solution of dynamic equation of certain type cover some known results for T = R.

6 Conclusion

The results of this paper together with those of paper [4] represent a solution to stability
problem of quasilinear equations on time scale via the method of dynamic integral in-
equalities. In the case when the fundamental matrix of solutions of linear approximation
of system (1) can be determined in the explicit form the established sufficient conditions
of various types of stability may be of interest for applications. Some results of the de-
velopment of the method of integral inequalities for dynamic equations of (1) type were
the subject of paper [1].
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1 Introduction

Generalized inverse dynamics (GID) [1, 2] is an evolving control design paradigm that
aims to benefit from non-square inversion in solving the inverse dynamics control prob-
lem. In fulfilling that purpose, GID utilizes the nullspace parametrization feature of
the generalized inversion-based Greville formula [3, 4]. Nullspace parametrization is the
means by which the Greville formula captures solution nonuniqueness of linear algebraic
system equations, and it forms the backbone of GID control.

The GID control design methodologies are based on the fact that a prescribed dynam-
ics on a controllable dynamical system can be enforced by infinite number of strategies.
Accordingly, a unique robot manipulator’s inner loop design in a conventional inverse
dynamics solution is quite restrictive. By removing that restriction from the inverse dy-
namics philosophy, the GID control design reveals the inherent redundancy in the control
process [5].

A GID robot control design procedure begins by a coordinate transformation that
reduces the size of joint space generalized coordinates error vector to a single dimension.
The scalar variable in the transformed coordinate system is named the kinematic devia-
tion function, and it is taken to be the squared Euclidean norm of the joint space error
vector. Nullifying the kinematic deviation function is equivalent to bringing manipula-
tor’s generalized coordinates to their desired values.

The methodology proceeds by forming a stable second-order time-invariant linear
differential equation in the kinematic deviation function. The differential equation is a
servo-constraint dynamics that is to be realized by manipulator’s control system. Conver-
gence of the differential equation’s solution to its steady state zero value implies satisfying
the control objective. The differential equation is transformed to an algebraic equation
by evaluating the first two time derivatives of the kinematic deviation function along
trajectory solutions of the manipulator’s state space mathematical model.

The resulting algebraic equation is linear in the control vector. The Greville formula
can therefore be utilized to solve the equation for the control variables required to re-
alize the desired servo-constraint dynamics. The solution involves the Moore-Penrose
generalized inverse (MPGI) [6, 7] of the row vector formed by the coefficients of control
variables in the linear algebraic equation, abbreviated as the controls coefficient [8]. The
Greville formula solution is composed of particular and auxiliary parts. The particular
part maps to the range space of the controls coefficient’s transpose, and it works to realize
desired servo-constraint dynamics. The auxiliary part maps to the orthogonal comple-
ment nullspace of the controls coefficient, and it works to provide internal manipulator
stability [5].

Nevertheless, the Greville formula suffers from the undesirable characteristic of MPGI
singularity [9] that hinders the particular part of the formula. The MPGI singularity
occurs whenever the generalized-inverted matrix changes rank, causing divergence of the
MPGI elements to infinite values. In the present application, MPGI singularity takes
place when steady state response approaches as the controls coefficient converges to the
zero vector. A technique of MPGI singularity avoidance is presented in Ref. [5], made by
replacing the MPGI in the Greville formula by a damped generalized inverse, resulting
in a globally uniformly ultimately bounded robot manipulator’s generalized coordinate
trajectory tracking.

This paper introduces a modified version of the Greville formula. The MPGI in
the particular part of the formula is scaled by a dynamic factor that vanishes as closed
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loop response approaches steady state. The scaling factor is capable of overcoming the
MPGI singularity. Simultaneously, the dynamically scaled generalized inverse (DSGI)
uniformly converges to the standard MPGI as the dynamic scaling factor decays, result-
ing in asymptotic realization of desired servo-constraint dynamics, and in a uniformly
asymptotically stable tracking of desired robot generalized coordinates.

The auxiliary part of the Greville formula is affine in a free null-vector that is projected
onto nullspace of the controls coefficient. Therefore, the null-vector design does not affect
realization of the linear algebraic relation, but it affects the manner in which the relation
is realized, i.e., it affects how individual state variables evolve in time. In particular,
the null-vector affects closed loop internal manipulator’s stability. The null-vector in the
present context is named the null-control vector, and its design is a crucial step of the
GID methodology

Moreover, the design freedom of the null-control vector can be utilized to achieve fur-
ther requirements, e.g., perturbed feedback linearization of internal closed loop dynam-
ics [5]. The null-control vector is constructed in this work to be linear in manipulator’s
joint velocity variables. The state dependent proportionality gain matrix is designed via
novel positive semidefinite control Lyapunov function and controls coefficient nullpro-
jected Lyapunov equations, resulting in locally asymptotically stable generalized coordi-
nate trajectory tracking. The analysis provides an explicit estimate of the corresponding
domain of attraction.

The GID methodology unifies the treatments of inverse kinematics [10] and inverse
dynamics by transforming the inverse dynamics problem to an underdetermined problem
and utilizing generalized inversion to solve it, overcoming the restrictions of dimension-
ality and rank that limit the applications of regular inversion.

The contribution of this article is twofold. First, a new GID design element is intro-
duced to robot control applications, namely the dynamically scaled generalized inverse,
improving the recently developed GID methodology to yield asymptotic tracking con-
trol. Second, a new GID control design methodology is presented. The null-control
vector is designed by means of a novel type of control Lyapunov functions and Lyapunov
equations.

2 Mathematical Model for Robot Manipulator

The mathematical model of an n degrees of freedom robot manipulator is given by the
following system of differential equations

M(q, t)q̈ + C(q, q̇, t) +G(q, t) = F , q(t0) = q0, q̇(t0) = q̇0, (1)

where q, q̇, q̈ ∈ Rn are vectors of manipulator generalized coordinates, velocities, and
accelerations, respectively. The vector valued function C(q, q̇, t) : Rn×R

n×[t0,∞) → R
n

contains centrifugal and coriolis forces, the vector valued function G(q, t) : Rn×[t0,∞) →
Rn contains gravitational forces, and F ∈ Rn is the vector of control forces acting on
the manipulator. The inertia matrix valued function M(q, t) : Rn × [t0,∞) → Rn×n is
assumed to be symmetric positive definite for all q ∈ Rn. Equation (1) can be put in the
following state space system of 2n kinematical and dynamical differential equations

q̇ = u, q(t0) = q0, (2)

u̇ = −M−1(q, t)[C(q, u, t) +G(q, t)] + τ, u(t0) = u0, (3)
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where τ ∈ Rn is given by

τ = M−1(q, t)F . (4)

3 Generalized Coordinate Deviation Norm Measure Dynamics

Let qr(t) ∈ Rn be a prescribed desired robot manipulator generalized coordinates vector
such that qr(t) is twice continuously differentiable in t. The manipulator generalized
coordinates error vector from qr(t) is defined as

eq(q, t) := q − qr(t). (5)

Consequently, a scalar positive definite configuration deviation norm measure function
φ : Rn × [t0,∞) → R is defined to be the squared Euclidean norm of eq(q, t)

φ =‖ eq(q, t) ‖2=‖ q − qr(t) ‖2 . (6)

Therefore, the manipulator is at its desired configuration if and only if the servo-
constraint

φ ≡ 0 (7)

is realized. The first two time derivatives of φ along the manipulator trajectories given
by the solution of (2) and (3) are

φ̇ = 2eTq (q, t) [u− q̇r(t)] (8)

and

φ̈ = 2[u− q̇r(t)]
T [u− q̇r(t)] + 2eT (q, t)

[

τ −M−1(q, t)[C(q, u, t) +G(q, t)]− q̈r(t)
]

. (9)

A desired stable second-order dynamics of φ is specified to be of the form

φ̈+ a1φ̇+ a2φ = 0, a1, a2 > 0. (10)

With φ, φ̇, and φ̈ given by (6), (8), and (9), it is possible to write (10) in the pointwise-
linear form

A(q, t)τ = B(q, u, t), (11)

where the row vector-valued controls coefficient function A(q, t) : Rn × [t0,∞) → R1×n

is given by

A(q, t) = 2eTq (q, t) (12)

and the scalar-valued controls load function B(q, u, t) : Rn × Rn × [t0,∞) → R is given
by

B(q, u, t) = −2[u− q̇r(t)]
T [u− q̇r(t)]

+ 2eTq (q, t)
[

M−1(q, t)[C(q, u, t) +G(q, t)] + q̈r(t)
]

− 2a1e
T
q (q, t)[u − q̇r(t)]− a2 ‖ eq(q, t) ‖2 . (13)
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4 Generalized Inverse Dynamics

The infinite set of all manipulator control laws τ realizing the servo-constraint given by
(7) via the linear dynamics given by (10) is parameterizable by the Greville formula [3]
as [1]

τ(q, u, y, t) = A+(q, t)B(q, u, t) + P(q, t)y, (14)

where A+(q, t) : Rn × [0,∞) → Rn is the controls coefficient Moore-Penrose generalized
inverse (CCGI) given by

A+(q, t) =











AT (q,t)
‖A(q,t)‖2 , A(q, t) 6= 01×n

0n×1, A(q, t) = 01×n

(15)

and P(q, t) : Rn × [0,∞) → Rn×n is the corresponding controls coefficient nullprojector
(CCNP) given by

P(q, t) = In×n −A+(q, t)A(q, t) (16)

and y ∈ Rn is an arbitrary null-control vector.
Substituting the control laws expressions given by (14) in manipulator’s equations of

motion (3) yields the following parametrization of the infinite set of manipulator closed
loop system equations that realize the servo-constraint dynamics given by (10)

q̇ = u (17)

u̇ = −M−1(q, t)[C(q, u, t) +G(q, t)]

+A+(q, t)B(q, u, t) + P(q, t)y. (18)

Different choices of the null-control vector y in the control laws expression given by
(14) yield different solutions to (11), and every solution results in closed loop system
trajectory solutions for (17) and (18) that satisfy the linear servo-constraint dynamics
given by (10). Nevertheless, designing y is a critical issue, because y substantially af-
fects manipulator’s internal dynamics given by (3), and an inadequate design of y can
destabilize that dynamics [1].

5 Generalized Inversion Singularity

Satisfying the servo-constraint dynamics given by (10) implies from the definition of φ
given by (6) and the expression of A(q, t) given by (12) that

lim
φ→0

A(q, t) = 01×3. (19)

Since the expression of A(q, t) is continuous in q and t, the definition of A+(q, t) given by
(15) implies that if the initial manipulator configuration condition is such thatA(q0, t0) 6=
01×n, then [5]

lim
A(q,t)→01×n

‖A+(q, t)‖ = lim
A(q,t)→01×n

1

‖AT (q, t)‖ = ∞n×1 (20)

causing the particular part in the expression of the control law τ(q, u, y, t) given by (14) to
go unbounded, and driving the closed loop dynamical subsystem given by (18) unstable.
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Instability due to generalized inversion singularity is well-known in MPGI applications.
A remedy of the problem in the context of generalized inverse control is made by deacti-
vating the particular part of the Greville formula in the vicinity of singularity, resulting
in discontinuous control laws [11]. Another remedy is made by modifying the definition
of the MPGI by means of a damping factor, resulting in uniformly ultimately bounded
control and a tradeoff between generalized inversion stability and closed loop system per-
formance [5]. The concept of dynamically scaled generalized inversion [12] is used in this
paper for the purpose of avoiding instability due to CCGI singularity and to guarantee
asymptotic generalized coordinate trajectory tracking.

6 Dynamically Scaled Generalized Inverse

A reference (desired) internal dynamics is defined based on the system equations given
by (17) and (18) as

u̇r = −M−1(q, t)[C(q, ur, t)+G(q, t)]+A+(q, t)B(q, ur, t)+P(q, t)yr , q(t0) = q0, (21)

where ur, u̇r ∈ Rn are reference (desired) velocity and acceleration vectors, and yr ∈ Rn is
a reference null-control vector. The reference internal dynamics is obtained by replacing
u and y by ur and yr in the dynamical subsystem given by (18), and the reference
acceleration vector u̇r is equal to the acceleration vector u̇ for all t ≥ t0 if y = yr for all
t ≥ t0 and ur(t0) = u(t0).

The dynamically scaled generalized inverse (DSGI) of the controls coefficient A(q, t)
is introduced next.

Definition 6.1 [Dynamically scaled controls coefficient generalized inverse] The
DSGI A+

s (q, u, t) : R
n × R

n × [0,∞) → R
n×1 is given by

A+
s (q, u, t) =

AT (q, t)

A(q, t)AT (q, t) + ‖eu(u, ur)‖pp
(22)

for some vector p norm, where

eu(u, ur) = u− ur. (23)

Properties of the DSGI

The following properties can be verified by direct evaluation of the CCGI A+(q, t) given
by (15) and its dynamic scaling A+

s (q, u, t) given by (22):

1. A+
s (q, u, t)A(q, t)A+(q, t) = A+

s (q, u, t);

2. A+(q, t)A(q, t)A+
s (q, u, t) = A+

s (q, u, t);

3. (A+
s (q, u, t)A(q, t))T = A+

s (q, u, t)A(q, t);

4. lim
‖u−ur‖p→0

A+
s (q, u, t) = A+(q, t).
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7 Perturbed Controls Coefficient Nullprojector

Similar to other projective operators, a fundamental property of the CCNP P(q, t) is that
it is rank deficient. A singular perturbation that disencumber rank deficiency of P(q, t)

is provided by the perturbed controls coefficient nullprojector (PCCN) ˜P(q, δ, t) [8].

Definition 7.1 [Perturbed controls coefficient nullprojector] The perturbed CCNP
˜P(q, δ, t) : Rn × R1×1 × [0,∞) → Rn×n is defined as

˜P(q, δ, t) := I3×3 − h(δ)A+(q, t)A(q, t), (24)

where h(δ) : R1×1 → R1×1 is any continuous function such that

h(δ) = 1, if and only if δ = 0.

The perturbed CCNP ˜P(q, δ, t) is of full rank for all δ 6= 0. Additionally, the CCNP

P(q, t) commutes with its perturbation ˜P(q, δ, t) and inverted perturbation ˜P−1(q, δ, t)
for all δ 6= 0. Furthermore, their matrix multiplication yields the CCNP itself [8], i.e.,

˜P(q, δ, t)P(q, t) = P(q, t) ˜P(q, δ, t) = P(q, t) (25)

and
˜P−1(q, δ, t)P(q, t) = P(q, t) ˜P−1(q, δ, t) = P(q, t). (26)

8 Asymptotic Generalized Inverse Dynamics

The dynamically scaled generalized inverse control law is constructed by replacing the
CCGI A+(q, t) in (14) by the DSGI A+

s (q, t) given by (22), resulting in

τs(q, u, y, t) = A+
s (q, u, t)B(q, u, t) + P(q, t)y. (27)

The corresponding closed loop system equations of (2) and (3) become

q̇ = u (28)

u̇ = −M−1(q, t)[C(q, u, t) +G(q, t)]

+A+
s (q, u, t)B(q, u, t) + P(q, t)y. (29)

Null-Control Vector Design

This section presents a design of the null-control vector to guarantee asymptotic track-
ing of desired robot manipulator generalized coordinate trajectories while maintaining
asymptotic stability of the closed loop system over a prescribed domain of the joint space.

Proposition 8.1 If the null-control vector y in the control law expression given by
(27) is chosen such that the angular velocity vector u of the closed loop system given by
(28) and (29) satisfies

‖eu(u, ur)‖ < ∞ ∀ t ≥ t0, (30)

then the resulting closed loop attitude trajectory error vector eq(q, t) remains bounded

‖eq(q, t)‖ < ∞ ∀ t ≥ t0, (31)
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and the controls coefficient A(q, t) also remains bounded

‖A(q, t)‖ < ∞ ∀ t ≥ t0. (32)

Proof. It is evident from the expression of the controls coefficient A(q, t) given by
(12) that A(q, t) is bounded if and only if eq(q, t) is bounded. Therefore, assuming on the
contrary that there exists a matrix gain K that causes the closed loop angular velocity
vector u to satisfy (30) such that

lim
t→∞

‖eq(q, t)‖ = ∞, (33)

then it follows that

lim
t→∞

‖A(q, t)‖ = ∞ (34)

which implies from (22) and (30) that

lim
t→∞

A+
s (q, u, t) = A+(q, t). (35)

It accordingly follows from the expression of τs(q, u, y, t) given by (27) that

lim
t→∞

τs(q, u, y, t) = τ(q, u, y, t), (36)

where τ(q, u, y, t) is given by (14), causing the closed loop system trajectories to asymp-
totically satisfy the stable servo-constraint dynamics given by (10), and resulting in

lim
t→∞

φ = 0 (37)

which contradicts (33). Therefore, the control law τs(q, u, y, t) given by (27) must yield
bounded elements of eq(q, t) and bounded elements of A(q, t). Let the null-control
vector y be chosen as

y = Ku, (38)

where K ∈ Rn×n is a matrix gain that is to be determined. Hence, a control law that
realizes the servo-constraint given by (7) via the dynamics given by (10) is obtained by
substituting this choice of y in (29), resulting in the closed loop dynamical subsystem

u̇ = −M−1(q, t)[C(q, u, t) +G(q, t)] +A+
s (q, u, t)B(q, u, t) + P(q, t)Ku. (39)

Also, let the reference null-control vector be defined as

yr = Kur. (40)

Then the reference internal dynamics given by (21) becomes

u̇r = −M−1(q, t)[C(q, ur, t) +G(q, t)] +A+(q, t)B(q, ur, t) + P(q, t)Kur, q(t0) = q0.

(41)

The derivative of the generalized velocity error vector eu is

ėu = u̇− u̇r (42)
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and therefore a generalized velocity error dynamics is obtained by subtracting (41) from
(39), resulting in

ėu = −M−1(q, t)C(q, u, t)−
[

−M−1(q, t)C(q, ur , t)
]

+A+
s (q, u, t)B(q, u, t)−A+(q, t)B(q, ur, t) + P(q, t)Keu. (43)

Asymptotic stability of the above written error dynamics is analyzed by considering the
following positive-semidefinite Lyapunov function candidate

V (q, eu, t) = eTuP(q, t)eu. (44)

A gain matrix K that renders V̇ (q, u, eu, t) negative-semidefinite over a domain D ⊆
Rn×Rn× [t0,∞) guarantees Lyapunov stability of eu = 0n×1 over D if it asymptotically
stabilizes eu = 0n×1 over the invariant set DV=0 ⊂ D on which V (q, eu, t) = 0. More-
over, the same gain matrix asymptotically stabilizes eu = 0n×1 over D if and only if it
asymptotically stabilizes eu = 0n×1 over the largest invariant set DV̇ =0 ⊂ D on which

V̇ (q, u, eu, t) = 0 [13].

Proposition 8.2 Let K = K(q, u, t) be a full-rank normal matrix gain, i.e., KKT =
KTK for all t ≥ 0. Then the equilibrium point eu = 0n×1 of the closed loop error
dynamics given by (43) is asymptotically stable over the invariant set DV =0.

Proof. Since the matrix P(q, t) is idempotent, the function V (q, eu, t) can be rewrit-
ten as

V (q, eu, t) = eTuP(q, t)eu = eTuP(q, t)P(q, t)eu (45)

which implies that
V (q, eu, t) = 0 ⇔ P(q, t)eu = 0n×1. (46)

Therefore,
V (q, eu, t) = 0 ⇔ eu ∈ N (P(q, t)), (47)

where N (·) refers to matrix nullspace. Since the matrix K(q, u, t) is normal and of full-
rank, it preserves matrix range space and nullspace under multiplication. Accordingly,

N (P(q, t)) = N (P(q, t)K(q, u, t)) (48)

which implies from (46) that

V (q, eu, t) = 0 ⇔ P(q, t)K(q, u, t)eu = 0n×1. (49)

Therefore, the last term in the closed loop error dynamics given by (43) is the zero vector,
and the closed loop error dynamics becomes

ėu = −M−1(q, t)C(q, u, t)−
[

−M−1(q, t)C(q, ur , t)
]

+A+
s (q, u, t)B(q, u, t)−A+(q, t)B(q, ur(t), t). (50)

On the other hand, since [14]

N (P(q, t)) = R(AT (q, t)), (51)

it follows from (47) that

V (q, eu, t) = 0 ⇔ eu ∈ R(AT (q, t)). (52)
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Accordingly, V (q, eu, t) = 0 if and only if there exists a continuously bounded scalar
function a(t), t ≥ 0 such that

eu = a(t)AT (q, t), a(t) 6= 0. (53)

Therefore, assuming that eu goes unbounded, then AT (q, t) must also go unbounded,
both expressions of A+(q, t) and A+

s (q, u, t) given by (15) and (22) must go to zero, and
the closed loop error dynamics given by (50) approaches the Lyapunov-stable uncon-
trolled dynamics

ėu = −M−1(q, t)C(q, u, t)−
[

−M−1(q, t)C(q, ur, t)
]

(54)

= −M−1(q, t) [C(q, u, t)− C(q, ur, t)] (55)

implying boundedness of eu, in contradiction with the original argument. Therefore, the
trajectory of eu must remain in a finite region. Since a trajectory of the error dynamical
system given by (55) does not experience an isolated periodic motion (limit cycle), it
follows from the Poincare-Bendixson theorem [15] that the trajectory must go to the
equilibrium point eu = 0n×1.

Theorem 8.1 Let the controls coefficient nullprojected gain matrix be given by

P(q, t)K = −vec−1

{

[

˜P(q, δ, t)⊕ ˜P(q, δ, t)
]−1

vec
[

Ṗ(q, u, t) + P(q, t)Q− 4P(q, t)M−1(q, t)Cm(q, ur, t)
]

}

, (56)

where ⊕ denotes the kronecker sum of matrices, “vec” and “vec−1” denote the matrix
vectorizing and inverse vectorizing operators, Q ∈ Rn×n is an arbitrary positive definite
constant matrix, and

Cm(q, u, t) =
1

2

∂C(q, u, t)

∂u
. (57)

Then the equilibrium point eu = 0n×1 of the closed loop error dynamics given by (43) is
asymptotically stable.

Proof. Since the Coriolis centrifugal forces vector C(q, u, t) is continuously differen-
tiable in the vector u, then expanding the Coriolis centrifugal forces error vector about
eu = 0n×1 using Taylor series yields

C(q, u, t)− C(q, ur, t) = 2Cm(q, ur, t)eu + g(q, u, t), (58)

where the following holds true for sufficiently small error vector norms ‖eu‖
‖g(q, u, t)‖ < ‖2Cm(q, ur, t)eu‖ (59)

and such that g(q, u, t) satisfies

lim
‖eu‖→0n×1

‖g(q, u, t)‖
‖eu‖

= 0. (60)

Therefore, linearizing the first difference in the error dynamics given by (43) about eu =
0n×1 yields

ėul
= −2M−1(q, t)Cm(q, ur, t)eu +A+

s (q, u, t)B(q, u, t)
−A+(q, t)B(q, ur, t) + P(q, t)Keu. (61)
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Evaluating the time derivative of V along solution trajectories of the partially linearized
error system given by (61) yields

V̇l(q, u, eu, t) = 2eTuP(q, t)
[

−2M−1(q, t)Cm(q, ur, t)eu
]

+ 2eTuP(q, t)
[

A+
s (q, u, t)B(q, u, t)−A+(q, t)B(q, ur, t)

]

+ 2eTuP(q, t) [P(q, t)Keu] + eTu Ṗ(q, u, t)eu. (62)

The second property of A+
s (q, u, t) and the nullprojection property of P(q, t) simplify the

above expression to

V̇l(q, u, eu, t) =

eTu

[

−4P(q, t)M−1(q, t)Cm(q, ur, t) + 2P(q, t)K + Ṗ(q, u, t)
]

eu. (63)

Since V is only positive-semi definite, it is impossible to design a gain matrix K that
renders V̇l negative definite. Nevertheless, K can be designed to yield V̇l negative
semidefinite by inquiring the existence of a positive semi-definite matrix Q(q, u, t) :
Rn × Rn × [t0,∞) → Rn×n that satisfies

V̇l(q, u, eu, t) = −eTuQ(q, u, t)eu. (64)

Equating (63) and (64) yields the controls coefficient null-projected Lyapunov equation

− 4P(q, t)M−1(q, t)Cm(q, ur, t) + P(q, t)K

+KTP(q, t) + Ṗ(q, u, t) +Q(q, u, t) = 0n×n. (65)

The above equation is consistent if every term maps into the range space of P(q, t). The
range space of Ṗ(q, u, t) can be shown to be a subset of the range space of P(q, t) by
writing

P(q, t) = P(q, t)P(q, t) ⇒ Ṗ(q, u, t) = 2P(q, t)Ṗ(q, u, t) (66)

so that
R[Ṗ(q, u, t)] = R[P(q, t)Ṗ(q, u, t)] ⊆ R[P(q, t)] (67)

whereR(·) refers to matrix range space. SinceQ(q, u, t) is arbitrary positive semi definite,
then restricting Q(q, u, t) to map into the range space of P(q, t) implies that there is no
loss of generality in specifying an arbitrary constant positive definite matrix Q such that
a polar decomposition of Q(q, u, t) is given by

Q(q, u, t) = Q(q, t) = P(q, t)Q. (68)

Accordingly, (65) can be written with the aid of the relation given by (25) as

− 4P(q, t)M−1(q, t)Cm(q, ur, t) + ˜P(q, δ, t)P(q, t)K

+KTP(q, t) ˜P(q, δ, t) + Ṗ(q, u, t) + P(q, t)Q = 0n×n. (69)

By requiring the gain matrix K to be symmetric and of full rank, the unique solution of
(69) for P(q, t)K is given by [14]

P(q, t)K = −vec−1

{

[

I3×3 ⊗ ˜P(q, δ, t) + ˜P(q, δ, t)⊗ I3×3

]−1

vec
[

Ṗ(q, u, t) + P(q, t)Q− 4P(q, t)M−1(q, t)Cm(q, ur, t)
]

}

, (70)
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where ⊗ denotes the kronecker product of matrices. Equation (70) can be written in the
compact form of (56), and V̇l(q, u, eu, t) is guaranteed to be globally negative semidefi-
nite. Moreover, since the gain matrix K is symmetric and of full rank, then asymptotic
stability of the equilibrium point eu = 0n×1 of the error dynamical system given by
(43) over the invariant set DV =0 follows from Proposition 8.2. Radial unboundedness
of V (q, eu, t) in eu together with global negative semidefiniteness of V̇l(q, u, eu, t) and
asymptotic stability over DV =0 imply that the equilibrium point eu = 0n×1 of the par-
tially linearized error dynamics system given by (61) is globally stable in the sense of
Lyapunov. Nevertheless, it is evident from the expression of V̇l given by (63) that V̇l = 0
if and only if P(q, t)eu = 0n×1. Therefore, DV =0 = DV̇=0, and the equilibrium point
eu = 0n×1 of the system given by (61) is globally asymptotically stable [13]. From Lya-
punov’s indirect method, asymptotic stability of the system given by (61) implies local
stability of the fully nonlinear error system given by (43) [16]. The matrix Q(q, t)
(and the corresponding nullprojected Lyapunov matrix Q) can be designed for guarantee
asymptotic stability of eu = 0n×1 over a prescribed domain D of asymptotic stability, as
stated by the following theorem.

Theorem 8.2 Let the controls coefficient nullprojected matrix gain be given by (56),
where Q ∈ Rn×n is positive definite and satisfying (68). For every prescribed neighbor-
hood D ⊂ Rn of the origin eu = 0n×1 there exists a real number γ > 0 such that if the
minimum nonzero eigenvalue of Q(q, t) denoted by λ̄min(Q(q, t)) satisfies

λ̄min(Q(q, t)) >
2γ

λmin(M(q, t))
∀ t ≥ t0, (71)

then the equilibrium point eu = 0n×1 of the closed loop error dynamics given by (43) is
asymptotically stable over D.

Proof. Evaluating the time derivative of V (q, u, t) along solution trajectories of the
fully nonlinear error system given by (43) with the aid of the expansion given by (58)
yields

V̇ (q, u, t) = V̇l(q, u, t)− 2eTuP(q, t)M−1(q, t)g(q, u, t) (72)

= −eTuQ(q, t)eu − 2eTuP(q, t)M−1(q, t)g(q, u, t). (73)

Additionally, (60) implies that for every real scalar γ > 0 there exists a vector euγ
∈ Rn

such that the following inequality holds [16]

‖g(q, u, t)‖ < γ‖eu‖ ∀ ‖eu‖ < ‖euγ
‖. (74)

Accordingly, if V̇l(q, u, t) 6= 0 then an upper bound on V̇ is obtained from (73) as

V̇ (q, u, t) ≤ −λ̄min(Q(q, t))‖eu‖2
+2‖eu‖λmax(M

−1(q, t))‖g(q, u, t)‖ (75)

≤ −λ̄min(Q(q, t))‖eu‖2 +
2γ

λmin(M(q, t))
‖eu‖2 (76)

=

[

−λ̄min(Q(q, t)) +
2γ

λmin(M(q, t))

]

‖eu‖2

∀ ‖eu‖ < ‖euγ
‖. (77)
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Therefore, given a real scalar γ > 0 and a corresponding vector euγ
, if D is defined as

the set of all vectors eu ∈ Rn satisfying

‖eu‖ < ‖euγ
‖ (78)

and Q(q, t) is chosen such that λ̄min(Q(q, t)) satisfies (71) then V̇ is guaranteed to remain
negative along solution trajectories of the fully nonlinear error system given by (43)
initiated at eu(t0) ∈ DV̇ 6=0 along which

V̇l(q, u, t) 6= 0 ∀ t ≥ t0. (79)

The above mentioned argument together with the arguments of Proposition 8.2 and
Theorem 8.1 on global asymptotic stability of eu = 0n×1 with respect to trajectories
initiated within DV̇ =0 prove asymptotic stability of eu = 0n×1 over D. A corresponding
necessary condition on Q for asymptotic stability of eu = 0n×1 can be derived also. Since

λ̄min(Q(q, t)) = λmin(P(q, t)Q) ≤ λmax(P(q, t))λmin(Q) = λmin(Q), (80)

the condition given by (71) for asymptotic stability implies that

λmin(Q) >
2γ

λmin(M(q, t))
∀ t ≥ t0, (81)

provided that
eu(t0) ∈ D. (82)

Corollary 8.1 Let γ be a positive scalar that satisfies

γ > 2 sup
q,t

(σmax(Cm(q, ur, t))), (83)

where supq,t denotes the supremum over all admissible values of robot generalized coor-
dinates and over all t ≥ 0. If Q(q, t) : Rn × [t0,∞) → Rn×n is positive semidefinite and
satisfies the condition given by (71), Q ∈ Rn×n is positive definite and satisfies (68), and
the controls coefficient nullprojected gain matrix is given by (56), then the equilibrium
point eu = 0n×1 of the closed loop error dynamics given by (43) is asymptotically stable
over a domain of attraction D ⊂ Rn that is given by all vectors eu ∈ Rn satisfying

‖eu‖ < ‖euγ
‖, (84)

where

‖euγ
‖ =

‖C(q0, u0, t0)− C(q0, ur(t0), t0)− 2Cm(q0, ur(t0), t0)eu(t0)‖
2 supq,t(σmax(Cm(q, ur, t)))

. (85)

Proof. The fact on g(q, u, t) given by (59) implies that for sufficiently small values
of ‖eu‖, the following inequality holds true

‖g(q, u, t)‖ < 2σmax(Cm(q, ur, t))‖eu‖. (86)

Therefore, a particular choice of γ that holds inequality (74) true is found by setting

2σmax(Cm(q, ur, t))‖eu‖ < γ‖eu‖ (87)
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resulting in the expression given by (83) for a lower bound estimate of γ that ensures
satisfaction of (74) for sufficiently small values of ‖eu‖. To obtain the corresponding
estimate of ‖euγ‖, the two sides of (74) are equated and the above written estimate of γ
is substituted in the resulting equation, yielding

‖g(q, u, t)‖ = 2 sup
q,t

(σmax(Cm(q, ur, t)))‖eu‖. (88)

The value of ‖eu‖ in the above equation is an estimate of the smallest vector norm ‖eu‖
that causes inequality (74) to be violated, i.e., it is an estimate of ‖euγ

‖. Accordingly,
evaluating g(q, u, t) at t0 and replacing eu by euγ

yields

‖euγ
‖ =

‖g(q0, u0, t0)‖
2 supq,t(σmax(Cm(q, ur, t)))

. (89)

Evaluating g(q0, u0, t0) using (58) yields the expression of ‖euγ
‖ given by (85).

9 Outer (Kinematic) Closed Loop Stability

Let φs be a norm measure function of the attitude deviation obtained by applying the
control law τs(q, u, y, t) given by (27) to the manipulator’s equations of motion (2) and
(3) in place of τ , and let φ̇s, φ̈s be its first two time derivatives. Therefore,

φs := φs(q, t) = φ(q, t) (90)

φ̇s := φ̇s(q, u, t) = φ̇(q, u, t) (91)

φ̈s := φ̈s(q, u, τs, t) = φ̈(q, u, τ, t) +A(q, t)τs(q, u, y, t)

−A(q, t)τ(q, u, y, t), (92)

where τ(q, u, y, t) is given by (14). Adding c1φ̇s + c2φs to both sides of (92) yields

φ̈s + c1φ̇s + c2φs = φ̈+ c1φ̇+ c2φ+A(q, t)τs(q, u, y, t)

−A(q, t)τ(q, u, y, t) (93)

= A(q, t)[τs(q, u, y, t)− τ(q, u, y, t)]. (94)

With the controls coefficient nullprojected matrix gain be given by (56), the generalized
inversion feedback control law given by (27) yields asymptotically stable generalized
coordinate trajectory tracking, as stated by the following theorem.

Theorem 9.1 Let the controls coefficient nullprojected matrix gain P(q, t)K be given
by (56), and the matrix Q(q, t) satisfies (71) for some real number γ > 0 and a cor-
responding domain of asymptotic stability D ⊂ Rn. Then the closed loop generalized
coordinate deviation dynamics given by (94) is asymptotically stable.

Proof. Multiplying both sides of the control law τs(q, u, y, t) given by (27) by A(q, t)
yields

A(q, t)τs(q, u, y, t) = A(q, t)A+
s (q, u, t)B(q, u, t), (95)

where

A(q, t)A+
s (q, u, t) =

A(q, t)AT (q, t)

A(q, t)AT (q, t) + ‖eu(u, ur)‖pp
. (96)
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Therefore, if A(q, t) 6= 01×n then it follows from (96) that

0 < A(q, t)A+
s (q, u, t) ≤ 1. (97)

Dividing (95) by A(q, t)A+
s (q, u, t) yields

A(q, t)τ̄ (q, u, y, t) = B(q, u, t), (98)

where A(q, t) and B(q, u, t) are the same controls coefficient and controls load in (11),
and

τ̄ (q, u, y, t) =
τs(q, u, y, t)

A(q, t)A+
s (q, u, t)

. (99)

Therefore, the algebraic system given by (98) recovers the algebraic system given by
(11) via the control law τ̄ (q, u, y, t) for all A(q, t) 6= 01×n. Equivalently, the effective
control law τ̄(q, u, y, t) enforces the asymptotically stable second-order system given by
(10) on the robot manipulator system given by (2) and (3) whenever A(q, t) 6= 01×n.
Nevertheless, it is noticed from (6) and (12) that A(q, t) = 01×n if and only if φ = φs = 0.
This in addition to the local asymptotic stability of eu = 0n×1 concluded from Theorem
(8.1) imply that the second order generalized coordinate deviation dynamics given by
(94) is asymptotically stable over the domain D. Theorem 9.1 states that employing
the DSGI A+

s (q, u, t) in the generalized inversion attitude control law yields the same
asymptotic attitude tracking property that is obtained by employing the CCGI A+(q, t),
provided that manipulator’s internal asymptotic stability is achieved by a proper design
of the null-control vector y.

Remark 9.1 The second order generalized coordinate deviation dynamics given by
(94) can be put in the state space form by defining the state vector Φ ∈ R

2 as

Φ =
[

Φ1 Φ2

]T
=

[

φs φ̇s

]T
. (100)

The two state equations become

Φ̇1 = Φ2 (101)

Φ̇2 = −c1Φ2 − c2Φ1 +A(q, t)[τs(q, u, y, t)− τ(q, u, y, t)]. (102)

Asymptotic stability of eu = 0n×1 over the domain D inferred from Theorem 8.1 in
addition to boundedness of A(q, t) over the same domain inferred from Proposition 8.1
imply that the limit of the forcing term in (102) as t → ∞ is

lim
t→∞

[

A(q, t)[τs(q, u, y, t)− τ(q, u, y, t)]
]

= 0 (103)

so that Φ̇ converges to the asymptotically stable canonical part of the dynamics given
by (101) and (102), and results in

lim
t→∞

φs = lim
t→∞

φ̇s = 0 (104)

over the domain D, verifying the attraction property of Φ = 02×1, i.e.,

lim
t→∞

q = qr(t) (105)

and
lim
t→∞

q̇ = q̇r(t). (106)
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Remark 9.2 Inequalities (97) imply that

lim
eu(u,ur)→0n×1

A(q, t)A+
s (q, u, t) = 1. (107)

Hence, (99) yields

lim
eu(u,ur)→0n×1

τ̄ (q, u, y, t) = lim
eu(u,ur)→0n×1

τs(q, u, y, t) = τ(q, u, y, t). (108)

10 Damped Controls Coefficient Nullprojector

The damped CCNP is a modified controls coefficient nullprojector with vanishing depen-
dency on steady state kinematic state vector q.

Definition 10.1 [Damped controls coefficient nullprojector] The damped CCNP
Pd(q, β, t) is defined as

Pd(q, β, t) =











P(q, t) : ‖A(q, t)‖ ≥ β,

In×n − AT (q,t)A(q,t)
β2 : ‖A(q, t)‖ < β.

(109)

The above definition implies that

lim
eq(q,t)→0n×1

Pd(q, β, t) = In×n. (110)

11 Control System Design Procedure

Starting from the standard mathematical model given by (1) for a rigid robot manip-
ulator, the procedure of asymptotic generalized inverse dynamics for tracking a twice
continuously differentiable reference trajectory vector qr(t) is summarized in the follow-
ing steps.

1. The robot manipulator mathematical model given by (1) is written in its equivalent
state space model form given by (2) and (3).

2. The coefficients a1 and a2 in the servo-constraint dynamics equation (10) are chosen
such that the dynamics of φ is asymptotically stable. This implies that both a1 and
a2 are strictly positive. To avoid oscillatory closed loop transient response induced
by underdamped servo-constraint dynamics, the coefficient a1 is chosen sufficiently
large compared to a2 such that the linear second-order servo-constraint dynamics
given by Equation (10) is overdamped.

3. The expressions given by (12) and (13) for A(q, t) and B(q, u, t) are obtained, where
eq(q, t) is given by (5).

4. The expression given by (83) is solved for the positive scalar γ, where Cm(q, u, t)
is given by (57).

5. The positive semidefinite matrix Q(q, t) is obtained from (71), and is used to solve
(68) for a positive definite constant matrix Q, where P(q, t) is given by (16).
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6. The control law τs is given by

τs(q, u, y, t) = A+
s (q, u, t)B(q, u, t) + P(q, t)Ku. (111)

The dynamically scaled controls coefficient generalized inverse A+
s (q, u, t) in the

above written control law is given by (22) for some vector p norm, where eu(u, ur)
is given by (23). The controls coefficient nullprojected gain matrix P(q, t)K in the
above written control law is given by (56), where the perturbed controls coefficient

nullprojection matrix ˜P(q, δ, t) is given by (24), Cm(q, u, t) is given by (57), and
Ṗ(q, u, t) is obtained by time differentiating P(q, t) along solution trajectories of
the system equations given by (2).

7. The control law τs is used in (2) and (3) in place of τ , and the two sets of equations
are integrated to obtain the trajectories of q(t) and u(t). If the initial state vector
u0 is such that ‖eu(t0)‖ < ‖euγ

‖ where ‖euγ
‖ is given by (85), then the closed loop

robot manipulator control system is asymptotically stable, the resulting trajectory
tracking error vectors eq(q, t) and eu(q, u, t) are asymptotically decaying to the zero
vectors, and the generalized coordinates vector q asymptotically tracks qr(t).

12 Example: RP Robot Manipulator

The RP robot manipulator shown in Fig. 1 consists of two rigid arms A1 and A2 having
masses m1 and m2, respectively. The two arms are constrained to move in the vertical
plane, and A1 is attached to an inertial reference frame at point O. The body moments
of inertia of A1 and A2 about the axes normal to their plane of rotation and passing
through their mass centers c1 and c2 are Izz1 and Izz2, respectively. The manipulator is
equipped with a revolute joint at point O and a prismatic joint along the longitudinal
axis Lc. The revolute joint is actuated by a motor that generates a torque M, and the
prismatic joint is actuated by a motor that generates a force F. It is required to design
M and F such that A1 oscillates about the left part of the horizontal line passing through
O at a frequency of π/6 Hz according to the harmonic relation

θ = π sin
(π

6
t
)

. (112)

Based on the orientation of A1, A2 is required to translate simultaneously along Lc

according to

d = 2l(1− 0.5 cos θ). (113)

Choosing the generalized coordinates to be q1 = θ and q2 = d, the desired generalized
coordinates qr1(t) and qr1(t) are given by

qr1(t) = π sin
(π

6
t
)

(114)

and

qr2(t) = 2l(1− 0.5 cos qr1(t)) = 2l
(

1− 0.5 cos
(

π sin
(π

6
t
)))

. (115)
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The matrices forming the manipulator state space mathematical model given by (2) and
(3) are

M(q, t) =

[

m1l
2
1 + Izz1 + Izz2 +m2q

2
2 0

0 m2

]

, (116)

C(q, u, t) =

[

2m2q2u1u2

−m2q2u
2
1

]

, (117)

G(q, t) =

[

(m1l1 +m2q2)g cos q1
m2g sin q1

]

, (118)

F =

[

M

F

]

, (119)

where M and F are the magnitudes of M and F, positives in the directions indicated by
the arrows in Fig. 1. The two components of the generalized coordinates error vector
eq(q, t) given by (5) are

e1(q1, t) = q1 − qr1(t) = q1 − π sin
(π

6
t
)

(120)

and

e2(q2, t) = q2 − qr2(t) (121)

= q2 − 2l
(

1− 0.5 cos
(

π sin
(π

6
t
)))

. (122)

Hence, the kinematic deviation norm measure function φ given by (6) is

φ =‖ eq(q, t) ‖2= e21(q1, t) + e22(q2, t). (123)

The matrix Cm(q, ur, t) is given by

Cm(q, ur, t) = m2q2

[

ur2 ur1

−ur1 0

]

. (124)

The maximum singular value of Cm(q, ur, t) is found to be

σmax(Cm(q, ur, t)) = m2|q2|
√

2u2
r1

+ u2
r2

+
√

u4
r2

+ 4u2
r1
u2
r2
. (125)

The manipulator geometric and inertia constants are taken to be l1 = 1 m, m1 = 10.5 kg,
m2 = 7.0 kg, Izz1 =30 kg.m2 and Izz2 =15 kg.m2. Upper bounds on the variables ur1 ,
ur2 are obtained by time differentiating the expressions of qr1 and qr2 given by (114) and
(115) as π2/6 rad/sec and π2/6 m/sec, respectively. A sufficiently conservative upper
bound on q2 is obtained from (113) as 3.5 m. Therefore, a value of γ that satisfies the
condition given by (83) is taken to be 102, and a matrix Q that satisfies (68) and (71) is
taken to be

Q = 60I2×2. (126)

The servo-constraint dynamics constants in (10) are chosen to be a1 = 7, a2 = 4. With
initial conditions q0 = [−π/2 2.8]T and u0 = [0.4 − 0.2]T , the values of ‖eu(t0)‖ and
‖euγ

‖ are 1.26 and 1.3, respectively. Fig. 2 shows time history of generalized coordinates
θ and d, where p, β, and δ are taken 4, 0.6, and 0.1, respectively. Excellent asymptotically
stable trajectory tracking performance is noticed. Figs. 3 and 4 show time histories of
the corresponding angular velocity θ̇ and linear velocity ḋ, and the control variables M
and F , respectively.
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Figure 1: Schematic for RP robot manipulator.
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Figure 3: Generalized velocities.
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13 Conclusions

The paper presents an approach that unifies the treatments of inverse kinematics and
inverse dynamics, which have ever been made distinctive in the robot control literature.
The vectorial representation of kinematical errors and their time derivatives in classical
inverse dynamics is unfavorable, because the kinematical error is a scalar variable. More
importantly, modeling the kinematical error as a vector that has the same number of el-
ements as the number of manipulator’s degrees of freedom restricts the inner loop design
problem to have a unique solution, and hence it causes the methodology to lose a useful
design freedom and makes it susceptible to dynamic inversion singularity. By observing
that a control law that realizes any dynamic process on a controllable dynamical sys-
tem is not unique, this paper removes the restriction on inverse dynamics by redefining
the kinematical error as a deviation norm measure scalar. The paper applies the GID
control paradigm to robot arm tracking of desired smooth trajectories. The outer loop
design is made by generalized inversion of a stable servo-constraint dynamics differential
equation in the kinematic deviation norm. The dynamically scaled generalized inverse in
the particular part of the control law is capable of overcoming controls coefficient gener-
alized inversion singularity, and it converges to the standard Moore-Penrose generalized
inverse as closed loop steady state response approaches. The inner loop design is made
by constructing the null-control vector in the auxiliary part of the control law. The
null-control vector is designed to be linear in the internal states by means of a quadratic
positive semidefinite control Lyapunov function and a controls coefficient nullprojected
Lyapunov equation. Future works include utilizing the nullspace parametrization fea-
ture associated with generalized inversion and provided by the null-control vector in
performing secondary objectives on top of generalized inverse dynamics.
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1 Introduction

Consider the steady Navier-Stokes equations

(u · ∇)u +
1

ρ
∇p = ν∆u in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

in a long uniform tube Ω = Ω0 × R with the circular section

Ω0 := {(x1, x2) ∈ R
2; (x1 − a)2 + (x2 − b)2 < R2}.

Here, u = (u1, u2, u3), p, ν and ρ stand for the velocity field, the pressure, the viscosity
and the density, respectively. We assume that ν and ρ are constant.

The solution of this problem with the additional assumption u1 = u2 = 0 is known as
the Poiseuille flow. If this is the case, the pressure has a constant gradient (0, 0, dp/dx3)
and u3 is given by

u3 =
R2 − (x1 − a)2 − (x2 − b)2

4νρ

dp

dx3
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(see, e.g. [1]).

In the present paper we shall consider another kind of Poiseuille flow; the viscosity ν

is not a priori supposed to be constant. The corresponding Navier-Stokes equations are
then

(U · ∇)U +
1

ρ
∇p = ∇ · (νT(U )) in Ω, (1)

∇ ·U = 0 in Ω, (2)

U = 0 on ∂Ω, (3)

where T(U) = (Ui,xj
+Uj,xi

)ij stands for the deformation tensor. We assume furthermore
that b > R, i.e., the section Ω0 lies entirely in the upper half plane {(x1, x2) ∈ R ; x2 > 0}
and that the velocity field U = (U1, U2, U3) in (2) satisfy

U1 = U2 = 0, U3 =
R2 − (x1 − a)2 − (x2 − b)2

2Rx2
. (4)

This assumption means that the section is a non-euclidean disk and the velocity compo-
nent U3 describes a paraboloid in the non-euclidean sense.

We now explain shortly the reason why we are interested in U3. For this purpose we
first note that the function u3 is closely connected with the theory of conformal mapping
of a multiply connected plane domain. To be more precise, let D be an arbitrary but
fixed domain in the (finite) complex z plane and ζ ∈ D be a fixed point. We consider all

the (one-to-one) conformal mapping f of D into the Riemann sphere Ĉ = C∪ {∞} such
that

f(z) =
1

z − ζ
+ κf (z − ζ) + λf (z − ζ)2 + · · · , κf , λf , · · · ∈ C,

about ζ. It is a classical result that κf describes a (euclidean) closed disk in the complex
plane. If we realize the disk as Ω0, then u3(x1, x2) represents the maximum area of

Ĉ \ f(D) for the function f with κf = x1 + ix2. We thus see that the velocity of the
classical Poiseuille flow coincides with the (maximum) area function in the theory of
conformal mapping of a planar Riemann surface.

We have shown in [3] that an analogous theorem holds for the conformal embeddings
of a noncompact Riemann surface S of genus one into (marked compact) tori T . The
moduli of T accept the rôle which the coefficients κf played in the planar case, and the
maximum area |f(S)| of f(S) for various conformal embeddings f of S into a fixed torus
T is described by a constant multiple of the function u3. That is, the function u3 works
for the Riemann surface R of genus one as well as for the plane domain D. In [3] we
have proved more: the function U3 describes the maximum ratio |f(S)|/|T | for the fixed
torus T .

Note that the unknown function in (2) is not the velocity U but the viscosity co-
efficient ν. We shall find a smooth function ν so that the vector U = (0, 0, U3) is the
velocity of a steady flow in the tube of an incompressible fluid with the viscosity ν.

Since the viscosity ν is affected by, say, the temperature, it may change point to point
in the tube, when the ambient space of the tube is of nonconstant temperature. Hence,
the nonconstant character of ν would be expected to be realistically important.
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2 Main Theorem

In the following, we assume the density ρ > 0 to be constant. The problem with which
we are concerned in the present paper is:

Problem. Find the pressure p = p(x3) and the smooth viscosity ν = ν(x1, x2), for
which (U , p) satisfies (1)–(3).

Our goal is the following:

Theorem 2.1 The system (1)–(3) has a unique smooth solution (ν(x1, x2), p(x3)).
The pressure is given by p = γρx3 + γ′, where γ, γ′ are constants with γ < 0, and ν is
given by

ν(x1, x2) =



































− γRx2
2

(x1 − a)2

[

−x2 + c+
(x1 − a)2 + x2

2 − c2

2(x1 − a)

×Sin−1 2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2

]

, if x1 6= a,

− 2

3
γR

x2
2(x2 + 2c)

(x2 + c)2
, if x1 = a,

(5)

where c =
√
b2 −R2.

3 Proof of Theorem

In this proof, we shall denote U3 by U for simplicity. The deformation tensor of the
velocity (4) is then written as

T(U) =





0 0 Ux1

0 0 Ux2

Ux1
Ux2

0



 .

We thus rewrite equation (1) as

1

ρ
∇p = (0, 0, (νUx1

)x1
+ (νUx2

)x2
).

From this equation we see first of all that dp/dx3 = γρ holds with a constant γ. We have
then a PDE for ν of the first order :

νx1
Ux1

+ νx2
Ux2

+ ν∆U = γ. (6)

For later use we first note the following basic expressions.

Ux1
(x1, x2) = −x1 − a

Rx2
, (7)

Ux2
(x1, x2) =

(x1 − a)2 − x2
2 + c2

2Rx2
2

, (8)

∆U(x1, x2) = − (x1 − a)2 + x2
2 + c2

Rx3
2

. (9)
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Associated with (6) we now consider another equation

dx1/Ux1
= dx2/Ux2

, (10)

or
{

(x1 − a)2 − x2
2 + c2

}

dx1 + 2(x1 − a)x2 dx2 = 0. (11)

A solution of (10) (or (11)) is called a characteristic curve of (6). For general discussion
of characteristic curves, see e.g. [2].

We can solve (11) and obtain the family of curves

Ck :

{

x2
2 = c2 − (x1 − a)(x1 − k), if k 6= a,

x1 = a, x2 > 0, if k = a.
(12)

It is easy to see that Ca is a characteristic curve. On the other hand for k 6= a, the
function

Φ(x1, x2) :=
x1(x1 − a) + x2

2 − c2

x1 − a

[

= x1 +
x2
2 − c2

x1 − a

]

(13)

satisfies

∂Φ

∂x1
=

(x1 − a)2 − x2
2 + c2

(x1 − a)2
, (14)

∂Φ

∂x2
=

2x2

x1 − a
. (15)

Then, along the curve
Φ(x1, x2) = k (16)

for a constant k, the identity

0 = dΦ =
∂Φ

∂x1
dx1 +

∂Φ

∂x2
dx2 =

(x1 − a)2 − x2
2 + c2

(x1 − a)2
dx1 +

2x2

x1 − a
dx2

holds, which shows that (16) is a characteristic curve of (6) for any constant k. That
is, (12) are the characteristic curves of (6). We observe that each characteristic curve
Ck (k 6= a) represents a half-circle

(

x1 −
a+ k

2

)2

+ x2
2 = d2k, x2 > 0, (17)

of the radius dk:

dk :=

√

c2 +

(

a− k

2

)2

. (18)

We remark that each curve Ck (k ∈ R) passes through the point (a, c). Furthermore for
each (x1, x2) other than (a, c), there exists a unique k ∈ R such that Ck passes through
(x1, x2).

We now fix a k ∈ R \ {a} and consider the characteristic curve Ck. On this curve we
can express x2 as a single-valued function of x1, since x2 > 0 for the present problem.
We next consider the function ν̃(x1) := ν(x1, x2(x1)) on (17). Since

dν̃

dx1
=

∂ν

∂x1
+

∂ν

∂x2

dx2

dx1
= (νx1

Ux1
+ νx2

Ux2
)

1

Ux1

,
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our equation (6) becomes now of the form

dν̃

dx1
+ ν̃

∆U

Ux1

=
γ

Ux1

, (19)

or, equivalently

d

dx1

(

ν̃(x1) exp

∫

∆U

Ux1

dx1

)

=
γ

Ux1

exp

∫

∆U

Ux1

dx1. (20)

To solve this equation explicitly we first observe that

∆U(x1, x2)

Ux1
(x1, x2)

=
(x1 − a)2 + x2

2 + c2

(x1 − a)x2
2

, (21)

which follows immediately from (7) and (9). This, together with equation (12), yields

∆U(x1, x2)

Ux1
(x1, x2)

=
(x1 − a)(x1 − k)− (x1 − a)2 − 2c2

(x1 − a){(x1 − a)(x1 − k)− c2} . (22)

If we denote by α and β the roots of the quadratic equation (x1−a)(x1−k)− c2 = 0,
we have

∆U(x1, x2)

Ux1
(x1, x2)

=
2

x1 − a
− 1

x1 − α
− 1

x1 − β
. (23)

As usual, we can ignore an integration constant and obtain

∫

∆U

Ux1

dx1 = log
(x1 − a)2

c2 − (x1 − a)(x1 − k)
. (24)

Hence we have
γ

Ux1

exp

∫

∆U

Ux1

dx1 = −γR · x1 − a

x2
(25)

along the characteristic curve Ck (k 6= a).

In order to integrate (20), it is convenient to parametrize the curve (17). Namely, for
each k, we consider the parametrization







x1 = −dk sin θ +
a+ k

2
,

x2 = dk cos θ,
(−π/2 < θ < π/2) (26)

of the curve (12). Then, according to (17), (18) and (26), the function ν̃(x1) =
ν(x1, x2(x1)) can be expressed as ν̃(k, θ) = ν(x1(k, θ), x2(k, θ)). Let θk (−π/2 < θk <

π/2) be the value of θ for which







a = −dk sin θk +
a+ k

2
,

c = dk cos θk,
(27)

holds.
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Because of the relation dx1 = −dk cos θdθ = −x2dθ on Ck we have

∫ x1

a

(

γ

Ux1

exp

∫

∆U

Ux1

dx1

)

dx1 = −γR

∫ x1

a

x1 − a

x2
dx1

= γR

{

dk(cos θ − cos θk) +
k − a

2
(θ − θk)

}

.

Noting that
k − a

2
= dk sin θk, we have

∫ x1

a

(

γ

Ux1

exp

∫

∆U

Ux1

dx1

)

dx1 = dkγR{(cos θ − cos θk) + (θ − θk) sin θk}. (28)

Now, in virtue of equation (25) we obtain

ν̃(k, θ) = dkγR cos2 θ · (cos θ − cos θk) + (θ − θk) sin θk
(sin θ − sin θk)2

. (29)

This is the solution of (19) on Ck (k 6= a).
We shall next solve (6) on the characteristic curve Ca. On the half line {(a, x2) ;

x2 > 0}, equations (1)–(3) reduce to

ν′(a, x2)
c2 − x2

2

2Rx2
2

− ν
x2
2 + c2

Rx3
2

= k.

It has a unique continuous solution

ν(a, x2) = −2

3
γR

x2
2(x2 + 2c)

(x2 + c)2
. (30)

The function

ν(x1, x2) :=

{

ν̃(k(x1, x2), θ(x1, x2)), for (x1, x2) ∈ Ck, k 6= a,

ν(a, x2), for (x1, x2) ∈ Ca

is now well-defined on Ω0 \ (a, c), since for each (x1, x2) 6= (a, c) we can find a unique
k ∈ R with (x1, x2) ∈ Ck. If (x1, x2) approaches to (a, c) along a characteristic curve Ck,
the function ν(x1, x2) has a finite limit which is independent of k. To show this, we first
discuss the case k 6= a. We can then apply the de l’Hôpital theorem to obtain

lim
θ→θk

(cos θ − cos θk) + (θ − θk) sin θk
(sin θ − sin θk)2

= lim
θ→θk

− sin θ + sin θk
2(sin θ − sin θk) cos θ

= − 1

2 cos θk
.

Consequently along each Ck, we have

lim
(x1,x2)→(a,c)

ν(x1, x2) = −cγR

2
.

If k = a, it is easy to see ν(a, x2) → −cγR/2 as x2 → c along Ca. Hence, ν(x1, x2) is a
continuous function on Ω0.
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We next rewrite the function ν explicitly in terms of the euclidean coordinates (x1, x2).
In virtue of (26), we have

sin(θ − θk) = − 1

2d2k

(x2 + c){(x1 − a)2 + (x2 − c)2}
x1 − a

.

Since

d2k =
{(x1 − a)2 + (x2 + c)2}{(x1 − a)2 + (x2 − c)2}

4(x1 − a)2
,

by (16) and (18), we obtain

sin(θ − θk) =
−2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2
. (31)

If we substitute (26), (27) and (31) into (29), we conclude

ν(x1, x2) = − γRx2
2

(x1 − a)2

[

−x2 + c+
(x1 − a)2 + x2

2 − c2

2(x1 − a)

×Sin−1 2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2

]

for x1 6= a.

Finally we shall show ν is C1(Ω0). In fact, putting y =
2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2
in the

Maclaurin series

Sin−1y =

∞
∑

j=0

(2j)!

22j (j!)2
y2j+1

2j + 1
,

we have the expansion

−ν(x1, x2)

γRx2
2

=
2

3

x2 + 2c

(x2 + c)2
+O(|x1 − a|2).

Thus
∂ν

∂x1
(a, x2) exists and equals to 0. Since the regularity of ν(x1, x2) is obvious except

the half line {(a, x2) ; x2 > 0}, we conclude that ν is continuously differentiable in Ω0.

Remark. From (5), we can see γ < 0 if the viscous constant ν is positive.
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2 Electronics and Telecommunications Department, Scientific Research and Advanced Studies
of Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860

Ensenada, B.C. México.
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1 Introduction

A facial recognition system is an application run by computer to automatically identify
a person from a digital image, by comparing selected facial features from a digital image
or a frame from a video source. One way to do this is by comparing selected facial
features with a facial image database, see Figure 1. The face recognition systems have
less uniqueness than recognition systems based on fingerprint and iris, however, provides
a more direct form of identification, friendly and is more acceptable compared with other
biometric personal identification systems [32]. Therefore, research on face recognition
has become one of the most important issues in biometric systems.

The first semi-automated system for face recognition required the administrator to
located features (such as eyes, ears, nose, and mouth) on the photographs before it
calculated distances and ratios to a common reference point, which were compared with
reference data. Goldstein et al. [14] used 21 specific subjective markers such as hair and
lip thickness to automate the recognition. The problem was that the measurements and
locations were manually computed.
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Figure 1: Scheme of a general biometric system based on face image.

On the other hand, the idea of using eigenfaces was motivated by a technique de-
veloped by Sirovich and Kirby in [28] and by Kirby and Sirovich in [19] for efficiently
representing pictures of faces by using Principal Components Analysis (PCA). They ar-
gued that a collection of face images can be approximately reconstructed by storing a
small collection of weights for each face and a small set of standard pictures. PCA method
reported in [28] and [19] is also called eigenfaces by Turk and Pentland in [29, 30], this
appearance-based technique is used widely for the dimensionality reduction and recorded
a great performance in face recognition. PCA is a standard linear algebra technique, to
the face recognition problem [28]. This was considered somewhat of a milestone as it
showed that less than one hundred values were required to accurately code a suitably
aligned and normalized face image [28]. Turk and Pentland discovered that while using
the eigenfaces technique, the residual error could be used to detect faces in images [29,30].
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This was a discovery that enabled reliable real-time automated face recognition systems.
Although the approach was somewhat constrained by environmental factors, it nonethe-
less created significant interest in furthering development of automated face recognition
technologies. Among the most important methods for face recognition are: eigenface [32],
fisherface [7], dual eigen space [32], and neural networks [20].

Current literature reports many techniques for human face recognition, see e.g.
[7, 14, 16, 19, 20, 25, 28–30,32], on the other hand, there are many works about image en-
cryption algorithms based on chaos for secure communications, see e.g. [1–3,6,9,10,21,24].
Recently, encryption in biometric systems has been applied, see e.g. [4, 5, 8, 15, 18, 22]
with the purpose of protecting biometric information. Nevertheless, to our knowledge,
any approach of a secure biometric system, particularly about face patterns recognition
that works remotely with double hyperchaotic encryption has not been reported. Hy-
perchaotic maps are theoretically proofed with good randomness, infinite period, and
unpredictability on long term [11]. These complex maps are usually defined as a system
characterized at least by two positive Lyapunov exponents which provide more complex
waveforms than simply chaotic maps. Consequently, these hyperchaotic maps have the
characteristics of high capacity, high security, and high efficiency [11].

The aim of this paper, is to improve the security encryption in a biometric system
based on human face recognition. In particular, we use a double hyperchaotic encryption
in a face recognition system which works remotely, the eigenface method to get the face
patterns is used, see e.g. [7, 29, 30, 32], next, Rössler and Chen hyperchaotic maps to
encrypt face patterns are used. In this work, the proposed secure biometric system, is
similar to the reported in [22], but there are fundamental differences with respect to that
work: (1) they encrypt iris templates by using the generalized Hénon map and 1D logistic
map. In this paper, the Rössler and Chen hyperchaotic maps for face pattern double
encryption are used; (2) they used in the quantizer a threshold equal to 0.5, however,
we optimize the threshold to improve security; (3) they extracted iris features, in this
work we extract face patterns; (4) for features extraction they used a test of statistical
independence reported in [12], we use eigenface method reported in [29, 30]; (5) they
only reported brief analysis on sensitivity of initial conditions. Nevertheless, we provide
a complete security analysis.

The organization of this paper is as follows: In Section 2, a brief review on eigen-
faces approach is given. In Section 3, the proposed algorithm to encrypt and decrypt
is described. In Section 4, the main results of this work are presented. The paper is
concluded with some remarks in Section 5.

2 Review on Eigenfaces Approach

PCA approaches include two phases: enrollment and identification (see Figure 1). In
the enrollment phase, an eigenspace is established from the training samples by using
PCA and the training face images are mapped to the eigenspace for identification. In the
identification phase, an input face is projected to the same eigenspace and identified by
an appropriate classifier. For details of this method, see e.g. [29, 30, 32]. The approach
for face recognition involves the following initial operations:

1. Acquire an initial set of face images (the training set).

2. Calculate the eigenfaces from the training set, keeping only M images that corre-
spond to the highest eigenvalues. These M images define the face space. As new
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faces are experienced, the eigenfaces can be updated or recalculated.

3. If it is a face, classify the weight pattern as either a known person or as unknown.

4. Update the eigenfaces and/or weight patterns (optional).

5. If the same unknown is seen several times, calculate its characteristic weight pattern
and incorporate into the known faces (optional).

2.1 Calculating eigenfaces

A human face image can be considered as a stochastic sample, and each face image is
considered as a higher dimensional vector and each pixel corresponds to a component. If
all the face images lie in the same subspace of the higher dimensional space, this subspace
is a good representation of face images because it shows the common features of faces.
So, detection of faces is to find the subspace.

Suppose A = [aij ]r×c
as a human face image, where r and c are the number of rows

and columns of the images, respectively; aij is the gray value of the pixel in i-th row and
j-th column. Re-arrange aij and make it a column vector

xi = [a11 a21 ... ar1 a12 a22 ... ar2 ... a1c a2c ... arc]
T , (1)

where xi is a D-dimensional vector, D = r × c.

Next, the images are mean centered by subtracting the mean image from each image
vector,

x i = xi −m, (2)

where m is the average vector of the training specimens set, and is given by

m =
1

M

M−1
∑

i=0

xi. (3)

Vectors from Eq. (2) are combined side by side to create a data matrix of size D×M ,
where M is the number of images in the training specimens set,

X =
{

x1 | x2 | ... | xP
}

, (4)

the covariance matrix can be calculated as

Ω = X ·XT
. (5)

This covariance matrix has up to d eigenvectors associated with non-zero eigenvalues,
assuming d < D.

Let λ1, λ2, ... , λd (λ1 > λ2 > ... > λd > 0) and u1, u2, ... , ud be eigenvalues and
corresponding eigenvectors of the covariance matrix Ω, respectively. So, every human face
image, xi, can be represented by the linear combination of the eigenvectors. According
to the algebra theory, we know that u1, u2 , ... , ud will be orthogonal one another and
unit vector. Usually, M < D, can be satisfied because D is larger than the number of
the specimens. Then d < D is derived. In other words, the given human face image can
be represented by fewer base vectors (d vectors) [32].
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Some values λi, in d eigenvalues are very small, whose corresponding eigenvectors
give little contribution to represent the face image specimens, hence they can be ignored.
Thus, we sort the eigenvectors according to the decreasing eigenvalues, and select the
top k eigenvectors to represent the specimens [32].

If we choose k as a very big number, for example k = d. But we know some eigen-
vectors have little contribution to face space. On the contrary, if we select k as a very
small number, for example k = 1, then the subspace is not sufficient to represent the
face image specimens. Usually, we can select the smallest k which satisfies the following
expression [32]

k
∑

i=0

λi

M−1
∑

i=0

λi

> α, (6)

where α is a real number, which is close to 100%, such as 99%. It states that the top k

axes have 99% energy of all axes.

2.1.1 Ordering eigenvectors

Order the eigenvectors ui ∈ U according to their corresponding eigenvalues λi from high
to low. Keep only the eigenvectors associated with non-zero eigenvalues. This matrix of
eigenvectors is the eigenspace U, where each column of U is an eigenvector,

U = [ u1 | u2 | · · · | ud ] . (7)

2.1.2 Projecting training images

To project the training images, each of the centered training images from Eq. (2) must
be projected into the eigenspace. To project an image into the eigenspace, we need to
calculate the dot product of the image with each of the ordered eigenvectors from Eq.
(7) as follows,

x̃ i = U
T

xi. (8)

Therefore, the dot product of the image and the first eigenvector will be the first
value in the new vector. The new vector calculated from Eq. (8) of the projected image
must contain the same values as eigenvectors.

2.1.3 Identifying test images

Each test image is first mean centered by subtracting the mean image, and is then
projected into the same eigenspace defined by U as follows,

y i = yi −m, (9)

where m is calculated from Eq. (3), and y i is the centered test image.
Then project this centered test image according to

ỹ i = U
T

y i. (10)
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The projected test image (ỹ i) is compared to every projected training image and the
training image that is found to be nearest to the test image is used to identify the input
image (test images).

These images can be compared by using any number of similarity measures, the most
common is the L2 norm or Euclidian distance as follows,

ε2 =
∥

∥ỹ i − x̃ k
∥

∥

2
, (11)

where x̃ k is a vector describing the kth face class. A face is classified as belonging to
class k when the minimum ε is below some chosen threshold θε. Otherwise the face is
classified as “unknown”.

3 Encryption and Decryption Algorithm

3.1 Double encryption algorithm

The Rössler hyperchaotic map is described by the following equations [2]:

x1(k + 1) = αx1(k)(1 − x1(k))− β(x3 + γ)(1− 2x2(k),

x2(k + 1) = δx2(k)(1 − x2(k) + ζx3(k),

x3(k + 1) = η((x3(k) + γ)(1 − 2x2(k))− 1)(1− θx1(k)), (12)

with parameters α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ζ = 0.20, η = 0.10, θ = 1.9, and
initial conditions: x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01; the map (12) exhibits
hyperchaotic dynamics [2]. Figure 2 shows the hyperchaotic attractor generated by the
Rössler map projected on the (x1, x2, x3)-plane.
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Figure 2: Hyperchaotic attractor generated by Rössler map (12).

On the other hand, the Chen hyperchaotic map is described by the following equations
[1]:

x1(k + 1) = 1− a(x2
1(k) + x2

2(k)),

x2(k + 1) = −2abx1(k)x2(k), (13)

with parameters a = 1.95 y b = 1, and initial conditions: x1(0) = 0.025 and
x2(0) = 0.025; the map (12) exhibits hyperchaotic dynamics [1]. Figure 3 shows the
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Figure 3: Hyperchaotic attractor generated by Chen map (13).

hyperchaotic attractor generated by the Chen map projected on the (x1, x2)-plane.

The proposed double encryption scheme in this work to encrypt face patterns is shown
in Figure 4. Where the inputs to the scheme are the face patterns and initial conditions
as encryption key for the hyperchaotic maps Eq. (12) and (13). Later, the face pattern
is converted to binary secuence, and then the two X-OR operation is performed with the
generated hyperchaotic signal by Rössler map, prior to operating X-OR, the hyperchaotic
signal, also has to be digitized, this is done by using a quantizer. In the quantizer a
threshold can be established between 0 and 1, for example in [22] 0.5 was used for the
Hénon map. When the amplitude of the hyperchaotic signal is greater than or equal to
0.5, the output of the quantizer is at a higher level, whereas when the amplitude of the
hyperchaotic signal is less than 0.5, the quantizer output is at a low-level. In this work,
the threshold was optimized to obtain the best entropy and therefore better security
levels, so the best threshold for Rössler and Chen hyperchaotic map are 0.59 and 0.14
respectively. Then, the result of the X-OR operation between the digitized face pattern
and the hyperchaotic signals in binary format, also is a binary signal called encrypted
face pattern, which is sent through a public network.

3.2 Double decryption algorithm

Figure 5 shows the double decryption scheme, to recover the original face pattern at
the receiver end, the reverse process of encryption must be followed, i.e., it receives the
encrypted face pattern and introduces the same key used for the encryption (the same
initial conditions of the two hyperchaotic maps). Similarly, the generated hyperchaotic
signal, is applied to a quantizer to be converted to a binary format, the threshold of the
quantizer has to be the same as the two used to encrypt the face pattern. Then apply
the two X-OR operation between the encrypted face pattern and hyperchaotic binary
signals. The result of this operation is also a string of bits, then these bits are grouped
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����
�������

	
����
���
�����

����

�����
���
��

�����������������
�
���

������

���������
 �����������

!�"�
�
���#��$

���
�
���
������������

�
�
�

�
�
�

�
�

����

�����
���
�%

&��������������
�
���

�
�

���
�
���
�����������%

�����%

Figure 4: Double encryption scheme for face patterns.

into 8 bits to form the corresponding level of gray of each pixel, lastly it rebuilds the
image of the recovered face pattern.
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Figure 5: Double decryption scheme for recovered face patterns.

4 Results

4.1 Security analysis

4.1.1 Key space analysis

The key of the proposed cryptosystem consists of two parts: a) the initial conditions of
the two hyperchaotic maps (Rössler and Chen), (b) the control parameters of these maps.
Thus, there are five initial conditions and nine parameters in our algorithm. According
to the IEEE standard for floating point arithmetic [17], the computational precision of
64 bits numbers is 1 × 10−16, so the secret key’s space is 1016 × 1016 × 1016 × 1016 ×
1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 = 10224, therefore
in a binary system it is equal to 2744, so the secret key’s space is large enough to resist
exhaustive attack.
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4.1.2 Statistical analysis

Figure 6(a) shows the face pattern #1 and the Figure 6(d) shows its corresponding
histogram, this pattern was encrypted by using the Rössler and Chen hyperchaotic maps
and approach explained in Section 3. Figure 6(b) shows the encrypted face pattern with
different maps using the initial conditions as an encryption key: x1(0) = 0.10, x2(0) =
0.15, x3(0) = 0.01 and x1(0) = 0.025 and x2(0) = 0.025 of Rössler and Chen maps,
respectively. The optimized threshold for quantizing the state x1 of the Rössler map
is 0.59, while the optimized threshold for quantizing the state x2 of the Chen map
is 0.14. Figure 6(e) shows its corresponding histogram, we can see, in the histogram
from the original image 6(d), that most of the information is concentrated among the
pixels that are in the range of gray level between 0 and 100. While in the histogram
in Figure 6(e) the information is distributed over the entire range from 0 to 255 of the
grayscale level, therefore, we can say that the system is robust against statistical attacks.
Figure 6(c) shows the recovered face pattern at the receiver end, and Figure 6(f) shows
its corresponding histogram, we can see that both, the recovered face pattern and the
histogram are equal to the original pattern, therefore recovering 100% of the original
information.
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Figure 6: Top: (a) Original face pattern, (b) Encrypted face pattern, (c) Recovered face
pattern. Bottom: (d) Histogram of the original face pattern, (e) Histogram of the face pattern,
(f) Histogram of the recovered face pattern.

4.1.3 Correlation analysis of adjacent pixels

Shannon proposed two techniques based on the design of encrypters [26,27], the diffusion
and confusion, these two properties above can be demonstrated by a test correlation of
adjacent pixels in the encrypted image [9]. The correlation between two adjacent pixels
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was examined horizontally, vertically and diagonally. To do this, we randomly selected
2025 pairs of pixels (xi, yi) of the image pattern under analysis (original or encrypted),
generated by scattering graphics with these pairs of adjacent pixels, i.e., the pixel is
plotted xi vs yi. Then their corresponding correlation coefficients (rxy) are calculated [9]
by using the next expression,

rxy =
cov(x, y)

√

D(x)
√

D(y)
, (14)

with

cov(x, y) =
1

N

N
∑

i=1

(xi − E(x))(yi − E(y)), (15)

where cov(x, y) is the covariance, D(x) is the variance, x and y denote the scale values
of gray level in the image pattern under analysis. For this numerical case, the following
discrete forms were used:

E(x) =
1

N

N
∑

i=1

xi, (16)

D(x) =
1

N

N
∑

i=1

(xi − E(x))), (17)

where E(x) is the average gray levels of pixels.
Figure 7(a) shows the correlation distribution of two adjacent pixels in horizontal

direction of the original face pattern. Using Eq. (14), we obtain the correlation coefficient
of 0.9976. Figure 7(b) shows the correlation distribution of two adjacent horizontal
pixels from the encrypted face pattern, in the same way, using (14) to compute the
correlation coefficient, which is −0.0082. Table 1 shows the horizontal, vertical and
diagonal correlation coefficients of adjacent pixels in the original face pattern and in
the encrypted face pattern. From the results of Table 1, we find that the correlation
coefficients of the encrypted face pattern are close to zero, it can clearly be seen that our
algorithm can destroy the relativity effectively; the proposed image encryption algorithm
has a strong ability to resist statical attack.

Table 1: Correlation of adjacent pixels in the original face pattern and in the encrypted face
pattern.

Pixels Original face pattern Encrypted face pattern

Horizontal 0.9976 -0.0082

Vertical 0.9986 0.0073

Diagonal 0.9961 0.0089

4.1.4 Differential attacks

To perform an analysis against differential attacks [9] and understand the differences
between encrypted images, two measures in common are used, NPCR (Number of Pixels
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Figure 7: Correlations of two horizontally adjacent pixels in the original image and in the
ciphered image: (a) Original face pattern, (b) Encrypted face pattern.

Change Rate) and UACI (Unified Average Changing Intensity). These measures are
used to test the influence of change of a pixel in the whole encrypted pattern.

Number of pixels change rate (NPCR) Measures the percentage of the number
of different pixels between two encrypted image patterns and can be calculated by using
the following expression [9, 24],

NPCR =

∑

i,j D(i, j)

W ×H
× 100%, (18)

where D(i, j) is a binary arrangement, so that:

D(i, j) = 0, if C1(i, j) = C2(i, j),
D(i, j) = 1, where C1(i, j 6= C2(i, j),

C1 and C2 are encrypted image patterns obtained with keys (initial conditions) that are
very similar. W and H define the size of the image under analysis.

Unified average changing intensity (UACI) Measures the average intensity dif-
ferences between two encrypted images (C1 and C2) by the expression [9, 24],

UACI =
1

W ×H

∑

i,j

|C1(i, j)− C2(i, j)|
255

× 100%, (19)

where C1, C2, W , and H were computed previously.
To realize the analysis against differential attacks, very similar keys are used to en-

crypt the original face pattern. In this case, the first encryption keys used for Rössler
map are x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01, for Chen map are x1(0) = 0.025
and x2(0) = 0.025, also we used the same parameters described in Section 3 for Rössler
and Chen maps, so with these keys we obtain the encrypted face pattern C1, the follow-
ing keys used for Rössler map are x1(0) = 0.10 + 1e−10, x2(0) = 0.15, and x3(0) = 0.01,
for Chen map are x1(0) = 0.025 and x2(0) = 0.025, also we used the same parameters
described in Section 3, so we obtain the encrypted face pattern C2. Using expressions
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(18) and (19), we obtain NPCR = 99.71% and UACI = 34.26%. These results show
that the encryption algorithm is strong against differential attacks, because the NPCR

is approximate the ideal value of 100% and UACI is slightly higher than 33%.

4.1.5 Information entropy

Shannon [26, 27] introduced the mathematic fundamentals of the information theory
applied to communications and data storage. The information entropy is a criterion that
shows the randomness of the data. In addition, it can be used to evaluate the security
of encryption [31]. To calculate the entropy H(s) [6] from a source (s), we have

H(s) =

2N−1
∑

i=0

P (si) · Log2(
1

P (si)
) bits, (20)

where P (si) represents the probability of the symbol si.

For a purely random source, which is emitting 2N symbols with same probability,
after evaluating Eq. (20), we have an entropy H(s) = N , in this case, encrypted images
with completely random pixels in 8 bit grayscale, have entropy H(s) = 8 bits. When
images of patterns are encrypted, ideally its entropy must be 8. When a cryptographic
system emits symbols with entropy less than 8, the encrypter has some degree of
predictability, so its security is set at risk [6].

To evaluate the information entropy, from the algorithm of hyperchaotic encryption
used in this paper, Eq. (20) was used. First, we calculate the probability of occurrence of
each symbol (pixel), with the help of the corresponding histogram of the encrypted face
pattern. In the case, of the encrypted face pattern obtained with the encryption keys
x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01, the entropy calculated is H(si) = 7.9956.
This is a good result, because it is near (similar) to its ideal value of 8.

5 Conclusion

In this paper, we have applied double hyperchaotic encryption to face patterns in a
biometric system, particularly in face recognition system which operates remotely and
uses eigenface approach, this was for illustrative purposes, but other methods can be
implemented easily. The double encryption algorithm presents an extremely large key
space and very good statistical properties, so it effectively resists statistic attacks.
Also, it has a high sensitivity to withstand differential attacks. Therefore, because the
algorithm used in this work has a high security level, it can be suggested to encrypt con-
fidential biometric information (face, iris, fingerprint, palmprint, retina, hand geometry,
and facial thermogram, etc.), that will be transmitted securely through a public network,
such as the internet. As future work, we propose to use 3D Discrete Generalized Hénon
Map [13] and quantum dynamics [23] to encrypt biometric information.
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[18] Inzunza-González E., Cruz-Hernández C. and Serrano-Guerrero H., Hyperchaotic encryp-
tion: An application in biometric systems based on face recognition, submitted in AEÜ -
International Journal of Electronics and Communications.
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1 Introduction

Let V and V̂ be real Hilbert spaces. Also, let Z = L2([0, τ ];V ) and Y = L2([0, τ ]; V̂ )
be the corresponding function spaces defined on [0, τ ]. Let C([−h, 0], V ) be the Banach
space of all continuous functions from [−h, 0] to V with the supremum norm.

Consider the following fractional order semilinear control system with bounded delay

CDα
t x(t) = Ax(t) +Bu(t) + f(t, xt), t ∈]0, τ ];

x(t) = ϕ(t), t ∈ [−h, 0].

}

(1)

Here CDα
t is the Caputo fractional derivative of order α, where 1/2 < α < 1; the state x(·)

takes its values in the space V ; A : D(A) ⊆ V → V is a closed linear operator with dense
domainD(A) generating a C0-semigroup T (t); the control function u(·) takes its values in
V̂ . The operator B is a bounded linear operator from V̂ to V ; f : [0, τ ]×C([−h, 0], V ) →
V is a continuous function and ϕ is the element of C([−h, 0];V ).

∗ Corresponding author: mailto:mathdma@gmail.com

c© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 69

mailto: mathdma@gmail.com 
http://e-ndst.kiev.ua


70 S. KUMAR AND N. SUKAVANAM

The investigation of the theory of fractional calculus have been started about three
decades before. Fractional order differential equations are generalizations of ordinary dif-
ferential equations to an arbitrary (noninteger) order. Fractional order nonlinear equa-
tions are abstract formulations for many problems arising in engineering, physics and
many other fields. In particular, the fractional calculus is used in diffusion process, elec-
trical science, electrochemistry, viscoelasticity, control science, electro magnetic theory
and several more. For more details one can see [1–6] and the references cited therein.
In [7] phase synchronizations in coupled chaotic systems presented by fractional differ-
ential equations has been considered. The existence and uniqueness of solutions of a
nonlinear multi-variables fractional differential equations have been investigated in [8] by
using Schauder’s fixed points theorems and Global contraction mapping theory.

The problems of optimal control [9, 10] and various type of controllability like exact
controllability [11–13], boundary controllability [14] and the approximate controllability
[15, 16] of fractional order systems have been studied in the area of control theory in
infinite dimension spaces.

To prove exact controllability and the boundary controllability, the main tool used by
the authors is to convert the controllability problem into a fixed point problem together
with the assumption that the controllability operator has an induced inverse on a quotient
space. In [12–14], to prove the controllability results for fractional order semilinear
systems authors made an assumption that the semigroup associated with the linear part
is compact. However, if the operator B is compact or C0-semigroup T (t) is compact
then the controllability operator is also compact and hence inverse of it does not exist if
the state space V is infinite dimensional [17]. Thus, the concept of exact controllability
is too strong in infinite dimensional space and the approximate controllability is more
appropriate for these control systems.

The approximate controllability of the systems of integer order ( α = 1, 2) has been
proved in [18–23] and the references therein. To show the results on the approximate
controllability a relation between the reachable set of a semilinear system and that of the
corresponding linear system is proved. In [15] Sakthivel et al. proved the approximate
controllability by assuming that the C0-semigroup T (t) is compact and the nonlinear
function is continuous and uniformly bounded. Sukavanam et al. [16] proved the ap-
proximate controllability for a class of semilinear delayed control system of fractional
order by assuming that the corresponding linear system is approximately controllable
and nonlinear function satisfies the Lipschitz condition. Recently, Kumar et al. [24] es-
tablished sufficient conditions for the approximate controllability of a class of semilinear
delay control systems of fractional order by using Schauder’s fixed point theorem and
the compactness of the C0-semigroup together with the Lipschitz continuity of nonlinear
term.

In this paper, sufficient conditions for the approximate controllability of fractional
order semilinear control system (1) are established.

The paper is organized as follows: in Section 2, we present some necessary prelimi-
naries. The approximate controllability of semilinear system (1) is proved in Section 3.
In Section 4, an example is given to illustrate the theory.

2 Preliminaries

This section is devoted to the basic definitions and lemma, which are useful for further
development.
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Definition 2.1 A real function f(t) is said to be in the space Cα, α ∈ R if there
exists a real number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞[ and it is said to
be in the space Cm

α iff f (m) ∈ Cα, m ∈ N .

Definition 2.2 The Riemann-Liouville fractional integral operator of order β > 0 of
function f ∈ Cα, α ≥ −1 is defined as

Iβf(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds,

where Γ is the Euler gamma function.

Definition 2.3 If the function f ∈ Cm
−1 and m is a positive integer then we can

define the fractional derivative of f(t) in the Caputo sense as

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1fm(s)ds, m− 1 ≤ α < m.

Definition 2.4 [25] A function x(·) ∈ C([−h, τ ];V ) is said to be the mild solution
of (1) if it satisfies

x(t) =

{

Sα(t)ϕ(0) +
∫ t

0 (t− s)α−1Tα(t− s)[Bu(s) + f(s, xs)]ds, t ∈ [0, τ ],
ϕ(t), t ∈ [−h, 0],

where Sα(t)x =
∫∞

0 φα(θ)T (t
αθ)xdθ and Tα(t)x = α

∫∞

0 θφα(θ)T (t
αθ)xdθ. Here

φα(θ) = 1
α
θ−1−1/αψα(θ

−1/α) is the probability density function defined on (0,∞),

that is φα(θ) ≥ 0, and
∫∞

0 φα(θ)dθ = 1. Also the term ψα(θ) is defined as ψα(θ) =
1
π
Σ∞

n=1(−1)n−1θ−nα−1 Γ(nα+1)
n! sin(nπα), θ ∈ (0,∞).

Define the solution mapping Φ from Z to C([0, τ ];V ) as

(Φu)(t) = x(t).

Definition 2.5 The setKτ (f) = {x(τ) ∈ V : x(t) is a mild solution of (1)} is called
the reachable set of the system (1).

Definition 2.6 Let x(τ) be the state value of system (1) at time τ corresponding to
the control u. The system (1) is said to be approximately controllable in time interval
[0, τ ], if for every desired final state ξ and ǫ > 0 there exists a control function u(·) ∈ Y

such that the mild solution x(t) of (1) satisfies

‖x(τ)− ξ‖ < ǫ.

The system (1) is said to be approximately controllable on [0, τ ] iff Kτ (f) = V, where
Kτ (f) denotes the closure of Kτ (f).

Lemma 2.1 [25] For any fixed t ≥ 0, Sα(t) and Tα(t) are bounded linear operators,
that is, for any x ∈ V , ‖Sα(t)x‖ ≤ M‖x‖ and ‖Tα(t)x‖ ≤ Mα

Γ(1+α)‖x‖, where M is a

constant such that ‖T (t)‖ ≤M , for all t ∈ [0, τ ].
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Define a continuous linear operator L from Z to C([0, τ ];V ) by

Lp =
∫ τ

0

(τ − s)α−1Tα(τ − s)p(s)ds, for p(·) ∈ Z.

Assumption: We need the following hypotheses to prove our results:
(H1) The nonlinear operator f(t, x) satisfies the Lipschitz condition i.e. there exists a
positive constant l such that

‖f(t, x)− f(t, y)‖V ≤ l‖x− y‖V , for all x, y ∈ V and t ∈ [0, τ ],

and ‖f(t, 0)‖V ≤ lf .

(H2) For any given ǫ > 0, and p(·) ∈ Z, there exists some u(·) ∈ Y such that

‖Lp− LBu‖V < ǫ.

(H3) ‖Bu(·)‖Z ≤ λ‖p(·)‖Z , where λ is a positive constant independent of p(·).
(H4) The constant λ satisfies Mαταλl

Γ(1+α)
√
2α−1

exp
(

Mlτα

Γ(1+α)

)

< 1.

3 Controllability Results

In this section, we prove the approximate controllability for a class of fractional order
semilinear control system (1) with bounded delay.

Lemma 3.1 Under hypotheses (H1) the solution mapping (Φu)(·) satisfies

‖(Φu)(t)‖V ≤ K exp

(

Mlτα

Γ(1 + α)

)

,

where K =M
[

‖ϕ(0)‖+ α
Γ(1+α)

√

τ2α−1

2α−1 ‖Bu‖Z +
lfτ

α

Γ(1+α)

]

.

Let u1(·) and u2(·) be in Y. Then

‖x1 − x2‖Z ≤ Mατα

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z ,

where xn(t) = (Φun)(t), n = 1, 2, · · ·.

Proof. The solution mapping (Φu)(t) = x(t) is given by

x(t) = xt(0) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Tα(t− s)[Bu(s) + f(s, xs)]ds.
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Taking the norm on both sides, we have

‖xt‖V = ‖Sα(t)‖‖ϕ(0)‖+
∫ t

0

(t− s)α−1‖Tα(t− s)‖‖Bu(s) + f(s, xs)‖ds

≤ M‖ϕ(0)‖+ Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖Bu(s)‖ds

+
Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖f(s, xs)‖ds,

≤ M‖ϕ(0)‖+ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖Bu‖Z

+
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds+
Mlfτ

α

Γ(1 + α)
.

≤ K +
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds.

This implies that

‖xt‖C = sup ‖xt‖V ≤ K +
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds.

Now, using the Gronwall’s inequality, we get

‖x(t)‖ ≤ K exp
( Mlτα

Γ(1 + α)

)

.

Thus, we have

‖(Φu)(t)‖V ≤ K exp
( Mlτα

Γ(1 + α)

)

.

Let us define y(·, ϕ) : [−h, τ ] → V as

y(t, ϕ) =

{

ϕ(t), t ∈ [−h, 0],
Sα(t)ϕ(0), t ∈ [0, τ ].

Let x(t) = y(t) + z(t), t ∈ [−h, τ ]. It is easy to see that x(·) satisfies (1) if and only if
z0 = 0 and for t ∈ [0, τ ], we have

z(t) =

∫ t

0

(t− s)α−1Tα(t− s)[Bu(s) + f(s, ys + zs)]ds.

Now, let us take x1(·), x2(·) ∈ V and u1, u2 ∈ Y , then

‖(z1)t − (z2)t‖V

≤ Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖Bu1(s)−Bu2(s)‖ds

+
Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖f(s, y(s) + (z1)s)− f(s, y(s) + (z2)s)‖ds

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖Bu1 −Bu2‖Z

+
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖(z1)s − (z2)s‖Cds.
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Using the Gronwall’s inequality, we get

sup ‖(z1)t − (z2)t‖V = ‖(z1)t − (z2)t‖C

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
exp

( Mlτα

Γ(1 + α)

)

‖Bu1 −Bu2‖Z .

Hence, we have

‖x1 − x2‖Z =

(∫ τ

0

‖x1(s)− x2(s)‖2V ds
)1/2

=

(∫ τ

0

‖z1(s)− z2(s)‖2V ds
)1/2

≤ Mατα

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z .

This completes the proof of lemma.

Theorem 3.1 Under hypotheses (H1)–(H4) the fractional order semilinear control
system (1) is approximately controllable.

Proof. Since the domain D(A) of the operator A is dense in Z, it is sufficient to
prove that D(A) ⊂ Kτ (f). For this, let us take ξ ∈ D(A), then for any given ǫ > 0, there
exists a control function uǫ(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, xǫ(s)) − LBuǫ‖ < ǫ,

where xǫ(t) = (Φuǫ)(t) satisfies

xǫ(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Tα(t− s)[Buǫ(s) + f(s, (xǫ)s)]ds.

Now, we construct a sequence recursively as follows.
Assume that u1(·) ∈ Y is arbitrarily given. By hypothesis (H2), there exists some

u2(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2‖ <
ǫ

22
, (2)

where x1(t) = (Φu1)(t), for all t ∈ [0, τ ].
For u2(·) ∈ Y thus obtained, we determine w2(·) ∈ Y by hypotheses (H2) and (H3)

such that

‖L[f(s, (x2)s)− f(s, (x1)s)]− LBw2‖ <
ǫ

23
, (3)

and by Lemma 3.1, we have

‖Bw2(·)‖L2([0,τ ];V ) ≤ λ‖f(s, (x2)s)− f(s, (x1)s)‖Z

≤ λ

(∫ τ

0

‖f(s, (x2)s)− f(s, (x1)s)‖2V ds
)1/2

≤ λl

(∫ τ

0

‖(x2)s − (x1)s‖2V ds
)1/2

≤ λl‖x2 − x1‖Z
≤ Mαταλl

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z ,
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where xn(t) = (Φun)(t), n = 1, 2, for all t ∈ [0, τ ].
Thus, we may define u3 = u2 − w2 in Y which has the following property

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x2)s)− LBu3‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2

+LBw2 − L[f(s, (x2)s)− f(s, (x1)s)]‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2‖

+‖LBw2 − L[f(s, (x2)s)− f(s, (x1)s)]‖.

Using Eq. (2) and (3), we get

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x2)s)− LBu3‖ ≤
(

1

22
+

1

23

)

ǫ.

Mathematical induction implies that there exists a sequence un(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xn)s)− LBun+1‖ ≤
(

1

22
+ · · ·+ 1

2n+1

)

ǫ, (4)

where xn(t) = (Φun)(t), n = 1, 2, · · ·, for all t ∈ [0, τ ] and

‖Bun+1(·) − Bun(·)‖Z
≤ Mαταλl

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bun(·) −Bun−1(·)‖Z .

Clearly, by hypothesis (H4), the sequence {Bun; n = 1, 2, · · ·} is a Cauchy sequence in
the Banach space Z and there exists some v(·) ∈ Z such that

lim
n→∞

Bun(t) = v(t), in Z.

Therefore for any given ǫ > 0, there exists some integer Nǫ such that

‖LBuNǫ+1 − LBuNǫ
‖ < ǫ

2
. (5)

Hence, we obtain

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ
)s)− LBuNǫ

‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ

)s)− LBuNǫ+1‖
+‖LBuNǫ+1 − LBuNǫ

‖,

where xNǫ
(t) = (ΦuNǫ

)(t), for all t ∈ [0, τ ]. Using Eq. (4) and (5), we get

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ
)s)− LBuNǫ

‖ ≤
(

1

22
+ · · ·+ 1

2Nǫ+1

)

ǫ+
ǫ

2

≤ ǫ.

This means that ξ ∈ Kτ (f). Hence the fractional order semilinear system (1) is approx-
imately controllable on [0, τ ]. This completes the proof.

Theorem 3.2 Suppose that the range of the operator B i.e. R(B) is dense in Z.
Then under hypothesis (H1) the semilinear system (1) is approximately controllable.
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Proof. Since the range of the operator B is dense in Z, for any given point p(·) ∈ Z

and every δ > 0, there exists some point Bu(·) ∈ R(B), where u(·) ∈ Y such that

‖Bu(·)− p(·)‖Z < δ‖p(·)‖Z . (6)

Now, we have

‖Lp− LBu‖ ≤ Mα

Γ(1 + α)

∫ τ

0

(τ − s)α−1‖p(s)−Bu(s)‖ds

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖p(·)−Bu(·)‖Z

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
δ‖p(·)‖Z

< ǫ.

Thus from (6), we have

‖Bu(·)‖Z = ‖Bu(·)− p(·) + p(·)‖Z
≤ ‖Bu(·)− p(·)‖Z + ‖p(·)‖Z
≤ δ‖p(·)‖Z + ‖p(·)‖Z
≤ (δ + 1)‖p(·)‖Z.

This implies that the conditions (H2) and (H3) are satisfies, if we choose δ > 0 in such
a manner that (H4) is verified. Then the approximate controllability of (1) follows from
Theorem 3.1.

4 Example

Let V = L2(0, π) and A = ∂2

∂x2 with D(A) consisting of all y ∈ V with ∂2y
∂x2 and y(0) =

0 = y(π). Put en(x) =
√

2/π sin(nx); 0 ≤ x ≤ π, n = 1, 2, · · ·, then {en, n = 1, 2, · · ·} is
an orthonormal basis for V and en is the eigenfunction corresponding to the eigenvalue
λn = −n2 of the operator A. Then the C0-semigroup T (t) generated by A has exp(λnt)
as the eigenvalues and en as their corresponding eigenfunctions [26]. Define an infinite-
dimensional space V̂ by

V̂ =

{

u | u =

∞
∑

n=2

unen, with

∞
∑

n=2

u2n <∞
}

.

The norm in V̂ is defined by

‖u‖
V̂
=

(

∞
∑

n=2

u2n

)1/2

.

Define a continuous linear map B from V̂ to V as

Bu = 2u2e1 +

∞
∑

n=2

unen, for u =

∞
∑

n=2

unen ∈ V̂ . (7)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (1) (2013) 69–78 77

Let us consider the following fractional order semilinear control system of the form

CDα
t y(t, x) =

∂2

∂x2
y(t, x) +Bu(t, x) + f(t, y(t− h, x)); t ∈ [0, τ ], 0 < x < π,

y(t, 0) = y(t, π) = 0; t ∈ [0, τ ],

y(t, x) = ϕ(t, x); t ∈ [−h, 0], (8)

where ϕ(t, x) is continuous. The system (8) can be written in the abstract form given by
(1). The operator B is defined in (7) and the control function u(t, x) ∈ L2([0, τ ]; V̂ ) =
L2([0, τ ] × (0, π)). Here the nonlinear term f is considered as an operator satisfying
Hypothesis (H1). If the conditions (H2)-(H4) are satisfied, then the approximate con-
trollability of system (8) follows from Theorem 3.1. For example, if we consider the
function f as f(t, z) = l‖z‖φ3(z), where l > 0 is a constant. The function f satisfies
(H1) with Lipschitz constant l.

Conclusion

The approximate controllability for a class of semilinear delay control system of fractional
order has been proved provided that it holds for the corresponding linear system. These
results hold only for the fractional order such that 1/2 < α < 1.
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1 Introduction

In [1] a mathematical model essentially owed to Dingli and Michor [2] was used in order
to characterize normal and leukemic states and to explain basic pathways through which
the robustness of the hematopoietic system can fail leading to leukemia.

Assume that at each time t, the cell population divides into two: the normal popu-
lation x (t) and the leukemic population y (t) . By x0, y0 we denote the normal and
leukemic populations at a fixed moment of time t = 0. Denote by a, b, c and A,B,C

(model parameters) the intrinsic (i.e., in the absence of any constraints) growth, mi-
croenvironment sensitivity and death rates of normal and leukemic cells, respectively.
The conservation laws for normal and leukemic cells can be expressed as a system of two
differential equations:







x′ = a
1+b(x+y)x− cx,

y′ = A
1+B(x+y)y − Cy.

(1)
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Here the term a
1+b(x(t)+y(t))x (t) represents the new normal cell population at time t,

and cx (t) are the removed normal cells at time t. Similar interpretations hold for y.

The terms 1
1+b(x+y) and 1

1+B(x+y) simulate the crowding effect in the bone marrow

microenvironment and introduce competition between normal and leukemic cells. The
cell proliferation is faster while the total cell population x + y is small, and slower for
large x + y. Thus these terms simulate the feedback of the proliferation system. We
assume that for both cell populations, the intrinsic growth rate is greater than the death
rate, i.e., a > c and A > C. Denote

d :=
1

b

(a

c
− 1
)

and D :=
1

B

(

A

C
− 1

)

.

Then the steady-states or equilibria of system (1) are:

(0, 0) ; (d, 0) ; (0, D)

if d 6= D, and

(0, 0) ; (α, d− α) for 0 ≤ α ≤ d

when d = D.

The stability analysis in [1] shows that the zero solution (0, 0) is always unstable and
if d > D, then (d, 0) is the unique asymptotically stable equilibrium and the normal
cell population x (t) approaches the equilibrium abundance d (normal homeostatic level)
while the leukemic cell population y (t) tends to zero; if d < D, then (0, D) is the unique
asymptotically stable equilibrium and the leukemic cell population becomes dominant
approaching to its equilibrium abundance D (leukemic homeostatic level) and leads in
the limit to the elimination of the normal cells, that is x (t) tends to zero. These happen
no matter the initial concentrations x0 > 0, y0 > 0 are. Thus we may say that the normal
hematopoietic state is characterized by the inequality d > D, the leukemic hematopoietic
state corresponds to the inequality d < D and that equality d = D characterizes the
transitory state between normal and leukemic states.

The basic idea of the stem cell transplantation (see [5, 7]) consists in adding, say at
time t = 0, in competition with x0, y0 (host cells) a new population (donor cells) z0. If the
aggressiveness of z against x, y (graft-versus-host and graft-versus-leukemia) compensates
that of the x and y against z (anti-graft effect), and if the initial concentrations x0, y0
are smaller enough as compared with z0, then, in time, host cells are eliminated and
completely replaced by donor cells guaranteeing the elimination of cancer.

Mathematically, this means that a new equation in z is added to the previous system
in x and y which is itself modified in order to incorporate the new competition (mutual
”aggressiveness”) between z, on one side, and x and y, on the other. Assuming that
intrinsic growth, sensitivity and death rates of the donor cell population are those of
the normal host cell population (human invariant kinetic parameters), namely a, b, c,

in [5] it was proposed the following model for the cellular dynamics after bone marrow
transplantation:



























x′ = a
1+b(x+y+z)

x+y+ε
x+y+ε+gz

x− cx,

y′ = A
1+B(x+y+z)

x+y+ε
x+y+ε+Gz

y − Cy,

z′ = a
1+b(x+y+z)

z+ε
z+ε+h(x+y)z − cz.

(2)
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Here the growth inhibitory factors

1

1 + g z
x+y+ε

,
1

1 +G z
x+y+ε

,
1

1 + hx+y
z+ε

take into account the cell-cell interactions, quantitatively by ratios z
x+y+ε

and x+y
z+ε

, and
qualitatively by parameters h, g,G standing for the intensity of anti-graft, anti-host and
anti-leukemia effects, respectively. Constant ε > 0 is taken in order to avoid singularity.

Numerical simulations performed in [5] for the leukemic case d < D have proved that
the evolution can ultimately lead either to the normal homeostatic equilibrium (0, 0, d)
achieved by the expansion of the donor cells and the elimination of the host cells, or to
the leukemic homeostatic equilibrium (0, D, 0) characterized by the proliferation of the
cancer line and the suppression of the other cell lines. One state or the other is reached
depending on cell-cell interactions (anti-host, anti-leukemia and anti-graft effects) and
initial cell concentrations at transplantation.

The aim of this paper is to provide a rigorous mathematical base for the conclusions
obtained in [5] by simulations. Thus in the present paper we find the equilibria of the
system (2), we study their stability and we find the boundary of the attraction basins of
the stable equilibria. This boundary allows us to calculate an initial cell concentration
(x0, y0, z0) in the attraction basin of the normal homeostatic equilibrium (0, 0, d). Sec-
tion 2 contains an analysis of the proposed system concerning its dynamics, Section 3
shows some numerical simulations with physiological parameters and in Section 4 a brief
summary is given.

2 Equilibria of the Augmented System

Let us consider the system (2) with ε → 0,














































x′ =

(

a

1 + b(x+ y + z)

x+ y

x+ y + gz
− c

)

x ≡ U(x, y, z),

y′ =

(

A

1 +B(x+ y + z)

x+ y

x+ y +Gz
− C

)

y ≡ V (x, y, z),

z′ =

(

a

1 + b(x+ y + z)

z

z + h (x+ y)
− c

)

z ≡ W (x, y, z),

(1)

where a, b, c, A,B,C, g,G, h are positive parameters and x ≥ 0, y ≥ 0, z ≥ 0 are such
that x+ y + z > 0. The main assumptions on the parameters are

a > c, A > C, d < D.

a) At the origin O(0, 0, 0) we have

lim
(x,y,z)→(0,0,0)

U(x, y, z) = lim
(x,y,z)→(0,0,0)

V (x, y, z) = lim
(x,y,z)→(0,0,0)

W (x, y, z) = 0

so that we will define U(0, 0, 0) = V (0, 0, 0) = W (0, 0, 0) = 0.
b) On the Ox axis, we have the equilibrium P1(d, 0, 0). The eigenvalues of the Jaco-

bian calculated by MAPLE at this point are

−c, −c(a− c)

a
, −CBa− CBc−Abc+ Ccb

bc+ aB − cB
.
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We have −c < 0, −c(a− c)/a < 0 and

−CBa− CBc−Abc+ Ccb

bc+ aB − cB
=

BC(D − d)

1 +Bd
> 0

so that P1 is an unstable equilibrium for all considered values of the parameters. On the
Ox axis, the first equation of (1) becomes

x′ = bcx
d− x

1 + bx

and the origin x = 0 has a behavior of an unstable equilibrium.
c) On the Oy axis we have the equilibrium P2(0, D, 0). The eigenvalues of the Jacobian

at this point are

−c, −C(A− C)

A
,

CBa− CBc−Acb+ Ccb

CB +Ab− Cb
.

Again −c < 0, −C(A− C)/A < 0 but

CBa− CBc−Acb+ Ccb

CB +Ab− Cb
=

bc(d−D)

1 + bD
< 0

so that P2 is a stable node for all considered values of the parameters – this is the ”bad”
equilibrium. On the Oy axis, the second equation of (1) becomes

y′ = BCy
D − y

1 +By

so that the origin y = 0 has a behavior of an unstable equilibrium.
d) On the Oz axis the equilibrium is P3(0, 0, d). The eigenvalues of the Jacobian at

this point are −c < 0, −C < 0, −c(a − c)/a < 0, so that P3 is a stable node for all
considered values of the parameters – this is the ”good” equilibrium. On the Oz axis,
the third equation of (1) becomes

z′ = bcz
d− z

1 + bz

so that the origin z = 0 has again a behavior of an unstable equilibrium.
e) In the Oxy plane the equilibrium conditions lead us to the system

(

a

1 + b(x+ y)
− c

)

x = 0,

(

A

1 +B(x+ y)
− C

)

y = 0,

from where, for (x, y) 6= (0, 0) we obtain x + y = d = D. Consequently, this system is
inconsistent for d < D. In a neighborhood of the origin, the above system becomes

x′ = bcx
d− (x+ y)

1 + b(x+ y)
, y′ = BCy

D − (x+ y)

1 +B(x+ y)
,

so that x′ > 0, y′ > 0 have again a behavior of an unstable equilibrium.
f) In the Oxz plane the equilibrium condition leads us to the system











a

1 + b(x+ z)

x

x+ gz
− c = 0,

a

1 + b(x+ z)

z

z + hx
− c = 0,

(2)
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from where, for (x, z) 6= (0, 0) we obtain
x

x+ gz
=

z

z + hx
or hx2 = gz2. Consequently,

we have a solution P4(x
+, 0, z+), where

x+ =

a

c
(

1 +
√
hg
) − 1

b

(

1 +

√

h

g

) , z+ =
√

h/gx+. (3)

There exists an admissible solution (x+ > 0, z+ > 0) if and only if

√

hg <
a

c
− 1 = bd.

We remark here that z =
√

h/gx is an invariant manifold in Oxz.
In order to study the stability of this solution we calculate the Jacobian J of the

system (1) at this point,

J =







− bcx+

1+b(x++z+) +
cgz+

x++gz+ � − bcx+

1+b(x++z+) −
cgx+

x++gz+

0 Q 0

− bcz+

1+b(x++z+) − hcz+

z++hx+ � − bcz+

1+b(x++z+) +
hcx+

z++hx+






,

where � means that the values of J12 and J32 are useless for the calculation of the
eigenvalues. An eigenvalue is

Q =
Ax+

(1 +B (x+ + z+)) (x+ +Gz+)
− C

and from the expressions of x+ and z+ we obtain

Q =
C

1 + B
b

(

a

c
(

1 +
√
hg
) − 1

)

A
C

√
gh√

gh+Gh
− C.

The other two eigenvalues have the product

∣

∣

∣

∣

J11 J13
J31 J33

∣

∣

∣

∣

< 0

so that they have opposite signs. Consequently, the equilibrium (x+, 0, z+) is hyperbolic
unstable. If Q < 0, system (1) has a two-dimensional local stable invariant manifold
and a one-dimensional local unstable invariant manifold. If Q > 0 the system has a
two-dimensional local unstable invariant manifold and a one-dimensional local stable
invariant manifold (see [3], Theorem 1.3.2–Stable Manifold Theorem for a Fixed Point).

g) In the Oyz plane the equilibrium condition leads us to the system











A

1 +B(y + z)

y

y +Gz
= C,

a

1 + b(y + z)

z

z + hy
= c,

(4)
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which becomes

F1(y, z) ≡ CBy2 + CB(G + 1)yz + CBGz2 + (C −A)y + CGz = 0,

F2(y, z) ≡ cbhy2 + cb(h+ 1)yz + cbz2 + chy + (c− a)z = 0.

This means that the equilibrium point is the intersection of these two conics and it is
admissible if its coordinates are both positive.

Obviously, the two conics pass through the origin. We also have

F1(y, 0) = CBy2 + (C −A)y = 0 =⇒ y = 0, y = D,

F1(0, z) = CBGz2 + CGz = 0 =⇒ z = 0, z = − 1

B
,

and

F2(y, 0) = cbhy2 + chy = 0 =⇒ y = 0, y = −1

b
,

F2(0, z) = cbz2 + (c− a)z = 0 =⇒ z = 0, z = d.

But

δ1 =

∣

∣

∣

∣

∣

CB
CB(G+1)

2
CB(G+1)

2 CBG

∣

∣

∣

∣

∣

= C2B2G− C2B2(G+ 1)2

4
= −C2B2(G− 1)2

4
< 0

for F1 and

δ2 =

∣

∣

∣

∣

∣

cbh
cb(h+1)

2
cb(h+1)

2 cb

∣

∣

∣

∣

∣

= c2b2h− c2b2(h+ 1)2

4
= −c2b2(h− 1)2

4
< 0

for F2 so that the conics are hyperbolas if G 6= 1, h 6= 1, see Figure 1.
The center of F1(y, z) = 0 has the coordinates

y0 =
G(C −A)−AG− CG2

CB(G− 1)2
< 0, z0 =

G(C +A) +A− C

CB(G − 1)2
> 0

and the asymptotes are

z − z0 = − 1

G
(y − y0) , z − z0 = − (y − y0) .

If G > 1, the first asymptote intersects Oy at y0 + Gz0 > D and intersects Oz at
y0+Gz0

G
> 0, while the second asymptote intersects both Oy and Oz at y0 + z0 < − 1

B
.

If G < 1, the first asymptote intersects Oy at y0 + Gz0 < 0 and intersects Oz at
y0+Gz0

G
< − 1

B
, while the second asymptote intersects both Oy and Oz at y0 + z0 > D.

Consequently, the hyperbola F1(y, z) = 0 has a unique branch into the first quadrant of
Oyz.

Analogously, the center of F2(y, z) = 0 has the coordinates

y0 =
h(c+ a) + a− c

bc(h− 1)2
> 0, z0 =

h(c− a)− ah− ch2

bc(h− 1)2
< 0

and the asymptotes are

z − z0 = −h (y − y0) , z − z0 = − (y − y0) .
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Figure 1: The equilibrium point P5 ∈ Oyz.

If h > 1 the first asymptote intersects Oy at hy0+z0
h

and intersects Oz at z0+hy0 > d

while the second asymptote intersects both Oy and Oz at y0 + z0 < − 1
b
.

If h < 1 the first asymptote intersects Oy at hy0+z0
h

< − 1
b
and intersects Oz at

z0 + hy0 while the second asymptote intersects both Oy and Oz at y0 + z0 > d.
Consequently, the hyperbola F2(y, z) = 0 has a unique branch into the first quadrant

of Oyz.
The intersection of these branches depends on their slopes at the origin

zy = −F1y(0, 0)

F1z(0, 0)
=

A− C

CG
> 0

for F1 and

zy = −F2y(0, 0)

F2z(0, 0)
=

ch

a− c
> 0

for F2. We have an intersection point P5(0, y
∗, z∗) solution of the system (4) with positive

coordinates if and only if
A− C

CG
>

ch

a− c
,

i.e.

hG < BbDd =

(

A

C
− 1

)

(a

c
− 1
)

.

The stability of this point is given by the eigenvalues of the Jacobian

J =







P 0 0

� − BCy∗

1+B(y∗+z∗) +
GCz∗

y∗+Gz∗
− BCy∗

1+B(y∗+z∗) −
GCy∗

y∗+Gz∗

� − bcz∗

1+b(y∗+z∗) − chz∗

z∗+hy∗
− bcz∗

1+b(y∗+z∗) +
chy∗

z∗+hy∗






.
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One eigenvalue is

P =
ay∗

(1 + b(y∗ + z∗)) (y∗ + gz∗)
− c.

The product of the other two eigenvalues is

∣

∣

∣

∣

J22 J23
J32 J33

∣

∣

∣

∣

< 0

so that they have opposite signs. Consequently, the equilibrium (0, y∗, z∗) is hyperbolic
unstable. If P < 0 the system (1) has a two-dimensional local stable invariant manifold
and a one-dimensional local unstable invariant manifold. If P > 0 the system has a
two-dimensional local unstable invariant manifold and a one-dimensional local stable
invariant manifold.

From the system (4) verified by (y∗, z∗), we have

P =
a
(

hy∗2 − gz∗2
)

(1 + b(y∗ + z∗)) (y∗ + gz∗) (z∗ + hy∗)

whose sign is given by hy∗2 − gz∗2. More precisely,

y∗

z∗
<

√

g

h
=⇒ P < 0,

y∗

z∗
>

√

g

h
=⇒ P > 0.

In order to evaluate the sign of P , we eliminate y∗ + z∗ from the system (4). We
obtain

B

A

a

b
=

1
C

y∗

y∗+Gz∗
− 1

A

1
c

z∗

z∗+hy∗
− 1

a

.

and by denoting y∗

z∗
= t∗ we have

A

B

(

1

C

t∗

t∗ +G
− 1

A

)

=
a

b

(

1

c

1

1 + ht∗
− 1

a

)

.

Consequently, t∗ is a positive root of the equation

f(t) ≡ A

BC

t

t+G
− a

bc

1

1 + ht
− 1

B
+

1

b
= 0.

But

f ′(t) =
A

BC

G

(t+G)2
+

a

bc

h

(1 + ht)2
> 0,

and

f(0) = − a

bc
− 1

B
+

1

b
=

c− a

bc
− 1

B
< 0,

lim
t→∞

f(t) =
A

BC
− 1

B
+

1

b
=

A− C

BC
+

1

b
> 0
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so that

f

(√

g

h

)

> 0 = f(t∗) ⇐⇒ t∗ <

√

g

h
⇐⇒ P < 0,

f

(√

g

h

)

< 0 = f(t∗) ⇐⇒ t∗ >

√

g

h
⇐⇒ P > 0.

Consequently, the sign of P is opposite to the sign of

f

(
√

g

h

)

=
A

BC

√
gh√

gh+Gh
− a

bc

1

1 +
√
gh

− 1

B
+

1

b
.

If the equilibrium P5 exists but P4 does not exist, i.e.

Gh <

(

A

C
− 1

)

(a

c
− 1
)

,
√

gh >
a

c
− 1,

then

0 < Gh <

(

A

C
− 1

)

√

gh

and

f

(
√

g

h

)

>
A

BC

1

1 +
(A

C
−1)( a

c
−1)

√
gh

− a

bc

1

1 +
√
hg

− 1

B
+

1

b
>

>
A

BC

1

1 + A
C
− 1

− a

bc

1

1 + a
c
− 1

− 1

B
+

1

b
= 0.

In this case, P < 0 and the equilibrium P5(0, y
∗, z∗) has a two-dimensional local

stable manifold and a one-dimensional local unstable manifold.
If the equilibrium P5 does not exist, but P4 exists, i.e.

Gh >

(

A

C
− 1

)

(a

c
− 1
)

,
√

gh <
a

c
− 1,

then

Gh >

(

A

C
− 1

)

√

gh

and

Q =
C

1 + B
b

(

a

c
(

1 +
√
hg
) − 1

)

A
C

√
gh√

gh+Gh
− C < C

(

A
C

√
gh√

gh+Gh
− 1

)

< 0.

In this case, Q < 0 and the equilibrium P4(x
+, 0, z+) has a two-dimensional local stable

manifold and a one-dimensional local unstable manifold.
If both equilibria P4 and P5 exist, i.e.

Gh <

(

A

C
− 1

)

(a

c
− 1
)

,
√

gh <
a

c
− 1,
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we have

Q =
C

1 + B
b

(

a

c
(

1 +
√
hg
) − 1

)

A
C

√
gh√

gh+Gh
− C,

f

(
√

g

h

)

=
A

BC

√
hg√

hg +Gh
− a

bc

1

1 +
√
hg

− 1

B
+

1

b
.

By eliminating
A
C

√
gh

√
gh+Gh

we obtain

A
C

√
gh√

gh+Gh
= Bf

(√

g

h

)

+
B

b

(

a

c

1

1 +
√
hg

− 1

)

+ 1,

Q =
C
(

Bf
(√

g
h

)

+ B
b

(

a
c

1
1+

√
hg

− 1
)

+ 1
)

1 + B
b

(

a

c
(

1 +
√
hg
) − 1

) − C =
BCf

(√

g
h

)

1 + B
b

(

a

c
(

1 +
√
hg
) − 1

) .

Consequently, Q has the same sign as f
(√

g
h

)

, so that Q and P have opposite signs.
This means that either P5(0, y

∗, z∗) or P4(x
+, 0, z+) has a two-dimensional local stable

manifold.
h) Finally, if we search equilibrium points (x, y, z) with x > 0, y > 0, z > 0, we are

led to the system


























a

1 + b(x+ y + z)

x+ y

x+ y + gz
− c = 0,

A

1 +B(x + y + z)

x+ y

x+ y +Gz
− C = 0,

a

1 + b(x+ y + z)

z

z + h (x+ y)
− c = 0.

By denoting u = x+ y, this system becomes

au = c (1 + b(u+ z)) (u+ gz) ,
Au = C (1 +B(u + z)) (u+Gz) ,
az = c (1 + b(u+ z)) (z + hu) .

But
u

z
=

u+ gz

z + hu
=

u
z
+ g

1 + hu
z

,

hence we obtain u
z
=
√

g
h
. Now, from the first equation we get

u+ z =
1

b

( a
c

1 +
√
gh

− 1

)

.

Obviously, u+ z > 0, if
√
gh < a

c
− 1.

We obtain now from the second equation the consistency condition

A
C

√
gh√

gh+Gh
= 1 +

B

b

( a
c

1 +
√
gh

− 1

)

, (5)
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from where

Gh <

(

A

C
− 1

)

√

gh <

(

A

C
− 1

)

(a

c
− 1
)

.

For the existence of such an equilibrium it is necessary that equilibria P4 and P5 exist
and, moreover, P = Q = 0. In this very particular case, the equilibrium is not unique.
The solutions (x, y, z) verify x+ y = u0, z = z0, where

u0 =
1

b

( a
c

1 +
√
gh

− 1

) √
gh√

gh+ h
, z0 =

1
b

(

a
c

1+
√
gh

− 1
)

1 +
√

g
h

. (6)

Now if we put together the above results, we can state the following

Theorem 2.1 Let a, b, c, A,B,C, g,G, h be positive parameters such that a > c,

A > C, d < D, where d = 1
b

(

a
c
− 1
)

and D = 1
B

(

A
C
− 1
)

. Then system (1),
considered for x ≥ 0, y ≥ 0, z ≥ 0, has the following steady-states:

a) O(0, 0, 0) and P1(d, 0, 0) as unstable equilibria,

b) P2(0, D, 0) and P3(0, 0, d) as asymptotically stable equilibria,

c) P4(x
+, 0, z+) given by (3) if hg <

(

a
c
− 1
)2

and

d) P5(0, y
∗, z∗) given by (4) if hG <

(

a
c
− 1
) (

A
C
− 1
)

, as hyperbolic unstable equilib-

ria. Only one of P4 or P5 has a two-dimensional local stable invariant manifold. Finally,

the system (1) has
e) a line of equilibria P (x, y, z) in the case (5), where x + y = u0, z = z0 are given

by (6).

We remark that the local stable invariant manifolds W s
loc of hyperbolic equilibria have

global analogues W s obtained by letting points in W s
loc flow backwards in time.

These manifolds act as boundaries between different regions of the phase space. For
a system with multiple attractors, a boundary of a basin of attraction can often be
recovered as a codimension-one stable manifold of a saddle point, such as P4 or P5.

In general, such manifolds can not be expressed in closed-form and therefore must
be approximated numerically for particular values of the parameters. In our paper we
have used an efficient algorithm of Moore [4], based on Laguerre functions and modified
in order to apply our MATLAB package LaguerreEig [8].

3 Numerical Simulations

In order to verify and to illustrate the above theoretical results, we will perform some
numerical tests, with the physiological values of the parameters chosen from [2]:

a = 0.005, A = 0.0115, g = 2,
b = 0.000075, B = 0.000038, G = 2,
c = 0.002, C = 0.002, h = 2,

such that
a > c, A > C, d = 20000 < D = 125000.

The condition

Gh = 4 <

(

A

C
− 1

)

(a

c
− 1
)

= 4.75× 1.5
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is fulfilled, but

hg = 4 >
(a

c
− 1
)2

= (1.5)
2

so that we have no equilibrium P4 in the Oxz plane – in this case x+ < 0. The consistency
condition (5) is not satisfied:

0.0115
0.002

√
4√

4 + 4
6= 1 +

0.000038

0.000075

( 0.005
0.002

1 +
√
4
− 1

)

or 1. 916 7 6= 0.915 56. We have P5(0, 1149.089506, 2342.140461) and the corresponding
eigenvalues of the Jacobian are −.0003471757542, .002588209809,−.001219452669. This
point P5 is an unstable equilibrium with a two-dimensional stable manifold. The numer-
ical tests show that this manifold indeed separates the attraction basins of the asymptot-
ically stable equilibria P2(0, 125000, 0) and P3(0, 0, 20000) in the computational domain
of physiological significance, see Figure 2.
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Figure 2: Case C = 0.002. The numerically calculated two-dimensional stable manifold of P5.
The continuous line that connects P5P2 and P5P3 in the plane Oyz is the numerically calculated
one-dimensional unstable manifold of P5.

If therapeutic agents are used in order to increase the death rate of the leukemic
cells, i.e. to increase C from C = 0.002 to C = 0.006 for example, the equilibria P4

and P5 do not exist in the considered domain. Again A > C and d < D, as above,
but the numerical tests show that the border between the attraction basins of P2 and
P3 is now a numerically calculated two-dimensional invariant manifold which behaves as
a two-dimensional stable manifold of the origin O. In this case the attraction basin of
P3(0, 0, 20000) increases, see Figure 3.
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Figure 3: case C = 0.006. The border between the attraction basins of P2 and P3.

4 Conclusion

A mathematical model of Dingli and Michor [2] was augmented in [5] in order to simulate
the cell dynamics after bone marrow transplantation. The new model (1) introduces the
parameters h, g,G standing for the intensity of anti-graft, anti-host and anti-leukemia
effects.

This model has only two asymptotically stable equilibria, P2(0, D, 0) and P3(0, 0, d).
Other important unstable hyperbolic equilibria are P4(x

+, 0, z+), which exists if and only

if hg <
(

a
c
− 1
)2

, and P5(0, y
∗, z∗), which exists if and only if hG <

(

A
C
− 1
) (

a
c
− 1
)

.

If, after an appropriate therapy, h is sufficiently small, i.e. the anti-graft effect be-
comes small enough, then one or both equilibria P4 or P5 exist and, by the stable manifold
theorem for a hyperbolic fixed point, one of them always has a stable two-dimensional
invariant manifold.

This stable manifold provides important information about the system’s global dy-
namics, for example it indicates the boundary of the attraction basins of the asymp-
totically stable equilibria P2 and P3. Given the initial host cell concentrations x0, y0,

we may calculate an initial concentration (dose of infused cells at transplantation) z0 in
the attraction basin of P3 so that, in time, host cells will be eliminated and completely
replaced by donor cells, guaranteeing the elimination of cancer. Based on the stability
analysis in this paper, a theoretical basis for the control of post-transplant evolution can
be provided and therapy planning algorithms for guiding the correction treatment after
transplant can be established. This is the goal of the subsequent paper [6].
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Abstract: In this paper, we investigate adaptive synchronization for multi-
parameter oscillators with φ6 potentials. We consider the synchronization for known
and unknown system parameters for the φ6 Van-der Pol and Duffing oscillator based
on a simple adaptive control technique; and show that a single-state adaptive feed-
back is sufficient to steer two identical oscillators to stable synchronization. We obtain
some estimates of the unknown parameters for both systems and present numerical
simulations to show the effectiveness of our approach.
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1 Introduction

The synchronization of chaotic oscillator is an intriguing phenomenon that has received
considerable research attention during the last two decades. The increasing and enormous
research activities on chaos synchronization is partly motivated by several promising real
life applications; spanning areas such as secure communications, chaos generators design,
chemical reactions, lasers, biological systems, information science, neural networks, etc
[1–7]. For this reason, the study of chaos synchronization has grown rapidly since its
discovery in 1990 by Pecora and Carroll [1]; and a wide variety of linear and nonlinear
approaches have been proposed and well developed for achieving specific synchronization
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goals [1, 8–22]. These methods have been applied to many real physical model systems,
such as the Nonlinear Bloch equations [31–33], lasers [34,35], Josephson junctions [36–38],
various forms of the Van-der Pol and Duffing oscillators, including the φ6 oscillators
[23–29], to mention but a few.

The dynamics of nonlinear systems with φ6 potentials [39–45], have become more
fascinating because, φ6 oscillators, in particular present more complex dynamics than
their corresponding φ4 oscillators. This property makes them better models for security
of encrypted information during transmission. Thus, investigating chaos synchronization
for φ6 oscillators is very relevant for secure communications.

In [29], the author introduced a modified active control method for realizing the
identical and non-identical synchronization of chaotic oscillators in φ6 potentials. The
proposed active control in [29] was specifically aimed at treating the problem of controller
complexity arising in the application of the active control formalism. However, one of the
two control inputs, that play the key role in driving the two oscillators to a synchronized
state is still complex relative to the controlled systems, implying that the proposed
approach remains questionable with regard to practical applications. Moreover, the
parameters of the synchronizing systems in [29] were assumed to be known in advance,
in all the cases considered. Since in practice the parameters of chaotic systems are not
usually known in advance, it would be significant to investigate the synchronization for
the case of unknown parameters as in [46]. In particular, for multi-parameter systems
such as the φ6 oscillators, estimating the unknown parameters of the systems is essential
in the synchronization process.

In general, the problem of design flexibility and controller complexity has remained
a crucial and long standing issue in control theory research [19, 47]. Recently, Guo
[48], proposed a simple adaptive controller for the identical chaos synchronization. This
technique was applied to achieve the adaptive and reduced-order synchronization for
Josephson junctions and time-varying lower-order systems [38,49]; and further extended
to realize the stabilization of chaotic systems [50, 51].

The goal of the present paper is to investigate the synchronization of φ6 Van-der
Pol and Duffing oscillators based on our proposed simple adaptive control [38, 48, 49].
We will show that for two identical φ6 oscillators, a single-state adaptive feedback is
sufficient to drive the oscillators to a stable synchronized state. Furthermore, we will
consider the synchronization for unknown system parameters and obtain an estimate of
all the unknown parameters of the systems. In the next section, we would give a brief
theory of our proposed method. In Section 3, synchronization for identical φ6 Van-der
Pol and Duffing oscillators would be treated, both for known and unknown parameters;
while in Section 4, we deal with the estimation of the unknown parameters. The paper
is concluded in Section 5.

2 Theory of Adaptive-Feedback Control

2.1 Adaptive control for chaos synchronization

Let us introduce in this section, the adaptive control method [48] briefly. For a master
chaotic system given as,

ẋ = f(x), (1)

where x = (x1, x2, · · · , xn)
T ∈ Rn, f(x) = (f1(x), f2(x), · · · , fn(x))T : Rn → Rn is a

nonlinear vector function. Without loss of generality, let Ω ⊂ Rn be a chaotic bounded
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set of system (1) which is globally attractive. For the vector function f(x), we give a
general assumption.

Assumption 1 ∀x = (x1, x2, · · · , xn)
T ∈ Ω and y = (y1, y2, · · · , yn)T ∈ Ω there

exists a constant l > 0 satisfying

| fi(x) − fi(y) |≤ l | x− y |∞, i = 1, 2, · · · , n, (2)

where | x− y |∞ is the ∞-norm of x− y. i.e., | x− y |∞= max
j

| xj − yj |, j = 1, 2, · · · , n.
Remark 1 This condition is very loose, and in fact, holds as long as ∂fi/∂xj(i, j =

1, 2, · · · , n) are bounded. Thus, the class of systems in the form of (1) and (2) includes
almost all well-known finite-dimensional chaotic and hyperchaotic systems. The corre-
sponding slave system to system (1) is as follows,

ẏ = f(y) + k1(y − x) = f(y) + u, (3)

where the controller u = k1e = (k1e1, k1e2, · · · , k1en)T , ei = yi − xi. Unlike the usual
linear feedback control, the feedback gain k1 is duly adapted according to the following
update law,

k̇1 = −γ

n
∑

i=1

e2i , (4)

where γ is an arbitrary positive constant. The controller u = k1e can realize the syn-
chronization of the master and slave chaotic systems (1) and (2).

Remark 2 The feedback gain k1 is automatically adapted to a suitable strength
k0 depending on the initial values, which is significantly different from the well known
linear feedback.

Remark 3 The controller u = k1e can employ only one feedback term ei for some
chaotic systems. The feedback term ei is selected such that, if ei = 0 then ej = 0, j =
1, 2, · · ·n, j 6= i, so that the set E = {(e, k1) ∈ Rn+1|e = 0, k1 = k0}. Thus, leading to
the above conclusion.

2.2 Adaptive control for chaos synchronization with unknown parameters

In our previous paper [49], we obtained a novel adaptive controller for chaos synchroniza-
tion with unknown parameters. This is introduced in brief herein. Consider a nonlinear
dynamical system

ẋ = f(x) + g(x)p, (5)

where x = (x1, x2, · · · , xn)
T ∈ Rn denotes the state variables, p = (p1, p2, · · · , pk)T ∈

Rk denotes the uncertain parameters, f(x) = (f1(x), f2(x), · · · , fn(x))T and g(x) =
[g(x)]n×k represent differential nonlinear vector function and matrix function respec-
tively. The vector function f(x) satisfies Assumption 1.
We consider system (5) as the master system and introduce a controlled slave system

ẏ = f(y) + g(y)p+ u, (6)

where y = (y1, y2, · · · , yn)T ∈ Rn denotes the state variables, and u = (u1, u2, · · · , un)
T

is a controller. The main goal is to design a suitable controller u to synchronize the two
identical systems in spite of their uncertain parameters. We denote the synchronization
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error between the two systems as e = y − x ∈ Rn and subtract system (5) from system
(6) and thus obtain the error dynamical system

ė = f(y)− f(x) + [g(y)− g(x)]p+ u. (7)

We can introduce the control function

u = −[g(y)− g(x)]p̂+ k1e, (8)

where p̂ is the estimate of p, and k1e = (k1e1, k1e2, · · · , k1en)T ∈ Rn is the linear feedback
control with the updated gain k1 ∈ R1. Thus, the synchronization error system is reduced
to

ė = [f(y)− f(x)] + [g(y)− g(x)]p̃+ k1e, (9)

where p̃ = p − p̂ is the parameter estimation mismatch between the real value of the
unknown parameter and its corresponding estimated value. Then the above discussion
can be summarized in the following theorem.

Theorem 1 If the estimations of the unknown parameters and the feedback gain
contained in the adaptive controller (8) are updated by the following laws











˙̂p = [g(y)− g(x)]T e,

k̇1 = −γeT e = −γ

n
∑

i=1

e2i ,
(10)

then, the synchronization between system (5) and (6) will be achieved.
Remark 4 The control term k1e can include only one feedback term ei for some

chaotic systems. The feedback term ei is selected such that if ei = 0 then ej = 0, j =

1, 2, · · ·n, j 6= i, therefore the set E = {(e, p̃, k1) ∈ Rn+k+1|e = 0, p̃ = 0, k1 = −k∗}, so
that the conclusion in (10) is obtained.

3 Synchronization of Two Identical φ6 Van-der Pol and Duffing Oscillators

3.1 Example 1. φ6 Van-der Pol oscillators

The φ6 Van-der Pol oscillators could be written as

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − αx1 − βx3

1 − δx5
1 + fcos(ωt),

(11)

where µ, α, β, δ, f, ω are parameters of the system (11). Let system (11) be the master
system.

Case 1: The parameters (µ, α, β, δ, f, ω) of the master system (11) are assumed to
be known. According to Ref. [48], the slave system with adaptive controller is as follows,

ẏ1 = y2 + k1(y1 − x1),
ẏ2 = µ(1− y21)y2 − αy1 − βy31 − δy51 + fcos(ωt),

(12)

where the feedback gain k1 is adapted according to the following update law k̇1 = −γe21.
The strength of the arbitrary constant γ would influence the controller performance.
For instance, large γ would lead to fast stabilization of the augment system; while the
feedback gain k1 would quickly approach a suitable negative constant. On the contrary,
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the speed of stabilization would be very slow for small γ; so that the feedback gain k1
would slowly approach a suitable negative constant.

Next, we give numerical simulations to verify the above theoretical result. Firstly, let
the initial conditions of the master system (11) be: x1(0) = 1, x2(0) = 2, the slave system
(12): y1(0) = −3, y2(0) = 4 and µ = 0.4, α = 1.0, β = −0.7, δ = 0.1, f = 9, ω = 3.14.
With the initial value of the controller k1(0) = −1, Figure 1 shows the synchronization
performance. The error system of two identical φ6 Van-der Pol oscillators approaches
zero asymptotically as t → ∞, while the feedback gain k1 tends to a negative constant.
For other sets of initial conditions and system parameters, the synchronization is still
achievable. For instance, let the initial conditions be x1(0) = 1, x2(0) = 2, and y1(0) =
−3, y2(0) = 1; while the system parameters are: µ = 0.4, α = 0.46, β = 1.0, δ = 0.1, f =
4.5, ω = 0.86. Using the same initial value of the controller k1(0) = −1, as before,
Figure 2 shows that the two identical Φ6 Van-der Pol oscillators achieves asymptotic
synchronization as t → ∞, while the feedback gain k1 tends to a negative constant.
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Figure 1: The error system of two identical Φ6 Van-der Pol oscillators ( µ = 0.4, α = 1.0, β =
−0.7, δ = 0.1, f = 9, ω = 3.14) is asymptotically stable as t → ∞.
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Figure 2: The error system of two identical Φ6 Van-der Pol oscillators (µ = 0.4, α = 0.46, β =
1.0, δ = 0.1, f = 4.5, ω = 0.86) is asymptotically stable as t → ∞.
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Case 2: The parameters (µ, α, β, δ) of system (11) are unknown.
According to our method in Ref. [49], the slave system with adaptive controller is as

follows,
ẏ1 = y2 + u1,

ẏ2 = µ(1− y21)y2 − αy1 − βy31 − δy51 + fcos(ωt) + u2,
(13)

where the controller u = (u1, u2)
T is defined as,

u1 = k1(y1 − x1),
u2 = −(1− y21)y2 − (1− x2

1)x2)µe − (x1 − y1)αe − (x3
1 − y31)βe − (x5

1 − y51)δe.
(14)

In eq. (14) µe, αe, βe, and δe are the estimated values of the parameters µ, α, β, and δ,
respectively. Again, the feedback gain k1 is dully adapted according to the update law
k̇1 = −γe21.

To verify that the controller u = (u1, u2)
T would drive the systems to synchrony, we

give some numerical simulation results, firstly, by selecting the initial conditions of the
master system (11): x1(0) = 1, x2(0) = 2, the slave system (12): y1(0) = −3, y2(0) = 4,
f = 9, ω = 3.14. The initial values of the estimated parameters are µe = 0.6, αe =
1.2, βe = −0.4, and δe = 0.3. Using the same initial controller gain, k1(0) = −1, we
illustrate in Figure 3 the synchronization behaviour of the two identical φ6 Van-der Pol
oscillators with unknown parameters. Clearly, asymptotically synchronization is achieved
as t → ∞, while the feedback gain k1 tends to a negative constant. We may also consider
other sets of initial conditions and estimating parameters. For instance, let x1(0) = 1,
x2(0) = 2, and y1(0) = −3, y2(0) = 4, f = 9, ω = 3.14. Similarly, let the initial values of
the estimated parameters be µe = 0.5, αe = 0.5, βe = 1.1, δe = 0.12. This case is shown
in Figure 4, confirming that the synchronization is fully guaranteed for the two identical
φ6 Van-der Pol oscillators.
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Figure 3: The error system of two identical Φ6 Van-der Pol oscillators with unknown parameters
is asymptotically stable as t → ∞.

3.2 Example 2. φ6 Duffing oscillators

ẋ1 = x2,

ẋ2 = −λx2 − αx1 − βx3
1 − δx5

1 + fcos(ωt),
(15)
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Figure 4: The error system of two identical Φ6 Van der Pol oscillators with unknown parameters
is asymptotically stable as t → ∞.

where λ, α, β, δ, f , and ω are parameters of the system (15). Let system (15) be the
master oscillator.

Case 1: All the parameters (λ, α, β, δ, f, ω) of system (15) are known in advance.
According to our method in Ref. [48], the slave oscillator with adaptive controller is as
follows,

ẏ1 = y2 + k1(y1 − x1),
ẏ2 = −λy2 − αy1 − βy31 − δy51 + fcos(ωt),

(16)

the feedback gain k1 is adapted according to the following update law k̇1 = −γe21.

Again, we give numerical simulations to verify the above theoretical results. First, we
select the initial states values of the master system (15) as follows: x1(0) = 1, x2(0) = 2,
the slave system (16): y1(0) = −3, y2(0) = 4 and λ = 0.4, α = 1.0, β = −0.7, δ = 0.1,
f = 9, ω = 3.14. With the initial value of the adaptive controller k1(0) = −1, Figure
5 shows that the two identical φ6 Duffing oscillators achieve stable synchronization as
t → ∞, while the feedback gain k1 tends to a negative constant. For other set of initial
conditions, namely, for the master: x1(0) = 1, x2(0) = 2, the slave system: y1(0) =
−3, y2(0) = 1 and λ = 0.4, α = 0.46, β = 1.0, δ = 0.1, f = 4.5, ω = 0.86, Figure 6 shows
that the synchronization is also attained with the initial adaptive controller k1(0) = −1.
The feedback gain k1 also tends to a negative constant.

Case 2: The parameters (λ, α, β, δ) of system (15) are unknown.

Using our method in Ref. [49], the slave system with adaptive controller is as follows,

ẏ1 = y2 + u1,

ẏ2 = −λy2 − αy1 − βy31 − δy51 + fcos(ωt) + u2,
(17)

and the controller u = (u1, u2)
T is as follows,

u1 = k1(y1 − x1),
u2 = −(−y2 + x2)λe − (x1 − y1)αe − (x3

1 − y31)βe − (x5
1 − y51)δe,

(18)

where λe, αe, βe, δe are the estimating value of the parameters λ, α, β, δ respectively, and
the feedback gain k1 is adapted according to the update law k̇1 = −γe21.
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Figure 5: The error system of two identical Φ6 Duffing oscillators (λ = 0.4, α = 1.0, β = −0.7,
δ = 0.1, f = 9, ω = 3.14) is asymptotically stable as t → ∞.
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Figure 6: The error system of two identical Φ6 Duffing oscillators (λ = 0.4, α = 0.46, β = 1.0,
δ = 0.1, f = 4.5, ω = 0.86) is asymptotically stable as t → ∞.

Figure 7 shows the results of the numerical simulations. We first, selected the initial
states values of the master system (17) as: x1(0) = 1, x2(0) = 2, and the slave system
(18) as: y1(0) = −3, y2(0) = 4, f = 9, ω = 3.14, the initial values of the estimating
parameters are λe = 0.6, αe = 1.2, βe = −0.4, δe = 0.3. With the initial value of
the controller being k1(0) = −1, the error system of two identical φ6 Duffing oscillators
with unknown parameters is asymptotically stabilized as t → ∞, while the feedback
going k1 tends to a negative constant; implying that synchronization is achieved. We
consider also, other choice of initial conditions, namely, x1(0) = 1, x2(0) = 2 (master)
and y1(0) = −3, y2(0) = 4 (slave) and the parameters values f = 9, ω = 3.14, λe =
0.5, αe = 0.5, βe = 1.1, and δe = 0.12; and find that synchronization is still achieved as
shown in Figure 8.
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Figure 7: The error system of two identical Φ6 Duffing oscillators with unknown parameters
is asymptotically stable as t → ∞.
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Figure 8: The error system of two identical Φ6 Duffing oscillators with unknown parameters
is asymptotically stable as t → ∞.

4 Estimation of the Unknown Parameters of Van-der Pol and Duffing Os-

cillators

Example 1 φ6 Van-der Pol oscillators:

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − αx1 − βx3

1 − δx5
1 + fcos(ωt),

(19)

where µ = 0.4, α = 1, β− 0.7, δ = 0.1, f = 9, and ω = 3.14 are parameters of the system
(19), and we let system (19) be the master system; where the parameters µ, α, β are
unknown. According to Ref. [46], the slave system with adaptive controller is as follows,

ẏ1 = y2 + k1(y1 − x1),
ẏ2 = µe(1− y21)y2 − αey1 − βey

3
1 − δy51 + fcos(ωt) + k1(y2 − x2),

(20)

where µe, αe, and βe are the estimated parameters µ, α, and β, respectively, which are
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adapted according to the update law,

µ̇e = −(1− y21)y2(y2 − x2),
α̇e = y1(y2 − x2),

β̇e = y31(y2 − x2),
(21)

and the feedback gain k1 is adapted according to the update law k̇1 = −(e21 + e22).
In what follows, we give numerical simulations to verify the above theoretical results.

Firstly, by selecting the initial state values of the master system (19): x1(0) = 1, x2(0) =
2, the slave system (8): y1(0) = −3, y2(0) = 4, f = 9, ω = 3.14, the initial values of the
estimating parameters are λe = 0.6, αe = 1.2, βe = −0.4. With the initial value of the
controller k1(0) = −1, Figure 9 shows that the error system of two identical Φ6 Van-
der Pol oscillators with unknown parameters is asymptotically stable as t → ∞, while
the feedback gain k1 tends to a negative constant. Figure 10 shows that the estimating
parameters λe, αe and βe converge to its true value λ, α and β, respectively.
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Figure 9: The estimated parameters µe, αe, βe, converge to its true value µ, α, β respectively.
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Figure 10: The estimated parameters µe, αe, βe, converge to its true value µ, α, β respectively.

Example 2 φ6 Duffing oscillators:
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ẋ1 = x2,

ẋ2 = −λx2 − αx1 − βx3
1 − δx5

1 + fcos(ωt),
(22)

where λ = 0.01, α = 1.0, β − 0.495, δ = 0.05,f=0.78, and ω = 0.55 are parameters of
system (19). Let system (19) be the master system; where the parameters α, and β are
unknown. Following Ref. [46], the slave system with adaptive controller is as follows,

ẏ1 = y2 + k1(y1 − x1),
ẏ2 = −λy2 − αey1 − βey

3
1 − δy51 + fcos(ωt) + k1(y2 − x2),

(23)

where αe, βe is the estimated parameters α, β respectively, which are adapted according
to the update law,

α̇e = y1(y2 − x2),

β̇e = y31(y2 − x2),
(24)

and the feedback gain k1 is adapted according to the update law k̇1 = −(e21 + e22).
Numerical simulation results for the drive-response system (23) and (24), we carried

out using the following initial conditions for the master system (23): x1(0) = 1, x2(0) = 2,
and for the slave system (24): y1(0) = −3, y2(0) = 4. The other parameters are set
as follows: f = 9, ω = 3.14, while the initial values of the estimating parameters are
αe = 1.2, and βe = −0.4. With the initial value of the controller k1(0) = −1, Figure
11 shows that the error system of two identical Φ6 Duffing oscillators with unknown
parameters is asymptotically stabilized as t → ∞, while the feedback gain k1 approaches
a negative constant. Figure 12 shows also that the estimating parameters αe, and βe,
converge to its true values α and β, respectively.
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Figure 11: The estimated parameters αe, βe, converge to its true values α, β respectively.

5 Conclusion

In this paper, we have examined the synchronization of oscillating particles in φ6 poten-
tials based on adaptive control approach. The adaptive approach that we have employed
is such that a single-state feedback is sufficient to steer the synchronization of two identi-
cal oscillators. We demonstrate this method for the φ6 Van-der Pol and Duffing oscillators
and realized the synchronization also for the case of unknown system parameters. For
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Figure 12: The estimated parameters αe, βe, converge to its true value α, β respectively.

the case of parameter unknown, we estimated the all the unknown parameters. We note
that our proposed approach gives rise to simpler control control input, especially when
the parameters are known in advance. Such adaptive control approach would have ad-
vantage in practical applications, since it could be easily realized compared to existing
methods.
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