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1 Introduction

Let Cm be the m-dimensional complex space, which we equip with its natural Euclidean
norm | · | and inner product < ·, · >. Let M(m,C) stand for the collection of all m×m-
square matrices with complex entries. If A ∈ M(m,C) then its index which we will
denote by i(A) is the smallest nonnegative integer k such that

rank(Ak) = rank(Ak+1).

If A ∈ M(m,C), then the Drazin inverse AD of A is the matrix X ∈ M(m,C)
satisfying the following three properties:

AX = XA, XAX = X, XAk+1 = Ak,

where k = i(A).
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If we denote the zero matrix of Cm by O, and if we assume that the Jordan decom-
position of A ∈M(m,C) is given by

A = T

(

C O

O N

)

T−1,

where C ∈M(r,C) is (nonsingular) invertible and N ∈M(n− r,C) is nilpotent of order
k (Nk = O and Nk−1 6= O), then AD is given by

AD = T

(

C−1 O

O O

)

T−1.

It should be mentioned that if A is nilpotent, then AD = O. Similarly, if A is
(nonsingular) invertible, then AD = A−1. Now, the special case i(A) = 1 is equivalent
to N = O. In this event, AD is called the group inverse of A and is denoted by A#.

The Drazin inverse is a powerful tool when it comes to studying singular systems of
differential equations, singular systems of difference equations, Markov Chains, see for
instance Campbell [6]. For more on the Drazin inverse and related issues we refer the
reader to the landmark books of Campbell [3, 4].

In this paper we make use of the Drazin inverse to study and obtain the existence of
almost periodic solutions to the singular system of differential differential equation

Au′(t) +Bu(t) = f(t), t ∈ R, (1)

where A,B are (possibly singular) m × m-square matrices with complex entries and
f : R 7→ Cm is C(k)-almost periodic with k = i(A) (Theorem 3.5).

Next, we make use of Theorem 3.5 and its consequences to study and obtain the
existence of almost periodic solutions to some general singular systems of second-order
differential equations (Corollary 3.2).

Our work will be heavily based upon that of Campbell [3, 4] on the existence of
solutions to singular systems of differential equations. In particular, we will consider two
important cases. We first consider the case when AB = BA and N(A) ∩ N(B) = {0}.
The second case which will be a consequence of the first one requires the existence of a
λ ∈ C such that (λA+B)−1 exists.

An important assumption that we will make consists of assuming that ADB (respec-
tively, AD

z Bz) is symmetric, has a spectral decomposition, and that σ(ADB) − {0} 6= ∅
with ℜe λ > 0 for all λ ∈ σ(ADB)−{0}. This assumption excludes in particular the case
when ADB (respectively, AD

z Bz) is nilpotent.
The existence of almost periodic solutions to differential equations is one of the most

attractive topics in qualitative theory of differential equations due to applications [1, 8,
10, 11]. However, to the best of the authors knowledge, the existence of almost periodic
solutions to singular systems of differential equations of the form (1) remains an untreated
question, which is the mean motivation of this paper.

This paper is organized as follows. Section 2 will cover almost periodic and C(n)-
almost periodic functions [10]. Section 3 discusses our main results and its consequences.
Section 4 will be devoted to the case of singular systems of second-order differential
equations. In Section 5, we consider an illustrative example.

2 Almost Periodic and C(l)-Almost Periodic Functions

Most of the material of this section is taken from [1, 8, 10]. Let C(R,Cm) stand for the
collection of continuous functions from R into Cm. Define C(l)(R,Cm) as the collection of
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functions f : R 7→ Cm such that f (k) exists and belongs to C(R,Cm) for k = 0, 1, 2, ..., l.
(The symbol f (k) being the k-derivative of f with f (0) corresponding to the continuity
of the function f .)

Define BC(l)(R,Cm) as the collection of all functions f ∈ C(l)(R,Cm) such that

‖f‖(l) := sup
t∈R

l
∑

k=0

|f (k)(t)| <∞.

Clearly, (BC(l)(R,Cm), ‖ · ‖(l)) is a Banach space.

In this paper, the symbols f (0), ‖ · ‖(0), C(0)(R,Cm), BC(0)(R,Cm), and AP (0)(Cm)
stand respectively for f , ‖ · ‖∞, C(R,Cm), BC(R,Cm), and AP (Cm).

2.1 Almost periodic functions

Definition 2.1 [1, 8] (Bor) A function f ∈ C(R,Cm) is called almost periodic if
for each ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a
number τ with the property that |f(t+ τ) − f(t)| < ε for all t ∈ R. The collection of
those functions is denoted by AP (Cm).

Definition 2.2 [1, 8] (Bochner) A continuous function f : R → Cm is said to be
Bochner almost periodic if for every sequence of real numbers (σ′

n)n∈N has a subsequence
(σn)n∈N such that {f(σn + t)} converges uniformly in t ∈ R.

It is well-known that Definition 2.1 and Definition 2.2 are equivalent (see Cor-
duneanu [8]). In what follows we give another equivalent definition using trigonometric
polynomials.

Basic properties of almost periodic functions include the following:

Theorem 2.1 If f : R → Cm is almost periodic, then f is uniformly continuous in

t ∈ R. Moreover, the range R(f) =
{

f(t) : t ∈ R

}

is precompact in Cm.

Corollary 2.1 Any almost periodic function is bounded on R.

Theorem 2.2 If f, g ∈ AP (Cm) and µ ∈ C, then

(i) µf and f ± g belong to AP (Cm).

(ii) If f, g are C-valued, then fg ∈ AP (C).

(iii) If g ∈ AP (C) and inf
t∈R

|g(t)| = m > 0, then
f

g
∈ AP (Cm).

(iv) If h ∈ L1(C), then (h ∗ f), the convolution between h and f defined by

(h ∗ f)(t) =
∫ +∞

−∞

h(s)f(t− s) ds

belongs to AP (Cm).

Theorem 2.3 The space AP (Cm) equipped with the supnorm ‖ · ‖∞ is a Banach
space.
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2.2 C(n)-almost periodic functions

Definition 2.3 A function f ∈ C(l)(R,Cm) is said to be C(l)-almost periodic if
f (k) ∈ AP (Cm) for k = 0, 1, ..., l. The collection of C(l)-almost periodic functions is
denoted by AP (l)(Cm), which turns out to be a Banach space when equipped with the
norm ‖ · ‖(l).

Clearly, the following inclusions hold

... →֒ AP (l+2)(Cm) →֒ AP (l+1)(Cm) →֒ AP (l)(Cm) →֒ ... →֒ AP (1)(Cm) →֒ AP (Cm).

Theorem 2.4 [10] The space AP (l)(Cm) equipped with the norm
∥

∥ ·
∥

∥

(l)
is a Banach

space.

Theorem 2.5 [10] If f ∈ AP (l)(Cm) and if g ∈ L1(C), then their convolution
f ∗ g ∈ AP (l)(Cm).

Proposition 2.1 [10] If (fn)n∈N ⊂ AP (Cm) converges uniformly to f on R, then
f ∈ AP (Cm).

Theorem 2.6 [10] If f ∈ AP (l)(Cm) such that f (l+1) is uniformly continuous, then
f ∈ AP (l+1)(Cm).

3 Existence of Almost Periodic Solutions

In this paper if C ∈ M(m,C), we then denote the collection of its eigenvalues
λ1, λ2, ..., λm by σ(C).

In this section we first recall some of the results obtained by Campbell [5] on the
existence of solutions to Eq. (1). We then make extensive use of those results to study
the existence of almost periodic solutions to Eq. (1) in the case when f ∈ AP (k)(Cm).
We next use the results for Eq. (1) to study the existence of almost periodic solutions to
some general singular second-order differential equations formulated through Eq. (10).

It is well-known that real symmetric matrices can be diagonalized. That is not always
the case for complex symmetric matrices [9].

Definition 3.1 A symmetric matrix C ∈ M(m,C) with r distinct eigenvalues λj is
said to have a spectral decomposition if there exist matrices Pj for j = 1, 2, ..., r such
that

C =

r
∑

j=1

λjPj =

r
∑

j=1,λj 6=0

λjPj , (2)

where PiPj = 0 if i 6= j, and P 2
j = Pj for all i, j = 1, ..., r, and I =

r
∑

j=1

Pj .

This setting requires the following assumptions: let f , A,B ∈ M(m,C) satisfy the
following assumptions:

(H.1) AB = BA.

(H.2) N(A) ∩N(B) = {0}.
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(H.3) f ∈ AP (k)(Cm) where k = i(A).

(H.4) σ∗(ADB) := σ(ADB)− {0} 6= ∅ with ℜeλ > 0 for all λ ∈ σ∗(ADB).

(H.5) ADB is symmetric and has a spectral decomposition.

Remark 3.1 The case when A is non-singular will not be considered here as this is
well-understood. Indeed, if A−1 exists, then Eq. (1) can be written as follows

u′ +B1u = f1, (3)

where B1 = A−1B, and f1 = A−1f .

In the rest of the paper, we associate with Eq. (1), its homogeneous equation given
by

Au′ +Bu = 0. (4)

Theorem 3.1 [5] Under assumption (H.1), u = e−ADBtAADξ is a solution to Eq.
(4) where ξ is an arbitrary vector in Cm.

Proof. Indeed, Au′ = −AADBe−ADBtAADξ = −Be−ADBtAADξ = −Bu. The proof
is complete.

Corollary 3.1 [5] If assumption (H.1) holds and if ADAf = f , then

u = e−ADBt

∫

e−ADBtf(t) dt

is a particular solution to Eq. (1).

Lemma 3.1 [5] If assumptions (H.1)–(H.2) hold, then (I−AAD)BBD = (I−AAD).

Theorem 3.2 [5] If assumptions (H.1)–(H.2) hold, then u = e−ADBtAADξ where
ξ ∈ Cm, is the general solution to Eq. (4).

Theorem 3.3 [5] Suppose (H.1)–(H.2) hold and let k = Ind(A). If f is of class Ck

and Cm-valued, then Eq. (1) is consistent and a particular solution of it is given

u = ADe−ADBt

∫ t

a

eA
DBsf(s) ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l),

where a ∈ R is arbitrary.

Theorem 3.4 [5] Suppose (H.1)–(H.2) hold and let k = Ind(A). If f is of class Ck

and C
m-valued, then the general solution to Eq. (1) is explicitly given by

u = e−ADBtADAξ +ADe−ADBt

∫ t

a

eA
DBsf(s) ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l),

where ξ is arbitrary constant vector, and a ∈ R is arbitrary.



6 M. ARIENMUGHARE AND T. DIAGANA

Lemma 3.2 If C ∈ M(n,C) is symmetric, has a spectral decomposition, and
σ∗(C) 6= ∅ with ℜeλ > 0 for all λ ∈ σ∗(C), then there exist M > 0 and ω > 0 such that

‖e−tC‖ ≤Me−ωt

for t ≥ 0.

Proof. Using Definition 3.1, one can write C =

r
∑

j=1

λjPj =

r
∑

j=1, λj 6=0

λjPj and hence

e−tC =

r
∑

j=1, λj∈σ∗(C)

e−λjtPj , t ≥ 0.

Now

‖e−tC‖ = ‖
r

∑

j=1, λj∈σ∗(C)

e−λjtPj‖ ≤
r

∑

j=1, λj∈σ∗(C)

e−ℜe λjt‖Pj‖

≤
r

∑

j=1, λj∈σ∗(C)

e−ωt‖Pj‖ ≤Me−ωt

for t ≥ 0, where ω = min{ℜeλj : λj 6= 0, j = 1, 2, ..., r} and M =
∑r

j=1 ‖Pj‖ <∞.

Lemma 3.3 Suppose (H.1)–(H.2) hold. Then all the solutions to Eq. (4) on the real
number line R are of the form

w0(t) = e−ADB(t−s)w0(s) for all t, s ∈ R, t ≥ s. (5)

Proof. Let w be an arbitrary solution to Eq. (4). Now from Theorem 3.2, it follows

that the solution w can be written as w(t) = e−ADBtAADξ where ξ ∈ Cn is an arbitrary

vector. Similarly, w(s) = e−ADBsAADξ. Thus for t ≥ s,

e−ADB(t−s)w(s) = e−ADB(t−s)e−ADBsAADξ = e−ADBtAADξ = w(t).

Theorem 3.5 Under assumptions (H.1)–(H.2)–(H.3)–(H.4)–(H.5), Eq. (1) has a
unique almost periodic solution which is explicitly given by

u0(t) = AD

∫ t

−∞

e−ADB(t−s)f(s)ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t) (6)

for all t ∈ R.

Proof. We first show that the function u0 given by

u0(t) = AD

∫ t

−∞

e−ADB(t−s)f(s)ds+ (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t), t ∈ R,
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is a solution to Eq. (1). Indeed,

Au′0(t) = −AADADB

∫ t

−∞

e−ADB(t−s)f(s)ds+AADe−ADBteA
DBtf(t)

+ A(I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l+1)(t)

= −AADADB

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)
k−1
∑

l=0

(−1)l(ABD)l+1f (l+1)(t)

= −B(ADAAD)

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)[

k−2
∑

l=0

(−1)l(ABD)l+1f (l+1)(t) + (−1)k−1(ABD)k−1+1f (k−1+1)(t)]

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

+ (I −AAD)[

k−2
∑

l=0

(−1)l(ABD)l+1f (l+1)(t) + 0]

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds+AADf(t)

− (I −AAD)

k−2
∑

l=0

(−1)l+1(ABD)l+1f (l+1)(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

j=1

(−1)j(ABD)jf (j)(t) +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)[

k−1
∑

j=0

(−1)j(ABD)jf (j)(t)− f(t)] +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

j=0

(−1)j(ABD)jf (j)(t) + (I −AAD)f(t) +AADf(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lf (l)(t) + f(t)

(7)
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= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABDBBD)lf (l)(t) + f(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)l(BBD)lf (j)(t) + f(t)

= −BAD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)
k−1
∑

l=0

(−1)l(ABD)l(BBD)f (l)(t) + f(t)

= −B[AD

∫ t

−∞

e−ADB(t−s)f(s)ds

− (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)] + f(t) = −Bu0(t) + f(t),

and hence u0(t) is a solution to Eq. (1).
We next show that u0 given above is bounded. Indeed, since by assumption Reλ > 0

for all λ ∈ σ(ADB) − {0}, then using Lemma 3.2 it follows that there exist M > 0 and
ω > 0 such that

‖e−tADB‖ ≤Me−ωt, t ≥ 0.

First of all, note that

∣

∣

∣

∣

∣

(I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)

∣

∣

∣

∣

∣

≤
(

1 + ‖AAD‖
)

‖f‖(k)
k−1
∑

l=0

‖ABD‖l‖BD‖ <∞,

where ‖f‖(k) = sup
t∈R

k
∑

l=0

|f (l)(t)| <∞ as f ∈ AP (k)(Cm). Similarly,

∣

∣

∣

∣

AD

∫ t

−∞

e−ADB(t−s)f(s)ds

∣

∣

∣

∣

≤ ||AD||
∫ t

−∞

||e−ADB(t−s)|| · |f(s)|ds

≤ ||AD|| · ||f ||∞
∫ t

−∞

Me−ω(t−s)ds

= M ||AD|| · ||f ||∞ω−1 <∞

and hence u0 ∈ BC(R,Cm).
The next step consists of showing that the function u0 given above is the unique

(bounded) solution to Eq. (1). Indeed, suppose u1, u2 ∈ BC(R,Cm) are two solutions
to Eq. (1). Thus w = u1 − u2 ∈ BC(R,Cm) is a solution to Eq. (4). Using Lemma 3.3

it follows that w(t) = e−ADB(t−s)w(s) for t ≥ s.
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Now

|w(t)| = |e−ADB(t−s)w(s)|
≤ Me−ω(t−s) · |w(s)|
≤ Me−ω(t−s) · ‖w‖∞ for all t ≥ s.

Now let (sl)l∈N be a sequence of real numbers such that sl → −∞ as l → ∞. Clearly,
for any fixed t ∈ R, there exists a subsequence (slp)p∈N of (sl)l∈N such that slp < t for
all p ∈ N. In view of the above, letting p → ∞ yields w(t) = 0 for all t ∈ R. Therefore,
u1 = u2.

We next show that the function u0 given above is almost periodic. Indeed, since
f ∈ AP (k)(Cm) and all the operators involved in the sum

ϕ(t) := (I −AAD)

k−1
∑

l=0

(−1)l(ABD)lBDf (l)(t)

are matrices (hence are bounded linear operators), it follows that t 7→ ϕ(t) ∈
AP (k)(Cn) ⊂ AP (Cm).

Now since f ∈ AP (Cm), it follows that for all ε > 0 there exists l(ε) > 0 such that
every interval of length l(ε) > 0 contains a τ with the property

|f(t+ τ)− f(t)| ≤ εω

M‖AD‖
for all t ∈ R.

Now setting ψ(t) := AD

∫ t

−∞

e−ADB(t−s)f(s)ds it follows that

|ψ(t+ τ)− ψ(t)| ≤ ‖AD‖ · |
∫ t+τ

−∞

e−ADB(t+τ−s)f(s)ds−
∫ t

−∞

e−ADB(t−s)f(s)ds|

= ‖AD‖ · |
∫ t

−∞

e−ADB(t−s) (f(s+ τ)− f(s)) ds|

≤ ‖AD‖ · εω

M‖AD‖

∫ t

−∞

‖e−ADB(t−s)‖ds

≤ εω

M
M

∫ t

−∞

e−ω(t−s)ds

= ε

and hence ψ ∈ AP (Cm) which yields u0 = ϕ+ ψ ∈ AP (Cm).

We now consider the case when A and B may or may not commute. Moreover, both
A and B can be taken nonsingular. In what follows, we set

ρA,B = {λ ∈ C : (λA+B)−1 exists}.
If λ ∈ ρA,B, we also set

Aλ = (λA+B)−1A, Bλ = (λA +B)−1B, and fλ = (λA+B)−1f.

Consider

Azu
′ +Bzu = fz, t ∈ R. (8)
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Corollary 3.2 Suppose ρA,B 6= ∅. Let z ∈ ρA,B such that AD
z Bz is symmetric, has

a spectral decomposition, σ∗(AD
z Bz) 6= ∅ with Reλ > 0 for all λ ∈ σ∗(AD

z Bz). Moreover,
we suppose that f ∈ AP (k)(Cm) with i(Az) = k. Then Eq. (8) has a unique almost
periodic solution which is explicitly given by

uz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)fz(s)ds+ (I −AzA

D
z )

k−1
∑

l=0

(−1)l(AzB
D
z )lBD

z f
(l)
z (t) (9)

for all t ∈ R.
Therefore, Eq. (1) has a unique almost periodic solution.

Proof. Since ρA,B 6= ∅, suppose ρA,B contains a z ∈ C. To complete the proof we
have to show that Eq. (8) has a unique almost periodic solution. For that, we have to
show that assumptions (H.1)–(H.2)—(H.3) are fulfilled when A is replaced with Az , B
with Bz, and f with fz.

Let us first show that Az and Bz commute. This is based upon the fact zAz+Bz = I,

which yields Bz = I − zAz.
Now

AzBz = Az(I − zAz) = Az − zA2
z and BzAz = (I − zAz)Az = Az − zA2

z.

We next show that N(Az) ∩N(Bz) = {0}. First of all, note that

N(Az) ∩N(Bz) = N(A) ∩N(B).

Now, if u ∈ N(A)∩N(B), then (zA+B)u = 0, which yields (zA+B)−1(zA+B)u =
u = 0. Therefore, N(A) ∩N(B) = {0}.

Since f ∈ AP (k)(Cm), it easy follows that fz ∈ AP (k)(Cm).

To complete the proof it suffices to apply Theorem 3.5 to the case when A replaced
by Az, B with Bz, and f with fz. Doing so yields the existence and uniqueness of an
almost periodic solution to Eq. (8), which is explicitly given by

uz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)fz(s)ds+(I−AzA

D
z )

k−1
∑

m=0

(−1)m(AzB
D
z )mBD

z f
(m)
z (t), t ∈ R.

Therefore, Eq. (1) has a unique almost periodic solution.

4 Second-Order Singular Differential Equations

In this Section we study and obtain the existence of almost periodic solutions to the
singular system of second-order differential differential equations given by

Au′′(t) +Bu′(t) + Cu(t) = f(t), t ∈ R, (10)

where A,B,C (possibly singular) are m ×m-square matrices with complex entries and
f : R 7→ C

m is C(k)-almost periodic with k = i(A). For that, our strategy consists of
following the work of Campbell [3, p. 161] and rewriting Eq. (10) as a first-order singular
differential equation and making extensive use of the results of the previous Section to
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establish the existence and uniqueness of an almost periodic solution to Eq. (10). Indeed,
assuming that u : R 7→ Cm is twice differentiable and setting

w :=
( u

u′

)

,

then Eq. (10) can be rewritten on Cm × Cm in the following form

Aw′(t) + Bw = F(t), t ∈ R, (11)

where A, B, and F are defined by

A =

(

B A

I 0

)

, B =

(

C O

O −I

)

, and F =

(

f

O

)

.

Let ρA,B = {λ ∈ C : (λA+ B)−1 exists}. If λ ∈ ρA,B, we then set

Aλ = (λA + B)−1A, Bλ = (λA + B)−1B, and Fλ = (λA+ B)−1F .

Consider

Azw
′ + Bzw = Fz, t ∈ R. (12)

Corollary 4.1 Suppose ρA,B 6= ∅. Let z ∈ ρA,B such that AD
z Bz is symmetric, has

a spectral decomposition, and σ∗(AD
z Bz) 6= ∅ such that Reλ > 0 for all λ ∈ σ∗(AD

z Bz).
Moreover, we suppose F ∈ AP (k)(Cm ×Cm) with k = i(A). Then Eq. (12) has a unique
almost periodic solution which is explicitly given by

wz(t) = AD
z

∫ t

−∞

e−AD
z Bz(t−s)Fz(s)ds+ (I −AzAD

z )

k−1
∑

l=0

(−1)l(AzBD
z )lBD

z F (l)
z (t) (13)

for all t ∈ R.
Therefore, Eq. (10) has a unique almost periodic solution u. Moreover, since u, u′ ∈

AP (Cm), it follows that u ∈ AP (1)(Cm).

The proof of Corollary 4.1 follows along the same lines as that of Corollary 3.2 and
hence is omitted.

5 Example

In this section we give an example to illustrate Theorem 3.5. For that, let m = 3 and fix
α, β, γ ∈ C such that ℜe α > 0, ℜe β > 0, and ℜe γ > 0.

Consider the singular system of differential equations given by











αu′(t) + βv′(t) + αu(t) + βv(t) = sin t+ i sin
√
2t,

αv′(t) + αv(t) = cos t+ i cosπt,

γw(t) = cos t+ i sin
√
3t,

(14)

for all t ∈ R.
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Clearly the matrices A,B ∈M(3,C) and f : R 7→ C3 associated with the system Eq.
(14) are given by

A =





α β 0
0 α 0
0 0 0



 , B =





α β 0
0 α 0
0 0 γ



 , and f(t) =





sin t+ i sin
√
2t

cos t+ i cosπt

cos t+ i sin
√
3t



 .

Moreover, assumptions (H.1)–(H.2), (H.4)–(H.5) hold as

AD =





1
α

− β
α2 0

0 1
α

0
0 0 0



 , and ADB =





1 0 0
0 1 0
0 0 0



 is symmetric with σ∗(ADB) = {1}.

Furthermore, i(A) = 1 and f ∈ AP (1)(C3). Therefore, from Theorem 3.5 the singular
system of first-order differential equation

Az′(t) +Bz(t) = f(t), t ∈ R,

has a unique almost periodic solution, that is,

zα,β,γ(t) =





u(t)
v(t)
w(t)



 ∈ AP (C3).
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