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1 Introduction

The method of integral inequalities of motion stability theory (see [8,9] and bibliography
therein) has been developed in terms of linear and nonlinear integral inequalities treated
in numerous papers (see [2,14] and bibliography therein). Appearance of dynamic equa-
tions on time scale [6] gave an impetus to the investigations in the theory of dynamic
integral inequalities (see [3] and bibliography therein). The inequalities of Gronwall -
Bellman type established by now and some types of nonlinear inequalities (see [4]) have
been applied in the stability analysis of solutions to dynamic equations on time scale.
It is of interest to further generalize nonlinear dynamic inequality of Stakhursky type
(see [4, 10, 13]) for dynamic equations in the case of arbitrary real nonlinearity expo-
nent larger than one. Such generalization makes possible the analysis of various types of
stability of zero solution for a new class of quasilinear dynamic equations.
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In the present paper a new nonlinear dynamic integral inequality is obtained in view
of the results of [10]. The new inequality is applied to establish sufficient conditions
for stability, uniform stability and asymptotic stability of trivial solutions to a class of
quasilinear dynamic equations. All the necessary information from the mathematical
analysis on time scale can be found in monographs [3, 7] or paper [4] and so is omitted
here.

2 Statement of the Problem

Consider a quasilinear dynamic equation of the type

x∆ = A(t)x + f(t, x), f(t, 0) = 0, (1)

where x ∈ Rn, t ∈ T, and the matrix-valued function A : T → Rn×n and the vector-
function f : T× Rn → Rn satisfy the following hypotheses:

(H1) functions A(t) and f(t, x) are rd-continuous and A ∈ R(T,Rn×n);

(H2) function f(t, x) satisfies Lipschitz condition with respect to spatial variable in Rn,
i.e. there exists L > 0 such that

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, for all (t, x1), (t, x2) ∈ T× R
n; (2)

(H3) there exist functions α(t), ϕ(t), ψ(t) ∈ Crd(T,R+) and a constant m > 1 such that:

(a) ‖f(t, x)‖ ≤ α(t)‖x‖m;

(b) ‖eA(t, t0)‖ ≤ ϕ(t)ψ(t0),

for all t ≥ t0, belonging to T, and x ∈ Rn, where eA(t, t0) denotes the matrix
exponential function [3] of the linear dynamic equation: x∆ = A(t)x.

It should be noted that the conditions of hypotheses (H1) and (H2) ensure existence
and uniqueness of solution for the dynamic equation with given initial conditions. Fur-
ther, under hypotheses (H1) — (H3), we investigate the problem on stability, uniform
stability and asymptotic stability of zero solution for dynamic equation (1). For quasi-
linear systems of ordinary differential equations of (1) type the conditions similar to
condition (a) for integer nonlinearity exponents have been considered in a number of
papers (see [5], p.266-270, [7], [12] and bibliography therein).

3 Generalized Nonlinear Dynamic Inequality

Nonlinear dynamic inequality has been a subject of investigation in paper [4] for the inte-
ger nonlinearity exponents larger than one. Here we deal with a more general situation.

Let µ(t) be a graininess function on the time scale T. The following assertion holds.

Lemma 3.1 Assume that the functions a(t), b(t) are positive rd-continuous on T,
the function h(t) is nonnegative rd-continuous on T and m > 1 is a real number. If the

function a(t)
b(t) is non-decreasing on T, for any function u(t), satisfying the inequality

u(t) ≤ a(t) + b(t)

t∫

t0

h(s)um(s)∆s, t ≥ t0, (3)
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the estimate

u(t) ≤
a(t)

[
1 +

t∫
t0

am−1(σ(s)) − (a(σ(s)) + µ(s)b(σ(s))am(s)h(s))m−1

µ(s)(a(σ(s)) + µ(s)b(σ(s))am(s)h(s))m−1
∆s
] 1

m−1

(4)

is valid on the interval [t0, t̃), where t̃ is the first point from the interval [t0,+∞) ∩ T,
at which the denominator base number in the right-hand part of inequality (4) becomes
non-positive.

Proof. Assume that the function u(t) satisfies inequality (3) which is written as

u(t) ≤ a(t)
(
1 +

b(t)

a(t)

t∫

t0

h(s)um(s)∆s
)
= a(t)w(t), for all t ≥ t0.

According to the rule of ∆-differentiation of a product of two functions, we have for w(t):

w∆(t) =
( b(t)
a(t)

)∆ t∫

t0

h(s)um(s)∆s+
( b(t)
a(t)

)σ
h(t)um(t) ≤

b(σ(t))

a(σ(t))
h(t)um(t),

due to the function b(t)/a(t) decreasing. Further

w∆(t) ≤
b(σ(t))

a(σ(t))
h(t)um(t) ≤

b(σ(t))

a(σ(t))
h(t)am(t)wm(t) = r(t)wm(t),

for all t ≥ t0. Consider the dynamic comparison equation

v∆(t) = r(t)vm(t) (5)

and study the behavior of its solution starting from the point v(t0) = 1 + ε, where
ε > 0 is a sufficiently small number. To this end in (5) we make the change of variable
ξ(t) = v1−m(t), and by definition of ∆-derivative of a function obtain

ξ∆(t) =
ξ(σ(t)) − ξ(t)

µ(t)
=
v1−m(σ(t)) − v1−m(t)

µ(t)
=

=
(v(t) + µ(t)v∆(t))1−m − v1−m(t)

µ(t)
=
v1−m(t)

µ(t)

((
1 + µ(t)

v∆(t)

v(t)

)1−m
− 1
)
=

=
v1−m(t)

µ(t)

(
(1 + µ(t)r(t)v1−m(t))1−m − 1

)
=
ξ(t)

µ(t)

((
1 +

µ(t)r(t)

ξ(t)

)1−m
− 1
)
≡

≡ F (t, ξ), ξ(t0) = (1 + ε)1−m.

Besides, it is assumed that the expression ξ(σ(t))−ξ(t)
µ(t) in the case µ(t) = 0 is equal to the

limit lim
τ→0

ξ(t+τ)−ξ(t)
τ . Further we find that

∂F (t, ξ)

∂ξ
=

1

µ(t)

(
1 + mµ(t)r(t)

ξ −
(
1 + µ(t)r(t)

ξ

)m

(
1 + µ(t)r(t)

ξ

)m

)
≤ 0,
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for all t ∈ [t0,+∞), i.e. the function F (t, ·) does not increase on the set (0,+∞). Since
ξ(t) ∈ (0, 1) for all t ∈ [t0,+∞) (due to connection with the function v(t)), for the
indicated values of t the chain of inequalities holds true

F (t, 0) ≥ F (t, ξ(t)) ≥ F (t, 1) > F (t,∞). (6)

We find that F (t, 1) = (1+µ(t)r(t))1−m−1
µ(t) . It is easy to verify that the function F (t, ξ)

satisfies all conditions of the theorem on existence and uniqueness of solution to Cauchy
problem for dynamic equation on time scale (see [6]). Therefore, the Cauchy problem

ξ∆(t) = F (t, ξ(t)), ξ(t0) = (1 + ε)1−m

possesses the only solution ξ(t), which can be presented in the integral form

ξ(t) = (1 + ε)1−m +

t∫

t0

F (s, ξ(s))∆s. (7)

Further, using formula (7) and inequalities (6) we arrive at the estimate

ξ(t) = (1 + ε)1−m +

t∫

t0

F (s, ξ(s))∆s ≥ (1 + ε)1−m +

t∫

t0

F (s, 1)∆s =

= (1 + ε)1−m +

t∫

t0

(1 + µ(s)r(s))1−m − 1

µ(s)
∆s,

(8)

which is valid for all t ∈ [t0, t̃). For the values of t from the scale T the expression in the
right-hand part of inequality (8) is positive by Lemma 3.1, and therefore, inequality (8)
is equivalent to the inequality

v(t) = v(t; t0, 1 + ε) ≤

(
(1 + ε)1−m +

t∫

t0

(1 + µ(s)r(s))1−m − 1

µ(s)
∆s

) 1
1−m

,

for all t ∈ [t0, t̃).
In view of the comparison principle [6] and the passage to the limit for ε→ 0 we get

inequality (4). Lemma 3.1 is proved. ✷

Designate h(t) = ψ(σ(t))ϕm(t)α(t),

D(t, a, ρ) =

t∫

a

1

µ(s)

(
1−

1

(1 + µ(s)h(s)ψm−1(a)ρm−1)m−1

)
∆s.

The following lemma provides estimate of solution to equation (1) by means of inequality
(4).

Lemma 3.2 For equation (1) let hypotheses (H1) — (H3) be satisfied. Then for
arbitrary t0 ∈ T and x0 ∈ R

n the following estimate of solution x(t; t0, x0) to equation
(1) holds

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
, (9)

for all t ∈ [t0,+∞) ∩ T, for which D(t, t0, ‖x0‖) < 1.
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Proof. As noted, hypotheses (H1) — (H2) ensure the existence and uniqueness of
solution x(t; t0, x0) to equation (1) found by the Cauchy formula [6]:

x(t; t0, x0) = eA(t, t0)x0 +

t∫

t0

eA(t, σ(s))f(s, x(s; t0, x0))∆s, (10)

where the integration is made on the scale T within the limits from t0 to t. From (10)
and hypothesis (H3) we have the estimate of the norm x(t; t0, x0) (further denoted as
x(t))

‖x(t)‖ ≤ ϕ(t)ψ(t0)‖x0‖+

t∫

t0

ϕ(t)ψ(σ(s))α(s)‖x(s)‖m∆s.

Having designated u(t) = ‖x(t)‖
ϕ(t) , a(t) = ψ(t0)‖x0‖, we get the inequality

u(t) ≤ a(t) +

t∫

t0

h(s)um(s)∆s, t ≥ t0.

Since the functions in this inequality satisfy all conditions of Lemma 3.1, we get the
estimate

u(t) ≤ a(t)
(
1−D(t, t0, ‖x0‖)

)1/1−m
,

which is valid for all t, such that D(t, t0, ‖x0‖) < 1. Lemma 3.2 is proved. ✷

4 Stability Analysis of Quasilinear System.

In this section sufficient conditions of stability, uniform stability and asymptotic stability
of zero solution to dynamic equations of (1) type are established in terms of generalized
nonlinear dynamic inequality.

Theorem 4.1 If for equation (1) for all s ≥ t0 there exists K(s) such that ϕ(t) ≤
K(s) for all t ≥ s ≥ t0 and

D̃(t0, ρ) = lim
t→∞

D(t, t0, ρ) <∞, (11)

for all t0 ∈ T and ρ > 0, the solution x = 0 of equation (1) is stable.

Proof. We study properties of the function D(t, a, ρ), defined above. Direct com-
putation gives that the function D(t, a, ·) increases on the set R+, uniformly in t and a.

Consequently, the function D̃(a, ·) from (11) does not decrease on R+, uniformly in a,

and, moreover, D̃(a, 0) = 0. Then, for some λ ∈ (0, 1) the equation D̃(a, ρ) = λ possesses
the largest solution ρ = ρλ(a) for all a ∈ T. We consider λ1 to be the largest of the
mentioned ones.

Then consider the function G(t, a, ρ) = ρ
(
1−D(t, a, ρ)

) 1
1−m

. We find that

∂G

∂ρ
=
(
1−D

) m
m−1

(
1−D +

ρ

m− 1
·
∂D

∂ρ

)
=
(
1−D

) m
m−1

(1−G1), (12)
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where G1(t, a, ρ) = D(t, a, ρ)− ρ
m−1 · ∂D(t,a,ρ)

∂ρ . Having computed the derivative ∂G1

∂ρ , we

make sure that the function G1(t, a, ·) does not decrease on R+, uniformly in t and a as
well.

It can be easily seen that the function G̃1(a, ρ) = D̃(a, ρ) − ρ
m−1 · ∂D̃(a,ρ)

∂ρ does not

decrease in the second argument on the set R+, uniformly in a, and G̃1(a, 0) = 0. Then,
there exists the largest value ω1 of the parameter ω from the interval (0, 1], such that

the equation G̃1(a, ρ) = ω possesses the largest solution ρ = ρω(a) for all a ∈ T.

Also, for the derivative ∂G̃
∂ρ of the function G̃(a, ρ) = ρ

(
1 − D̃(a, ρ)

) 1
1−m

make sure

that an equality similar to (12) takes place

∂G̃

∂ρ
=
(
1− D̃

) m
m−1

(
1− D̃ +

ρ

m− 1
·
∂D̃

∂ρ

)
=
(
1− D̃

) m
m−1

(1− G̃1). (13)

Proceeding from the above arguments we find that on the set ρ ∈ (0, ρω1(a)] the derivative
∂G̃
∂ρ is nonnegative for all a ∈ T, and hence, the function G̃(a, ·) is nondecreasing.

Now let us choose some ε > 0 and t0 ∈ T. Designate by ξ1 the largest value of
the parameter ξ from the interval (0, ε/ψ(t0)K(t0)), such that the equation G̃(a, ρ) = ξ
possesses the largest solution ρ = ρξ(a), not larger than ρω1(a) for all a ∈ T. Set
δ = min{ρλ1(t0), ρξ1(t0)} and show that if ‖x0‖ < δ, then ‖x(t, t0, x0)‖ < ε, for all
t ≥ t0.

By the condition of the theorem for all t ≥ t0 from the scale we have

D(t, t0, ‖x0‖) ≤ lim
t→∞

D(t, t0, ‖x0‖) = D̃(t0, ‖x0‖). (14)

Since it is proved that the function D̃(a, ·) does not decrease on R+, inequalities (14) can
be continued as

D(t, t0, ‖x0‖) ≤ D̃(t0, δ) ≤ D̃(t0, ρλ1(t0)) = λ1 < 1. (15)

From (15) we conclude that by Lemma 3.2 for all t ≥ t0 from the scale estimate (9)

is valid. Using (9), the established properties of functions D, D̃, G̃ and the method of
choosing of δ, we arrive at the estimates

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
≤

≤ K(t0)ψ(t0)‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
≤

≤ K(t0)ψ(t0)‖x0‖
[
1− D̃(t0, ‖x0‖)

]1/1−m
= K(t0)ψ(t0)G̃(t0, ‖x0‖) ≤

≤ K(t0)ψ(t0)G̃(t0, δ) ≤ K(t0)ψ(t0)G̃(t0, ρξ1(t0)) = K(t0)ψ(t0)ξ1 ≤

≤ K(t0)ψ(t0)ξ < K(t0)ψ(t0)
ε

K(t0)ψ(t0)
= ε,

which are valid for all t ≥ t0 from the scale. This completes the proof. ✷

Theorem 4.2 If for equation (1) there exist a positive constant K1 and a continuous
nondecreasing function K2(ρ) such that ϕ(t)ψ(s) ≤ K1 for all t ≥ s ≥ t0 and

D̃(s, ρ) = lim
t→∞

D(t, s, ρ) ≤ K2(ρ),

for all s ≥ t0 ρ > 0, then solution x = 0 of equation (1) is uniformly stable.
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Proof. Let ε > 0, t0 ∈ T. Due to the properties of function K2(ρ) there exists
a value of the parameter η from the interval (0, 12 ] such that the equation K2(ρ) = η
possesses the largest solution ρ(η). Designate by η1 the largest of the mentioned values

of parameter η. We set δ = min{ρ(η1), ε(2
1

m−1 k1)
−1} and show that if ‖x0‖ < δ, then

‖x(t; t0, x0)‖ < ε, for all t ≥ t0.
By the condition of the theorem, for all t ≥ t0 from the time scale we have

D(t, t0, ‖x0‖) ≤ lim
t→∞

D(t, t0, ‖x0‖) ≤ K2(‖x0‖) < k2(δ) << K2(ρ(η1)) = η1 ≤
1

2
< 1.

(16)
From (16) we conclude that estimate (9) is fulfilled for all t ≥ t0 from the time scale.
Therefore,

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
≤

≤ K1‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
≤ K1‖x0‖

[
1− D̃(t0, ‖x0‖)

]1/1−m
≤

≤ K1‖x0‖
(
1−K2(‖x0‖)

)1/1−m
< K1δ2

1
m−1 ≤ ε,

for all t ≥ t0 from the scale. The theorem is proved. ✷

Theorem 4.3 If for equation (1) the conditions

D̃(s, ρ) = lim
t→∞

D(t, s, ρ) <∞,

are satisfied for all s ≥ t0 and ρ > 0, and lim
t→∞

ϕ(t) = 0, then the solution x = 0

of equation (1) is asymptotically stable. Besides, the domain of attraction of solution
x = 0 contains a sphere B(0, ρλ(t0)), where ρλ(t0) is the largest solution of the equation

D̃(t0, ρ) = λ, λ ∈ (0, 1).

Proof. Let ε > 0, t0 ∈ T. Since the value of function ϕ(t) vanishes for t → ∞, the
function is bounded. Then, by Theorem 4.2 the solution x = 0 of equation (1) is stable.
Let us show that there exists a δ0 > 0 such that if ‖x0‖ < δ0, then the limit equality
lim

t→+∞
‖x(t; t0, x0)‖ = 0 holds true. It can be easily verified that the function D(t, s, ρ)

increases in the last variable on R+. Therefore, the function D̃(s, ρ) does not decrease

in ρ on R+. Then, there exists a λ ∈ (0, 1), for which the equation D̃(a, ρ) = λ possesses
the largest solution designated by ρλ(a). We set δ0 = ρλ(t0), then for all t ≥ t0 and
‖x0‖ < δ0 the following inequalities hold true

D(t, t0, ‖x0‖) ≤ D̃(t0, ‖x0‖) ≤ D̃(t0, δ0) = λ < 1.

By Lemma 3.2 for solution x(t; t0, x0) of equation (1) estimate (9) is valid. Using the
above inequality and inequality (9) we get

‖x(t; t0, x0)‖ ≤ ϕ(t)ψ(t0)‖x0‖
[
1−D(t, t0, ‖x0‖)

]1/1−m
≤

≤ ϕ(t)ψ(t0)‖x0‖
[
1− D̃(t0, ‖x0‖)

]1/1−m
<

< ϕ(t)ψ(t0)δ0

[
1− D̃(t0, δ0)

]1/1−m
→ 0,
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whenever t→ ∞.
Thus, the neighborhood of the point x = 0 with the radius ρλ(t0) is contained in the

domain of attraction of the solution x = 0 of equation (1). ✷

5 Applications

Consider system of dynamic equations (1) on time scale, satisfying hypotheses (H1) —
(H3) for any real m > 1, for the following values of functions ϕ(t), ψ(t), α(t) :

ϕ(t) =Meλ(t, 0), ψ(t) = eλ(0, t), α(t) = Aeγ(t, 0). (17)

Here A and M are positive constants and the real numbers λ and γ satisfy positive
regressivity conditions [3]

1 + µ(t)λ > 0, 1 + µ(t)γ > 0, for all t ∈ T. (18)

Assume that the scale T has a bounded graininess function µ(t) (i.e. there exists
µ∗ ≥ 0 v µ(t) ≤ µ∗ for all t ∈ T) and for arbitrary integrable function f(t) and any scale
segment 〈a, b〉 the representation

b∫

a

f(t)∆t =
∑

i

bi∫

ai

f(t)dt+
∑

k

f(tk)µ(tk), (19)

is valid, where the segments 〈ai, bi〉 and the points tk belong to 〈a, b〉.
Applying Theorem 4.3 one can easily establish additional conditions, which the con-

stants λ and γ must satisfy to, so that the solution x = 0 of equation (1) be asymp-
totically stable under assumptions (17) and (18). Such result is contained in Corollary
5.1. Recall that for any function F = F (µ(t)) under consideration it is assumed that
F (0) = lim

µ→0
F (µ) if the value F (0) is not defined.

Corollary 5.1 Let equation (1) satisfy assumptions (H1) — (H3), and the functions
ϕ(t), ψ(t) and α(t) from these assumptions, in their turn, satisfy assumptions (17) and
(18). Then, if there exist positive constants δ1, δ2, δ3 such that for all t ∈ T the following
conditions are fulfilled:

1) ln(1 + µ(t)λ)
1

µ(t) ≤ −δ1;

2) ln
(
(1 + µ(t)λ)m−1(1 + µ(t)γ)

) 1
µ(t)

≤ −δ2;

3) 1 + µ(t)λ ≥ δ3,

then the solution x = 0 of equation (1) is asymptotically stable.

Proof. Since by the definition of an exponential function ϕ(t) = Meλ(t, 0) =

Mexp
{ t∫

0

Log(1+µ(s)λ)
µ(s) ∆s

}
, where Log is the main logarithmic function (if µ(s) = 0,

then the integrand equals to λ by definition), due to (18) we have ϕ(t) = Meλ(t, 0) =

Mexp
{ t∫

0

ln(1+µ(s)λ)
µ(s) ∆s

}
. According to condition 1) of Corollary 5.1 we find that
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ϕ(t) ≤ Me−tδ1 → 0, for t → ∞. Consider further the integrand R(t, a, ρ) =
1
µ(t)

(
1 − 1

(1+µ(t)h(t)ψm−1(a)ρm−1)m−1

)
of the integral in the expression for D(t, a, ρ). If

the inequality µ(t)h(t)ψm−1(a)ρm−1 < 1 is fulfilled, then the function R(t, a, ρ) can be
presented in the form of a sum of the convergent series

R(t, a, ρ) =
1

µ(t)

(
1−

∞∑

k=0

(1−m)(−m) · ... · (2−m− k)

k!
×

×
(
µ(t)h(t)ψm−1(a)ρm−1

)k)
= −

∞∑

k=1

(1−m)(−m) · ... · (2−m− k)

k!
×

×µk−1(t)(h(t)ψm−1(a)ρm−1)k =

∞∑

k=1

rk(t).

(20)

We shall establish conditions under which the series in (20) converges uniformly in t. To
this end we find a convergent numerical series majorizing the series in (20). In view of
assumptions (17) and (18) and the properties of exponential functions we find that

|µk−1(t)hk(t)| = |µk−1(t)ψk(σ(t))ϕkm(t)αk(t)| =

= AkMkmµk−1(t)ekλ(0, σ(t))e
km
λ (t, 0)ekγ(t, 0) = AkMkmµk−1(t)×

×
ekmλ (t, 0)ekγ(t, 0)

ekλ(t, 0)e
k
λ(σ(t), t)

= AkMkmµ
k−1(t)eβ(t, 0)

(1 + µ(t)λ)k
,

where β(t) = 1
µ(t)

(
(1 + µ(t)λ)k(m−1)(1 + µ(t)γ)k − 1

)
. We estimate the expression

obtained for |µk−1(t)hk(t)| in view of conditions 1) – 2) of Corollary 5.1:

|µk−1(t)hk(t)| ≤ AkMkm µk−1(t)

(1 + µ(t)λ)k
×

×exp
{ t∫

0

ln(1 + µ(s)λ)k(m−1)(1 + µ(s)γ)k

µ(s)
∆s
}
≤

≤ AkMkm (µ∗)k−1

δk3
exp
{ t∫

0

−kδ2∆s
}
=
AkMkm(µ∗)k−1

δk3
e−ktδ2 ,

for all t ∈ T. The obtained estimate implies that when choosing the values of the
parameter ρ from sufficiently small neighborhood of zero, the series in (20) is uniformly
convergent in t, therefore, by the theorem from [11] the series for R(t, a, ρ) allows the
term-by-term integration. As a result, we have

D(t, a, ρ) =

t∫

a

R(s, a, ρ)∆s =

t∫

a

∞∑

k=1

rk(s)∆s =

∞∑

k=1

t∫

a

rk(s)∆s.
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∣∣∣
t∫

a

rk(s)∆s
∣∣∣ ≤

1

δk3k!
AkMkm|(1−m)(−m) · ... · (2−m− k)|×

×(ψm−1(a)ρm−1)k
t∫

a

exp
{
k

s∫

0

ln(1 + µ(τ)λ)k(m−1)(1 + µ(τ)γ)k

µ(s)
∆τ
}
∆s ≤

≤ r̃k

t∫

a

µk−1(s)e−ksδ2∆s.

The integral Ik =
t∫
a

µk−1(s)e−ksδ2∆s is bounded with respect to t. Really, by virtue of

(19)

Ik =
∑

i

bi∫

ai

µk−1(s)e−ksδ2ds+
∑

j

µk−1(tj)e
−ktjδ2µ(tj),

where (ai, bi) ⊂ (a, t), tj ∈ (a, t). Further,

Ik =
∑

j

µk−1(tj)e
−ktjδ2µ(tj) ≤ (µ∗)k−1

∑

j

e−ktjδ2µ(tj) =

= (µ∗)k−1ekµ
∗δ2
∑

j

e−kδ2(tj+µ
∗)µ(tj) ≤ (µ∗)k−1ekµ

∗δ2
∑

j

e−kδ2(tj+µ(tj))µ(tj) =

= (µ∗)k−1ekµ
∗δ2
∑

j

e−kδ2σ(tj)µ(tj) ≤ (µ∗)k−1ekµ
∗δ2

t∫

0

e−ksδ2ds =

=
(µ∗)k−1ekµ

∗δ2

kδ2

(
e−kaδ2 − e−ktδ2

)
.

It can be easily seen that for sufficiently small ρ the series for D(t, a, ρ) is uniformly
convergent in t and it can be estimated by a function of a and ρ. Thus, when conditions
of Corollary 5.1 are fulfilled, all hypotheses of Theorem 4.3 are fulfilled too, and therefore,
the solution x = 0 of equation (1) is asymptotically stable. ✷

Note, that the conditions of asymptotic stability obtained in Corollary 5.1 for zero
solution of dynamic equation of certain type cover some known results for T = R.

6 Conclusion

The results of this paper together with those of paper [4] represent a solution to stability
problem of quasilinear equations on time scale via the method of dynamic integral in-
equalities. In the case when the fundamental matrix of solutions of linear approximation
of system (1) can be determined in the explicit form the established sufficient conditions
of various types of stability may be of interest for applications. Some results of the de-
velopment of the method of integral inequalities for dynamic equations of (1) type were
the subject of paper [1].
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