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1 Introduction

A facial recognition system is an application run by computer to automatically identify
a person from a digital image, by comparing selected facial features from a digital image
or a frame from a video source. One way to do this is by comparing selected facial
features with a facial image database, see Figure 1. The face recognition systems have
less uniqueness than recognition systems based on fingerprint and iris, however, provides
a more direct form of identification, friendly and is more acceptable compared with other
biometric personal identification systems [32]. Therefore, research on face recognition
has become one of the most important issues in biometric systems.

The first semi-automated system for face recognition required the administrator to
located features (such as eyes, ears, nose, and mouth) on the photographs before it
calculated distances and ratios to a common reference point, which were compared with
reference data. Goldstein et al. [14] used 21 specific subjective markers such as hair and
lip thickness to automate the recognition. The problem was that the measurements and
locations were manually computed.
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Figure 1: Scheme of a general biometric system based on face image.

On the other hand, the idea of using eigenfaces was motivated by a technique de-
veloped by Sirovich and Kirby in [28] and by Kirby and Sirovich in [19] for efficiently
representing pictures of faces by using Principal Components Analysis (PCA). They ar-
gued that a collection of face images can be approximately reconstructed by storing a
small collection of weights for each face and a small set of standard pictures. PCA method
reported in [28] and [19] is also called eigenfaces by Turk and Pentland in [29, 30], this
appearance-based technique is used widely for the dimensionality reduction and recorded
a great performance in face recognition. PCA is a standard linear algebra technique, to
the face recognition problem [28]. This was considered somewhat of a milestone as it
showed that less than one hundred values were required to accurately code a suitably
aligned and normalized face image [28]. Turk and Pentland discovered that while using
the eigenfaces technique, the residual error could be used to detect faces in images [29,30].
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This was a discovery that enabled reliable real-time automated face recognition systems.
Although the approach was somewhat constrained by environmental factors, it nonethe-
less created significant interest in furthering development of automated face recognition
technologies. Among the most important methods for face recognition are: eigenface [32],
fisherface [7], dual eigen space [32], and neural networks [20].

Current literature reports many techniques for human face recognition, see e.g.
[7, 14, 16, 19, 20, 25, 28–30,32], on the other hand, there are many works about image en-
cryption algorithms based on chaos for secure communications, see e.g. [1–3,6,9,10,21,24].
Recently, encryption in biometric systems has been applied, see e.g. [4, 5, 8, 15, 18, 22]
with the purpose of protecting biometric information. Nevertheless, to our knowledge,
any approach of a secure biometric system, particularly about face patterns recognition
that works remotely with double hyperchaotic encryption has not been reported. Hy-
perchaotic maps are theoretically proofed with good randomness, infinite period, and
unpredictability on long term [11]. These complex maps are usually defined as a system
characterized at least by two positive Lyapunov exponents which provide more complex
waveforms than simply chaotic maps. Consequently, these hyperchaotic maps have the
characteristics of high capacity, high security, and high efficiency [11].

The aim of this paper, is to improve the security encryption in a biometric system
based on human face recognition. In particular, we use a double hyperchaotic encryption
in a face recognition system which works remotely, the eigenface method to get the face
patterns is used, see e.g. [7, 29, 30, 32], next, Rössler and Chen hyperchaotic maps to
encrypt face patterns are used. In this work, the proposed secure biometric system, is
similar to the reported in [22], but there are fundamental differences with respect to that
work: (1) they encrypt iris templates by using the generalized Hénon map and 1D logistic
map. In this paper, the Rössler and Chen hyperchaotic maps for face pattern double
encryption are used; (2) they used in the quantizer a threshold equal to 0.5, however,
we optimize the threshold to improve security; (3) they extracted iris features, in this
work we extract face patterns; (4) for features extraction they used a test of statistical
independence reported in [12], we use eigenface method reported in [29, 30]; (5) they
only reported brief analysis on sensitivity of initial conditions. Nevertheless, we provide
a complete security analysis.

The organization of this paper is as follows: In Section 2, a brief review on eigen-
faces approach is given. In Section 3, the proposed algorithm to encrypt and decrypt
is described. In Section 4, the main results of this work are presented. The paper is
concluded with some remarks in Section 5.

2 Review on Eigenfaces Approach

PCA approaches include two phases: enrollment and identification (see Figure 1). In
the enrollment phase, an eigenspace is established from the training samples by using
PCA and the training face images are mapped to the eigenspace for identification. In the
identification phase, an input face is projected to the same eigenspace and identified by
an appropriate classifier. For details of this method, see e.g. [29, 30, 32]. The approach
for face recognition involves the following initial operations:

1. Acquire an initial set of face images (the training set).

2. Calculate the eigenfaces from the training set, keeping only M images that corre-
spond to the highest eigenvalues. These M images define the face space. As new
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faces are experienced, the eigenfaces can be updated or recalculated.

3. If it is a face, classify the weight pattern as either a known person or as unknown.

4. Update the eigenfaces and/or weight patterns (optional).

5. If the same unknown is seen several times, calculate its characteristic weight pattern
and incorporate into the known faces (optional).

2.1 Calculating eigenfaces

A human face image can be considered as a stochastic sample, and each face image is
considered as a higher dimensional vector and each pixel corresponds to a component. If
all the face images lie in the same subspace of the higher dimensional space, this subspace
is a good representation of face images because it shows the common features of faces.
So, detection of faces is to find the subspace.

Suppose A = [aij ]r×c
as a human face image, where r and c are the number of rows

and columns of the images, respectively; aij is the gray value of the pixel in i-th row and
j-th column. Re-arrange aij and make it a column vector

xi = [a11 a21 ... ar1 a12 a22 ... ar2 ... a1c a2c ... arc]
T , (1)

where xi is a D-dimensional vector, D = r × c.

Next, the images are mean centered by subtracting the mean image from each image
vector,

x i = xi −m, (2)

where m is the average vector of the training specimens set, and is given by

m =
1

M

M−1∑

i=0

xi. (3)

Vectors from Eq. (2) are combined side by side to create a data matrix of size D×M ,
where M is the number of images in the training specimens set,

X =
{
x1 | x2 | ... | xP

}
, (4)

the covariance matrix can be calculated as

Ω = X ·X
T
. (5)

This covariance matrix has up to d eigenvectors associated with non-zero eigenvalues,
assuming d < D.

Let λ1, λ2, ... , λd (λ1 > λ2 > ... > λd > 0) and u1, u2, ... , ud be eigenvalues and
corresponding eigenvectors of the covariance matrix Ω, respectively. So, every human face
image, xi, can be represented by the linear combination of the eigenvectors. According
to the algebra theory, we know that u1, u2 , ... , ud will be orthogonal one another and
unit vector. Usually, M < D, can be satisfied because D is larger than the number of
the specimens. Then d < D is derived. In other words, the given human face image can
be represented by fewer base vectors (d vectors) [32].
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Some values λi, in d eigenvalues are very small, whose corresponding eigenvectors
give little contribution to represent the face image specimens, hence they can be ignored.
Thus, we sort the eigenvectors according to the decreasing eigenvalues, and select the
top k eigenvectors to represent the specimens [32].

If we choose k as a very big number, for example k = d. But we know some eigen-
vectors have little contribution to face space. On the contrary, if we select k as a very
small number, for example k = 1, then the subspace is not sufficient to represent the
face image specimens. Usually, we can select the smallest k which satisfies the following
expression [32]

k∑
i=0

λi

M−1∑
i=0

λi

> α, (6)

where α is a real number, which is close to 100%, such as 99%. It states that the top k

axes have 99% energy of all axes.

2.1.1 Ordering eigenvectors

Order the eigenvectors ui ∈ U according to their corresponding eigenvalues λi from high
to low. Keep only the eigenvectors associated with non-zero eigenvalues. This matrix of
eigenvectors is the eigenspace U, where each column of U is an eigenvector,

U = [ u1 | u2 | · · · | ud ] . (7)

2.1.2 Projecting training images

To project the training images, each of the centered training images from Eq. (2) must
be projected into the eigenspace. To project an image into the eigenspace, we need to
calculate the dot product of the image with each of the ordered eigenvectors from Eq.
(7) as follows,

x̃ i = U
T

xi. (8)

Therefore, the dot product of the image and the first eigenvector will be the first
value in the new vector. The new vector calculated from Eq. (8) of the projected image
must contain the same values as eigenvectors.

2.1.3 Identifying test images

Each test image is first mean centered by subtracting the mean image, and is then
projected into the same eigenspace defined by U as follows,

y i = yi −m, (9)

where m is calculated from Eq. (3), and y i is the centered test image.
Then project this centered test image according to

ỹ i = U
T

y i. (10)
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The projected test image (ỹ i) is compared to every projected training image and the
training image that is found to be nearest to the test image is used to identify the input
image (test images).

These images can be compared by using any number of similarity measures, the most
common is the L2 norm or Euclidian distance as follows,

ε2 =
∥∥ỹ i − x̃ k

∥∥
2
, (11)

where x̃ k is a vector describing the kth face class. A face is classified as belonging to
class k when the minimum ε is below some chosen threshold θε. Otherwise the face is
classified as “unknown”.

3 Encryption and Decryption Algorithm

3.1 Double encryption algorithm

The Rössler hyperchaotic map is described by the following equations [2]:

x1(k + 1) = αx1(k)(1 − x1(k))− β(x3 + γ)(1− 2x2(k),

x2(k + 1) = δx2(k)(1 − x2(k) + ζx3(k),

x3(k + 1) = η((x3(k) + γ)(1 − 2x2(k))− 1)(1− θx1(k)), (12)

with parameters α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ζ = 0.20, η = 0.10, θ = 1.9, and
initial conditions: x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01; the map (12) exhibits
hyperchaotic dynamics [2]. Figure 2 shows the hyperchaotic attractor generated by the
Rössler map projected on the (x1, x2, x3)-plane.
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Figure 2: Hyperchaotic attractor generated by Rössler map (12).

On the other hand, the Chen hyperchaotic map is described by the following equations
[1]:

x1(k + 1) = 1− a(x2

1
(k) + x2

2
(k)),

x2(k + 1) = −2abx1(k)x2(k), (13)

with parameters a = 1.95 y b = 1, and initial conditions: x1(0) = 0.025 and
x2(0) = 0.025; the map (12) exhibits hyperchaotic dynamics [1]. Figure 3 shows the
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Figure 3: Hyperchaotic attractor generated by Chen map (13).

hyperchaotic attractor generated by the Chen map projected on the (x1, x2)-plane.

The proposed double encryption scheme in this work to encrypt face patterns is shown
in Figure 4. Where the inputs to the scheme are the face patterns and initial conditions
as encryption key for the hyperchaotic maps Eq. (12) and (13). Later, the face pattern
is converted to binary secuence, and then the two X-OR operation is performed with the
generated hyperchaotic signal by Rössler map, prior to operating X-OR, the hyperchaotic
signal, also has to be digitized, this is done by using a quantizer. In the quantizer a
threshold can be established between 0 and 1, for example in [22] 0.5 was used for the
Hénon map. When the amplitude of the hyperchaotic signal is greater than or equal to
0.5, the output of the quantizer is at a higher level, whereas when the amplitude of the
hyperchaotic signal is less than 0.5, the quantizer output is at a low-level. In this work,
the threshold was optimized to obtain the best entropy and therefore better security
levels, so the best threshold for Rössler and Chen hyperchaotic map are 0.59 and 0.14
respectively. Then, the result of the X-OR operation between the digitized face pattern
and the hyperchaotic signals in binary format, also is a binary signal called encrypted
face pattern, which is sent through a public network.

3.2 Double decryption algorithm

Figure 5 shows the double decryption scheme, to recover the original face pattern at
the receiver end, the reverse process of encryption must be followed, i.e., it receives the
encrypted face pattern and introduces the same key used for the encryption (the same
initial conditions of the two hyperchaotic maps). Similarly, the generated hyperchaotic
signal, is applied to a quantizer to be converted to a binary format, the threshold of the
quantizer has to be the same as the two used to encrypt the face pattern. Then apply
the two X-OR operation between the encrypted face pattern and hyperchaotic binary
signals. The result of this operation is also a string of bits, then these bits are grouped
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Figure 4: Double encryption scheme for face patterns.

into 8 bits to form the corresponding level of gray of each pixel, lastly it rebuilds the
image of the recovered face pattern.
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Figure 5: Double decryption scheme for recovered face patterns.

4 Results

4.1 Security analysis

4.1.1 Key space analysis

The key of the proposed cryptosystem consists of two parts: a) the initial conditions of
the two hyperchaotic maps (Rössler and Chen), (b) the control parameters of these maps.
Thus, there are five initial conditions and nine parameters in our algorithm. According
to the IEEE standard for floating point arithmetic [17], the computational precision of
64 bits numbers is 1 × 10−16, so the secret key’s space is 1016 × 1016 × 1016 × 1016 ×
1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 × 1016 = 10224, therefore
in a binary system it is equal to 2744, so the secret key’s space is large enough to resist
exhaustive attack.
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4.1.2 Statistical analysis

Figure 6(a) shows the face pattern #1 and the Figure 6(d) shows its corresponding
histogram, this pattern was encrypted by using the Rössler and Chen hyperchaotic maps
and approach explained in Section 3. Figure 6(b) shows the encrypted face pattern with
different maps using the initial conditions as an encryption key: x1(0) = 0.10, x2(0) =
0.15, x3(0) = 0.01 and x1(0) = 0.025 and x2(0) = 0.025 of Rössler and Chen maps,
respectively. The optimized threshold for quantizing the state x1 of the Rössler map
is 0.59, while the optimized threshold for quantizing the state x2 of the Chen map
is 0.14. Figure 6(e) shows its corresponding histogram, we can see, in the histogram
from the original image 6(d), that most of the information is concentrated among the
pixels that are in the range of gray level between 0 and 100. While in the histogram
in Figure 6(e) the information is distributed over the entire range from 0 to 255 of the
grayscale level, therefore, we can say that the system is robust against statistical attacks.
Figure 6(c) shows the recovered face pattern at the receiver end, and Figure 6(f) shows
its corresponding histogram, we can see that both, the recovered face pattern and the
histogram are equal to the original pattern, therefore recovering 100% of the original
information.
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Figure 6: Top: (a) Original face pattern, (b) Encrypted face pattern, (c) Recovered face
pattern. Bottom: (d) Histogram of the original face pattern, (e) Histogram of the face pattern,
(f) Histogram of the recovered face pattern.

4.1.3 Correlation analysis of adjacent pixels

Shannon proposed two techniques based on the design of encrypters [26,27], the diffusion
and confusion, these two properties above can be demonstrated by a test correlation of
adjacent pixels in the encrypted image [9]. The correlation between two adjacent pixels
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was examined horizontally, vertically and diagonally. To do this, we randomly selected
2025 pairs of pixels (xi, yi) of the image pattern under analysis (original or encrypted),
generated by scattering graphics with these pairs of adjacent pixels, i.e., the pixel is
plotted xi vs yi. Then their corresponding correlation coefficients (rxy) are calculated [9]
by using the next expression,

rxy =
cov(x, y)√
D(x)

√
D(y)

, (14)

with

cov(x, y) =
1

N

N∑

i=1

(xi − E(x))(yi − E(y)), (15)

where cov(x, y) is the covariance, D(x) is the variance, x and y denote the scale values
of gray level in the image pattern under analysis. For this numerical case, the following
discrete forms were used:

E(x) =
1

N

N∑

i=1

xi, (16)

D(x) =
1

N

N∑

i=1

(xi − E(x))), (17)

where E(x) is the average gray levels of pixels.
Figure 7(a) shows the correlation distribution of two adjacent pixels in horizontal

direction of the original face pattern. Using Eq. (14), we obtain the correlation coefficient
of 0.9976. Figure 7(b) shows the correlation distribution of two adjacent horizontal
pixels from the encrypted face pattern, in the same way, using (14) to compute the
correlation coefficient, which is −0.0082. Table 1 shows the horizontal, vertical and
diagonal correlation coefficients of adjacent pixels in the original face pattern and in
the encrypted face pattern. From the results of Table 1, we find that the correlation
coefficients of the encrypted face pattern are close to zero, it can clearly be seen that our
algorithm can destroy the relativity effectively; the proposed image encryption algorithm
has a strong ability to resist statical attack.

Table 1: Correlation of adjacent pixels in the original face pattern and in the encrypted face
pattern.

Pixels Original face pattern Encrypted face pattern

Horizontal 0.9976 -0.0082

Vertical 0.9986 0.0073

Diagonal 0.9961 0.0089

4.1.4 Differential attacks

To perform an analysis against differential attacks [9] and understand the differences
between encrypted images, two measures in common are used, NPCR (Number of Pixels
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Figure 7: Correlations of two horizontally adjacent pixels in the original image and in the
ciphered image: (a) Original face pattern, (b) Encrypted face pattern.

Change Rate) and UACI (Unified Average Changing Intensity). These measures are
used to test the influence of change of a pixel in the whole encrypted pattern.

Number of pixels change rate (NPCR) Measures the percentage of the number
of different pixels between two encrypted image patterns and can be calculated by using
the following expression [9, 24],

NPCR =

∑
i,j D(i, j)

W ×H
× 100%, (18)

where D(i, j) is a binary arrangement, so that:

D(i, j) = 0, if C1(i, j) = C2(i, j),
D(i, j) = 1, where C1(i, j 6= C2(i, j),

C1 and C2 are encrypted image patterns obtained with keys (initial conditions) that are
very similar. W and H define the size of the image under analysis.

Unified average changing intensity (UACI) Measures the average intensity dif-
ferences between two encrypted images (C1 and C2) by the expression [9, 24],

UACI =
1

W ×H

∑

i,j

|C1(i, j)− C2(i, j)|

255
× 100%, (19)

where C1, C2, W , and H were computed previously.
To realize the analysis against differential attacks, very similar keys are used to en-

crypt the original face pattern. In this case, the first encryption keys used for Rössler
map are x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01, for Chen map are x1(0) = 0.025
and x2(0) = 0.025, also we used the same parameters described in Section 3 for Rössler
and Chen maps, so with these keys we obtain the encrypted face pattern C1, the follow-
ing keys used for Rössler map are x1(0) = 0.10 + 1e−10, x2(0) = 0.15, and x3(0) = 0.01,
for Chen map are x1(0) = 0.025 and x2(0) = 0.025, also we used the same parameters
described in Section 3, so we obtain the encrypted face pattern C2. Using expressions
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(18) and (19), we obtain NPCR = 99.71% and UACI = 34.26%. These results show
that the encryption algorithm is strong against differential attacks, because the NPCR

is approximate the ideal value of 100% and UACI is slightly higher than 33%.

4.1.5 Information entropy

Shannon [26, 27] introduced the mathematic fundamentals of the information theory
applied to communications and data storage. The information entropy is a criterion that
shows the randomness of the data. In addition, it can be used to evaluate the security
of encryption [31]. To calculate the entropy H(s) [6] from a source (s), we have

H(s) =

2
N
−1∑

i=0

P (si) · Log2(
1

P (si)
) bits, (20)

where P (si) represents the probability of the symbol si.

For a purely random source, which is emitting 2N symbols with same probability,
after evaluating Eq. (20), we have an entropy H(s) = N , in this case, encrypted images
with completely random pixels in 8 bit grayscale, have entropy H(s) = 8 bits. When
images of patterns are encrypted, ideally its entropy must be 8. When a cryptographic
system emits symbols with entropy less than 8, the encrypter has some degree of
predictability, so its security is set at risk [6].

To evaluate the information entropy, from the algorithm of hyperchaotic encryption
used in this paper, Eq. (20) was used. First, we calculate the probability of occurrence of
each symbol (pixel), with the help of the corresponding histogram of the encrypted face
pattern. In the case, of the encrypted face pattern obtained with the encryption keys
x1(0) = 0.10, x2(0) = 0.15, and x3(0) = 0.01, the entropy calculated is H(si) = 7.9956.
This is a good result, because it is near (similar) to its ideal value of 8.

5 Conclusion

In this paper, we have applied double hyperchaotic encryption to face patterns in a
biometric system, particularly in face recognition system which operates remotely and
uses eigenface approach, this was for illustrative purposes, but other methods can be
implemented easily. The double encryption algorithm presents an extremely large key
space and very good statistical properties, so it effectively resists statistic attacks.
Also, it has a high sensitivity to withstand differential attacks. Therefore, because the
algorithm used in this work has a high security level, it can be suggested to encrypt con-
fidential biometric information (face, iris, fingerprint, palmprint, retina, hand geometry,
and facial thermogram, etc.), that will be transmitted securely through a public network,
such as the internet. As future work, we propose to use 3D Discrete Generalized Hénon
Map [13] and quantum dynamics [23] to encrypt biometric information.
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