Nonlinear Dynamics and Systems Theory, 13 (1) (2013) 47-53

A Poiseuille Flow of an Incompressible Fluid with Nonconstant Viscosity

Y. Hataya^{1*}, M. Ito² and M. Shiba²

¹ Department of Mathematics, Yamaguchi University, Yamaguchi, 753-8512, Japan
² Department of Applied Mathematics, Hiroshima University, Hiroshima 739-8527, Japan

Received: March 19, 2012; Revised: January 23, 2013

Abstract: The viscosity coefficient in steady Navier-Stokes equations is determined for a particular velocity vector which arises from the study of conformal embedding of a Riemann surface.

Keywords: Poiseuille flow; conformal embedding; nonconstant viscosity.

Mathematics Subject Classification (2010): 76D06, 76M40, 35F10.

1 Introduction

Consider the steady Navier-Stokes equations

$$(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} + \frac{1}{\rho}\nabla p = \nu\Delta\boldsymbol{u} \quad \text{in } \Omega,$$
$$\nabla \cdot \boldsymbol{u} = 0 \quad \text{in } \Omega,$$
$$\boldsymbol{u} = \boldsymbol{0} \quad \text{on } \partial\Omega.$$

in a long uniform tube $\Omega=\Omega_0\times\mathbb{R}$ with the circular section

$$\Omega_0 := \{ (x_1, x_2) \in \mathbb{R}^2; \ (x_1 - a)^2 + (x_2 - b)^2 < R^2 \}.$$

Here, $\boldsymbol{u} = (u_1, u_2, u_3), p, \nu$ and ρ stand for the velocity field, the pressure, the viscosity and the density, respectively. We assume that ν and ρ are constant.

The solution of this problem with the additional assumption $u_1 = u_2 = 0$ is known as the Poiseuille flow. If this is the case, the pressure has a constant gradient $(0, 0, dp/dx_3)$ and u_3 is given by

$$u_3 = \frac{R^2 - (x_1 - a)^2 - (x_2 - b)^2}{4\nu\rho} \frac{dp}{dx_3}$$

^{*} Corresponding author: mailto:hataya@yamaguchi-u.ac.jp

^{© 2013} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 47