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1 Introduction

Consider the steady Navier-Stokes equations

(u · ∇)u +
1

ρ
∇p = ν∆u in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

in a long uniform tube Ω = Ω0 × R with the circular section

Ω0 := {(x1, x2) ∈ R
2; (x1 − a)2 + (x2 − b)2 < R2}.

Here, u = (u1, u2, u3), p, ν and ρ stand for the velocity field, the pressure, the viscosity
and the density, respectively. We assume that ν and ρ are constant.

The solution of this problem with the additional assumption u1 = u2 = 0 is known as
the Poiseuille flow. If this is the case, the pressure has a constant gradient (0, 0, dp/dx3)
and u3 is given by

u3 =
R2 − (x1 − a)2 − (x2 − b)2

4νρ

dp

dx3

∗ Corresponding author: mailto:hataya@yamaguchi-u.ac.jp

c© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 47

mailto: hataya@yamaguchi-u.ac.jp
http://e-ndst.kiev.ua


48 Y. HATAYA, M. ITO AND M. SHIBA

(see, e.g. [1]).

In the present paper we shall consider another kind of Poiseuille flow; the viscosity ν
is not a priori supposed to be constant. The corresponding Navier-Stokes equations are
then

(U · ∇)U +
1

ρ
∇p = ∇ · (νT(U )) in Ω, (1)

∇ ·U = 0 in Ω, (2)

U = 0 on ∂Ω, (3)

where T(U) = (Ui,xj
+Uj,xi

)ij stands for the deformation tensor. We assume furthermore
that b > R, i.e., the section Ω0 lies entirely in the upper half plane {(x1, x2) ∈ R ; x2 > 0}
and that the velocity field U = (U1, U2, U3) in (2) satisfy

U1 = U2 = 0, U3 =
R2 − (x1 − a)2 − (x2 − b)2

2Rx2
. (4)

This assumption means that the section is a non-euclidean disk and the velocity compo-
nent U3 describes a paraboloid in the non-euclidean sense.

We now explain shortly the reason why we are interested in U3. For this purpose we
first note that the function u3 is closely connected with the theory of conformal mapping
of a multiply connected plane domain. To be more precise, let D be an arbitrary but
fixed domain in the (finite) complex z plane and ζ ∈ D be a fixed point. We consider all

the (one-to-one) conformal mapping f of D into the Riemann sphere Ĉ = C∪ {∞} such
that

f(z) =
1

z − ζ
+ κf (z − ζ) + λf (z − ζ)2 + · · · , κf , λf , · · · ∈ C,

about ζ. It is a classical result that κf describes a (euclidean) closed disk in the complex
plane. If we realize the disk as Ω0, then u3(x1, x2) represents the maximum area of

Ĉ \ f(D) for the function f with κf = x1 + ix2. We thus see that the velocity of the
classical Poiseuille flow coincides with the (maximum) area function in the theory of
conformal mapping of a planar Riemann surface.

We have shown in [3] that an analogous theorem holds for the conformal embeddings
of a noncompact Riemann surface S of genus one into (marked compact) tori T . The
moduli of T accept the rôle which the coefficients κf played in the planar case, and the
maximum area |f(S)| of f(S) for various conformal embeddings f of S into a fixed torus
T is described by a constant multiple of the function u3. That is, the function u3 works
for the Riemann surface R of genus one as well as for the plane domain D. In [3] we
have proved more: the function U3 describes the maximum ratio |f(S)|/|T | for the fixed
torus T .

Note that the unknown function in (2) is not the velocity U but the viscosity co-
efficient ν. We shall find a smooth function ν so that the vector U = (0, 0, U3) is the
velocity of a steady flow in the tube of an incompressible fluid with the viscosity ν.

Since the viscosity ν is affected by, say, the temperature, it may change point to point
in the tube, when the ambient space of the tube is of nonconstant temperature. Hence,
the nonconstant character of ν would be expected to be realistically important.
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2 Main Theorem

In the following, we assume the density ρ > 0 to be constant. The problem with which
we are concerned in the present paper is:

Problem. Find the pressure p = p(x3) and the smooth viscosity ν = ν(x1, x2), for
which (U , p) satisfies (1)–(3).

Our goal is the following:

Theorem 2.1 The system (1)–(3) has a unique smooth solution (ν(x1, x2), p(x3)).
The pressure is given by p = γρx3 + γ′, where γ, γ′ are constants with γ < 0, and ν is

given by

ν(x1, x2) =



































− γRx2
2

(x1 − a)2

[

−x2 + c+
(x1 − a)2 + x2

2 − c2

2(x1 − a)

×Sin−1 2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2

]

, if x1 6= a,

− 2

3
γR

x2
2(x2 + 2c)

(x2 + c)2
, if x1 = a,

(5)

where c =
√
b2 −R2.

3 Proof of Theorem

In this proof, we shall denote U3 by U for simplicity. The deformation tensor of the
velocity (4) is then written as

T(U) =





0 0 Ux1

0 0 Ux2

Ux1
Ux2

0



 .

We thus rewrite equation (1) as

1

ρ
∇p = (0, 0, (νUx1

)x1
+ (νUx2

)x2
).

From this equation we see first of all that dp/dx3 = γρ holds with a constant γ. We have
then a PDE for ν of the first order :

νx1
Ux1

+ νx2
Ux2

+ ν∆U = γ. (6)

For later use we first note the following basic expressions.

Ux1
(x1, x2) = −x1 − a

Rx2
, (7)

Ux2
(x1, x2) =

(x1 − a)2 − x2
2 + c2

2Rx2
2

, (8)

∆U(x1, x2) = − (x1 − a)2 + x2
2 + c2

Rx3
2

. (9)
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Associated with (6) we now consider another equation

dx1/Ux1
= dx2/Ux2

, (10)

or
{

(x1 − a)2 − x2
2 + c2

}

dx1 + 2(x1 − a)x2 dx2 = 0. (11)

A solution of (10) (or (11)) is called a characteristic curve of (6). For general discussion
of characteristic curves, see e.g. [2].

We can solve (11) and obtain the family of curves

Ck :

{

x2
2 = c2 − (x1 − a)(x1 − k), if k 6= a,

x1 = a, x2 > 0, if k = a.
(12)

It is easy to see that Ca is a characteristic curve. On the other hand for k 6= a, the
function

Φ(x1, x2) :=
x1(x1 − a) + x2

2 − c2

x1 − a

[

= x1 +
x2
2 − c2

x1 − a

]

(13)

satisfies

∂Φ

∂x1
=

(x1 − a)2 − x2
2 + c2

(x1 − a)2
, (14)

∂Φ

∂x2
=

2x2

x1 − a
. (15)

Then, along the curve
Φ(x1, x2) = k (16)

for a constant k, the identity

0 = dΦ =
∂Φ

∂x1
dx1 +

∂Φ

∂x2
dx2 =

(x1 − a)2 − x2
2 + c2

(x1 − a)2
dx1 +

2x2

x1 − a
dx2

holds, which shows that (16) is a characteristic curve of (6) for any constant k. That
is, (12) are the characteristic curves of (6). We observe that each characteristic curve
Ck (k 6= a) represents a half-circle

(

x1 −
a+ k

2

)2

+ x2
2 = d2k, x2 > 0, (17)

of the radius dk:

dk :=

√

c2 +

(

a− k

2

)2

. (18)

We remark that each curve Ck (k ∈ R) passes through the point (a, c). Furthermore for
each (x1, x2) other than (a, c), there exists a unique k ∈ R such that Ck passes through
(x1, x2).

We now fix a k ∈ R \ {a} and consider the characteristic curve Ck. On this curve we
can express x2 as a single-valued function of x1, since x2 > 0 for the present problem.
We next consider the function ν̃(x1) := ν(x1, x2(x1)) on (17). Since

dν̃

dx1
=

∂ν

∂x1
+

∂ν

∂x2

dx2

dx1
= (νx1

Ux1
+ νx2

Ux2
)

1

Ux1

,
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our equation (6) becomes now of the form

dν̃

dx1
+ ν̃

∆U

Ux1

=
γ

Ux1

, (19)

or, equivalently

d

dx1

(

ν̃(x1) exp

∫

∆U

Ux1

dx1

)

=
γ

Ux1

exp

∫

∆U

Ux1

dx1. (20)

To solve this equation explicitly we first observe that

∆U(x1, x2)

Ux1
(x1, x2)

=
(x1 − a)2 + x2

2 + c2

(x1 − a)x2
2

, (21)

which follows immediately from (7) and (9). This, together with equation (12), yields

∆U(x1, x2)

Ux1
(x1, x2)

=
(x1 − a)(x1 − k)− (x1 − a)2 − 2c2

(x1 − a){(x1 − a)(x1 − k)− c2} . (22)

If we denote by α and β the roots of the quadratic equation (x1−a)(x1−k)− c2 = 0,
we have

∆U(x1, x2)

Ux1
(x1, x2)

=
2

x1 − a
− 1

x1 − α
− 1

x1 − β
. (23)

As usual, we can ignore an integration constant and obtain

∫

∆U

Ux1

dx1 = log
(x1 − a)2

c2 − (x1 − a)(x1 − k)
. (24)

Hence we have
γ

Ux1

exp

∫

∆U

Ux1

dx1 = −γR · x1 − a

x2
(25)

along the characteristic curve Ck (k 6= a).

In order to integrate (20), it is convenient to parametrize the curve (17). Namely, for
each k, we consider the parametrization







x1 = −dk sin θ +
a+ k

2
,

x2 = dk cos θ,
(−π/2 < θ < π/2) (26)

of the curve (12). Then, according to (17), (18) and (26), the function ν̃(x1) =
ν(x1, x2(x1)) can be expressed as ν̃(k, θ) = ν(x1(k, θ), x2(k, θ)). Let θk (−π/2 < θk <
π/2) be the value of θ for which







a = −dk sin θk +
a+ k

2
,

c = dk cos θk,
(27)

holds.
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Because of the relation dx1 = −dk cos θdθ = −x2dθ on Ck we have

∫ x1

a

(

γ

Ux1

exp

∫

∆U

Ux1

dx1

)

dx1 = −γR

∫ x1

a

x1 − a

x2
dx1

= γR

{

dk(cos θ − cos θk) +
k − a

2
(θ − θk)

}

.

Noting that
k − a

2
= dk sin θk, we have

∫ x1

a

(

γ

Ux1

exp

∫

∆U

Ux1

dx1

)

dx1 = dkγR{(cos θ − cos θk) + (θ − θk) sin θk}. (28)

Now, in virtue of equation (25) we obtain

ν̃(k, θ) = dkγR cos2 θ · (cos θ − cos θk) + (θ − θk) sin θk
(sin θ − sin θk)2

. (29)

This is the solution of (19) on Ck (k 6= a).
We shall next solve (6) on the characteristic curve Ca. On the half line {(a, x2) ;

x2 > 0}, equations (1)–(3) reduce to

ν′(a, x2)
c2 − x2

2

2Rx2
2

− ν
x2
2 + c2

Rx3
2

= k.

It has a unique continuous solution

ν(a, x2) = −2

3
γR

x2
2(x2 + 2c)

(x2 + c)2
. (30)

The function

ν(x1, x2) :=

{

ν̃(k(x1, x2), θ(x1, x2)), for (x1, x2) ∈ Ck, k 6= a,

ν(a, x2), for (x1, x2) ∈ Ca

is now well-defined on Ω0 \ (a, c), since for each (x1, x2) 6= (a, c) we can find a unique
k ∈ R with (x1, x2) ∈ Ck. If (x1, x2) approaches to (a, c) along a characteristic curve Ck,
the function ν(x1, x2) has a finite limit which is independent of k. To show this, we first
discuss the case k 6= a. We can then apply the de l’Hôpital theorem to obtain

lim
θ→θk

(cos θ − cos θk) + (θ − θk) sin θk
(sin θ − sin θk)2

= lim
θ→θk

− sin θ + sin θk
2(sin θ − sin θk) cos θ

= − 1

2 cos θk
.

Consequently along each Ck, we have

lim
(x1,x2)→(a,c)

ν(x1, x2) = −cγR

2
.

If k = a, it is easy to see ν(a, x2) → −cγR/2 as x2 → c along Ca. Hence, ν(x1, x2) is a
continuous function on Ω0.
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We next rewrite the function ν explicitly in terms of the euclidean coordinates (x1, x2).
In virtue of (26), we have

sin(θ − θk) = − 1

2d2k

(x2 + c){(x1 − a)2 + (x2 − c)2}
x1 − a

.

Since

d2k =
{(x1 − a)2 + (x2 + c)2}{(x1 − a)2 + (x2 − c)2}

4(x1 − a)2
,

by (16) and (18), we obtain

sin(θ − θk) =
−2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2
. (31)

If we substitute (26), (27) and (31) into (29), we conclude

ν(x1, x2) = − γRx2
2

(x1 − a)2

[

−x2 + c+
(x1 − a)2 + x2

2 − c2

2(x1 − a)

×Sin−1 2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2

]

for x1 6= a.

Finally we shall show ν is C1(Ω0). In fact, putting y =
2(x1 − a)(x2 + c)

(x1 − a)2 + (x2 + c)2
in the

Maclaurin series

Sin−1y =

∞
∑

j=0

(2j)!

22j (j!)2
y2j+1

2j + 1
,

we have the expansion

−ν(x1, x2)

γRx2
2

=
2

3

x2 + 2c

(x2 + c)2
+O(|x1 − a|2).

Thus
∂ν

∂x1
(a, x2) exists and equals to 0. Since the regularity of ν(x1, x2) is obvious except

the half line {(a, x2) ; x2 > 0}, we conclude that ν is continuously differentiable in Ω0.

Remark. From (5), we can see γ < 0 if the viscous constant ν is positive.
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