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PERSONAGE IN SCIENCE

Professor Theodore A. Burton

J.H. Dshalalow 1∗ and A.A. Martynyuk 2

1 Department of Applied Mathematics Florida Institute of Technology,

Melbourne, Fl, 32901, USA
2 S.P. Timoshenko Institute of Mechanics, National Academy of Science of Ukraine,

Nesterov Str. 3, Kiev, 03057, Ukraine

1 Brief outline of T.A. Burton’s life

T. A. Burton (denoted by T. A. throughout this paper) was born on September 7,
1935 on a farm in Kansas, the fifth child of seven in the family. It was a peak of the
Great Depression and when the dust storms wrecked havoc on the Mid-Western United
States. Entire buildings were buried in the dust. The economy was so poor that farmers
turned their livestock loose and left the area. At the age of five, T. A. and his family
moved to Idaho, then to California, and finally to the Cascade Mountains of the state of
Washington where he completed an elementary and high school.

On the day he graduated from high school he was drafted into the army for two years,
emerging with veteran’s rights to a college education. In 1959 he graduated from the
Washington State College with a Bachelor of Science with Honors. His record earned
him a full fellowship for three years of study toward a Ph.D. in mathematics. On August
5, 1961 he married the love of his life, Fredda Jean Anderson.

His graduate work began in 1959 under the direction of the late Donald W. Bushaw.
Bushaw was a student of Solomon Lefschetz and his dissertation concerned the first paper
on optimal control. But Lefschetz was also deeply interested in differential equations of
various Liénard types and Bushaw inherited that interest, assigning to T. A. a problem on
global stability of a nonlinear oscillator. There was much literature on the problem and
its generalizations. Lefschetz gathered a number of outstanding foreign and American
researchers to study the problem, whose most important aspects were well-defined. The
problem was old, going back to Lagrange, and it is taught to every student in a basic
course on differential equations.

We consider a number of physical problems, such as a spring-mass-dashpot system,
and use Newton’s second law of motion under numerous assumptions to obtain the equa-
tion of motion

x′′ + ax′ + bx = 0

∗ Corresponding author: mailto:edshalalow@cfl.rr.com

c© 2012 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua325
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326 J.H. DSHALALOW AND A.A. MARTYNYUK

with a and b being positive constants. It is obvious that all solutions and their derivatives
tend to zero as t tends to infinity. Taking into account an ample amount of significant
real-world problems it stands to reason that a and b must be replaced with general
functions to obtain a solution which incorporates a more realistic behavior with many
uncertainties. The problem proposed to T. A. in his MA thesis in mathematics was to
replace the above linear problem with

x′′ + f(x)x′ + g(x) = 0,

where f(x) is a positive function and g(x) is a continuous odd function. His thesis ulti-
mately led to the first necessary and sufficient condition for global asymptotic stability.
The result also held when f(x) was replaced with f(x)h(x′) where h was also positive.
These results have been generalized ever since, but the original ones are still widely
quoted.

[1] Burton, T. A. The generalized Liénard equation. J. SIAM on Control 5 (1965) 223–230.

[2] Burton, T. A. On the equation x′′ + f(x)h(x′)x′ + g(x) = e(t). Annali di Math. Pura

Appl. LXXXV (1970) 277–286.

The problem had also brought to its attention a large group of Chinese mathemati-
cians, including Qichang Huang who later became a university president where he used
his position to promote research and collaboration with foreign mathematicians around
the world. In 1965, just before [1] appeared, Mao Zedong started the Cultural Revolution
which sent scholars to farms, steel mills, and other places of hard labor. Huang was sent
to a rural village, given a cow, and sent to the mountains using the cow to drag firewood
down to the village. Nevertheless, he continued to work on this same problem during the
night times and when the Cultural Revolution ended in the early 1980’s he returned to
his university and got across Burton’s paper [1] which he presented in a conference to his
fellows mathematicians who were working on the same problem. As a result, Huang was
paid a two-years visit to work with T. A. It was the beginning of a cultural and scientific
exchange which is still active.

The three year fellowship for graduate study given to T. A. came to an end one year
before he was supposed to graduate. To support his fourth year of the graduate study,
T.A. took part in a national competition to earn a full scholarship. This was a successful
endeavor and T.A. was awarded for his final year followed by his PhD thesis defense in
1964. In the same year he accepted an academic position at the University of Alberta,
Edmonton, Canada.

Due to the Russian satellite, Sputnik, American universities were awakening and gear-
ing up for graduate study in all areas of science. Under the leadership of Delyte Morris,
a little known university (Southern Illinois University at Carbondale) in Illinois received
massive funding for graduate programs. T. A. joined the influx of young professors tak-
ing positions there. The opportunities were great and he attracted 13 doctoral students,
all of whom succeeded as university professors. To this day he asserts that his main
achievement was to guide his doctoral students. All of them were established in areas of
mathematics with a future.

Much of his work was international. He was twice a Fulbright senior scholar to
Eastern Europe at the University of Szeged, Hungary and at the Technical University of
Budapest, once as senior lecturer and once as senior researcher. He had brief research
appointments at the University of Florence and the University of Madrid. He was a
plenary lecturer at conferences in Europe and Asia almost every year since 1984.

T. A. retired from teaching in 1998, moved to the state of Washington, and spent
the last 14 years with the Northwest Research Institute (732 Caroline St., Port Angeles,
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WA, taburton at olypen.com) conducting research, writing, and lecturing at conferences.
He returned to teaching for one semester at the University of Memphis in 2009, offering
a graduate course on his book on Liapunov functionals for integral equations. In the
summer of 2012 he delivered a plenary lecture at the Conference on Differential and
Difference Equations and Applications 2012 in Terchova, Slovakia, a keynote talk at
the 10th International Conference on Fixed Point Theory and its Applications in Cluj-
Napoca, Romania, and a plenary talk at the 8th International Conference on Differential
Equations and Dynamical Systems at the University of Waterloo, Ontario, Canada.

2 Basic Trends of His Scientific Work

Periodicity and Oscillation

In 1944, N. Levinson studied the equation x′′ + f(x, x′)x′ + g(x) = e(t) under con-
ditions similar to those in [1] and with e(t) periodic. Patterned after the behavior of
the constant coefficient analog, he focused on the behavior of solutions of the system
form when all solutions entered and remained in a bounded region. It was behavior later
named uniform ultimate boundedness. He used a translation argument and Brouwer’s
fixed point theorem to get a periodic solution. Conditions showing this boundedness were
widely sought. Exactly 20 years later, the year T. A. received the Ph.D., G. Sansone and
R. Conti published an English version of a 533 page monograph studying such problems,
their applications, generalizations, and history. In collaboration with C. G. Townsend,
T. A. advanced the necessary and sufficient conditions for global stability of the unforced
equation [1] to boundedness and periodicity of solutions of the forced equation under
similar conditions. That work appeared as

[3] Burton, T. A. and Townsend, C. G. On the generalized Liénard equation with forcing
function. J. Differential Equations 4 (1968) 620–633.

[4] Burton, T. A. and Townsend, C. G. Stability regions of the forced Liénard equation. J.

London Math. Soc. (2) 3 (1971) 393–402.

It is to be remembered that all of this was in an effort to show that the behavior
of solutions of the nonlinear equation was very similar to the behavior of the solutions
of the linear constant coefficient equation. The results established clear boundaries for
which nonlinear problems would have solutions like the linear problems. The problems
are still vigorously studied under increasingly more general assumptions.

This is not to be confused with the problem encountered when the damping, f(x, y),
changes sign, a problem which one of T. A.’s doctoral students, John Graef, solved in a
similar way in his doctoral dissertation obtaining necessary and sufficient conditions.

The study of periodicity led to the study of oscillation theory, as well as an introduc-
tion to functional differential equations. There was then a line of joint papers with R.
Grimmer a typical of which was Burton, T. and Grimmer [5]:

[5] Burton, T. and Grimmer, R. Oscillation, continuation, and uniqueness of solutions of

retarded differential equations. Trans. Amer. Math. Soc. 179 (1973) 193–209. (Correction

187 (1974) 429).

Uniform Asymptotic Stability

At the time T. A. began his work, one of the challenging questions on stability theory
by Liapunov’s direct method from 1950 to 1992 was to prove or give a counterexample to
the following conjecture. Briefly, we have a functional differential equation with bounded



328 J.H. DSHALALOW AND A.A. MARTYNYUK

delay denoted by x′ = f(t, xt), xt(s) = x(t+s) for −r ≤ s ≤ 0. We denote by CH the H-
ball in the function space of all continuous functions on [−r, 0] into ℜn. The supremum
norm is denoted by ‖ · ‖ and continuous increasing functions are denoted by Wi where
Wi(0) = 0.

Conjecture 2.1 If there are a continuous and locally Lipschitz functional V : [0,∞)×
CH → [0,∞) and functions Wi with (i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) and (ii)
V ′(t, φ) ≤ −W3(|φ(0)|), then the zero solution is uniformly asymptotically stable.

A counterexample was given by Geza Makay in 1991 and a more complete one by
Junji Kato in 1992, exactly 100 years after the publication of Liapunov’s famous work.
Details and a history on these are found in [7], pp. 264–293. The conjecture is on p.
269. But something close to it is true. In the 1950’s Krasovskii had noted that in most
applications the function W2 was actually replaced by something a bit more severe:
V (t, φ) ≤ W4(φ(0)| + W5(|||φ|||), where ||| · ||| is the L2-norm on φ : [−r, 0] → ℜn. He
had obtained an asymptotic stability conclusion under the additional assumption that
f(t, xt) is bounded for xt bounded, the old condition of Marachkoff from 1942.

In 1978, T. A. proved that Krasovskii’s result was true without the Marachkoff con-
dition and that the conclusion is actually uniform asymptotic stability, just as in the
original conjecture.

Paper [6] introduced the idea of playing W3 against W2 which proved to be very
successful in many problems.

[6] Burton, T. A. Uniform asymptotic stability in functional differential equations. Proc.

Amer. Math. Soc. 68 (1978) 195–199.

It opened a way to further results, particularly by Laszlo Hatvani, Tingxiu Wang, and
Bo Zhang. A summary is found on pp. 264-293 of:

[7] Burton, T. A. Volterra Integral and Differential Equations, Second Edition. Elsevier,

Amsterdam, 2005.

It is an interesting and important problem. However, the counterexamples and the
subsequent advances of Hatvani, Wang, and Zhang show that this old conjecture on
which so many investigators had worked for so long was very nearly true.

Stability in Functional Differential Equations

His next main project involved Liapunov functional methods for functional differential
equations with emphasis on integrodifferential equations. The foundation was laid in five
main papers:

[8] Burton, T. A. Stability theory for Volterra equations. J. Differential Equations 32 (1979)
101–118.

[9] Burton, T. A. Stability theory for functional differential equations. Trans. Amer. Math.

Soc. 255 (1979) 263–275.
[10] Burton, T. A. Stability theory for delay equations. Funkcialaj Ekvacioj 22 (1979)

67–76.
[11] Burton, T. A. and Mahfoud, W. E. Stability criteria for Volterra equations. Trans.

Amer. Math. Soc. 279 (1983) 143–174.

[12] Burton, T. A. and Hatvani, L. Stability theorems for nonautonomous functional differ-

ential equations by Liapunov functionals. Tohoku Math. J. 41 (1989) 65–104.

A unified treatment of existing theory through 1983 is found in
[13] Burton, T. A. Volterra Integral and Differential Equations. Academic Press, Orlando,

1983,

which was updated in a second edition [7].
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Fixed Point Theory I

The work on stability of integrodifferential equations led naturally to questions of peri-
odic solutions of Volterra integrodifferential equations with infinite delay. This presented
special problems in fixed point theory concerning the ”sandwich” theorems, asymptotic
fixed point theorems, and compactness. Everything depended on two things. There was
the need to establish conditions under which solutions are uniformly ultimately bounded
and this was done with Liapunov theory. But the translation arguments given by N.
Levinson so long ago had no chance of holding for these problems. Everything depended
on the study of spaces having unbounded compact sets. It was an interesting study
and investigators were constantly on new ground. In such an unexpected way, exactly
the same problems occur when we study fractional differential equations. These are
developed in [33].

One can trace the evolution of those questions and solutions through the papers:
[14] Burton, T. A. Periodic solutions of nonlinear Volterra equations. Funkcialaj Ekjvacioj

27 (1984) 301–317.
[15] Burton, T. A. Periodic solutions of integrodifferential equations. Proc. London Math.

Soc. 31 (1985) 537–548.

[16] Arino, O. A., Burton, T. A., and Haddock, J. R. Periodic solutions of functional

differential equations. Roy. Soc. Edinburgh Proc. A. 101A (1985) 253–271.

All of this was integrated into the existing theory and appeared in:
[17] Burton, T. A. Stability and Periodic Solutions of Ordinary and Functional Differential

Equations. Academic Press, Orlando, 1985; reprinted by Dover, Mineola, New York, 2005.

But a much more final disposition appeared later in:
[18] Burton, T. A. and Zhang, Bo. Uniform ultimate boundedness and periodicity in func-

tional differential equations. Tohoku Math. J. 42 (1990) 93–100.

Liapunov Functionals for Integral Equations I

The work on stability and periodic solutions of integrodifferential equations provided
a background and insights to attack the old problem of constructing Liapunov functionals
for integral equations. The direct method of Liapunov had been applied very successfully
for ordinary, functional, and partial differential equations, as well as related areas such
as control theory. In all of these problems, the elementary technique of uniting the
Liapunov functional with the differential equation was achieved by means of the chain
rule, extended in a reasonable way to non-elementary cases. If an integral equation could
be differentiated to obtain an integrodifferential equation, then the direct method could
be readily applied. In 1992, exactly 100 years after Liapunov’s famous paper, T. A.
constructed the first successful Liapunov functionals for integral equations and united
them in a simple way to the integral equation. The work was presented at the centennial
celebration of Liapunov’s paper held in Tampa, Florida and sponsored by one of the great
investigators of the direct method, V. Laksmikantham, and the International Federation
of Nonlinear Analysts. It appeared in the conference proceedings:

[19] Burton, T. A. Examples of Lyapunov functionals for non-differentiated equations. Proc.

First World Congress Nonlinear Analysts, 1992. V. Lakshmikantham, ed. Walter de Gruyter

publisher, 1996, New York. pp. 1203–1214.

He was joined the next year by a former doctoral student of Taro Yoshizawa, Tetsuo
Furumochi, from Shimane University in Matsue, Japan who came with his family to
Southern Illinois University for ten months to develop the theory. A substantial number
of papers resulted from the study including:
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[20] Burton, T. A. and Furumochi, Tetsuo. Periodic solutions of a Volterra equation and
robustness. Nonlinear Analysis 25 (1995) 1199–1219.

[21] Burton, T. A. and Furumochi, Tetsuo. Stability theory for integral equations. J.

Integral Equations and Applications 6 (1994) 445–477.

The work progressed and a preliminary book was printed for use in a graduate course
which he taught at the University of Memphis, Tennessee in the spring of 2009. A pdf
file of the preliminary book can be downloaded free of charge at T. A.’s web page, Item
91: http://www.math.siu.edu/burton/papers.htm.

[22] Burton, T. A. Liapunov Functionals for Integral Equations.

The work was preliminary because the method only worked for continuous kernels
which was certainly a step up from the earlier requirement that the integral equation be
differentiable. It failed to cover so many important real-world problems such as those
represented by fractional differential equations with kernel (t − s)q−1 for 0 < q < 1,
including many forms of heat equations with q = 1/2. Much of the work involved a
careful strategy and that is developed in:

[23] Burton, T. A. Liapunov functionals, convex kernels, and strategy. Nonlinear Dynamics

and Systems Theory 10 (2010) 325–337.

We will return to a conclusion later.

Fixed Point Theory II

Sixty years ago Krasnoselskii studied an old paper by Schauder on elliptic partial differen-
tial equations and formulated a principle which we formalize as Krasnoselskii’s Hypoth-
esis. The inversion of a perturbed differential operator yields the sum of a contraction
and a compact map. Accordingly, he formulated a fixed point theorem which was a
combination of the contraction mapping principle and Schauder’s fixed point theorem.
In recent years the idea emerged that Krasnoselskii was advancing an idea which could
unify the broad and disconnected area of differential equations. In the mid 1990s T. A.
began a study of Krasnoselskii’s theorem with a view to discovering the unification. The
first result was

[24] Burton, T. A. Integral equations, implicit functions, and fixed points. Proc. Amer.

Math. Soc. 124 (1996) 2383–2390.

That paper introduced the idea of a large contraction which has proved useful in trans-
forming totally nonlinear differential equations into integral equations. It has played a
major role in fractional differential equations, as may be seen in [35], below. Krasnosel-
skii’s theorem had a condition which was very difficult to meet. The next three papers
circumvented that problem.

[25] Burton, T. A. and Kirk, Colleen. A fixed point theorem of Krasnosel’skii-Schaefer type.
Mathematische Nachrichten 189 (1998) 23–31.

[26] Burton, T. A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11 (1998)
85–88.

[27] Burton, T. A. Krasnoselskii’s inversion principle and fixed points. Nonlinear Analysis

30 (1997) 3975–3986.

With this background and in collaboration with Tetsuo Furumochi and Bo Zhang
a comprehensive theory of stability by fixed point methods was developed. There were
two main advantages over the Liapunov theory. First, with the fixed point theory the
conditions were averages, while Liapunov theory was usually point-wise. Next, the con-
struction of a Liapunov function was replaced by the usually simpler fixed point mapping.
The first comprehensive paper on the subject with many examples was
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[28] Burton, T. A. and Furumochi, Tetsuo. Fixed points and problems in stability theory.

Dynamical Systems and Applications 10 (2001) 89–116.

Five years later the papers were collected, the techniques compared with Liapunov
theory, and published in:

[29] Burton, T. A. Stability by Fixed Point Theory for Functional Differential Equations.

Dover, Mineola, New York, 2006.

It had been clearly established that much stability theory of functional differential
equations could be established from Krasnoselskii’s theory. There was, however, a major
problem. The unification which was promised by his theory was entirely missing. In
an interesting way, that unification was achieved when the efforts returned to Liapunov
theory for integral equations. Thus, the next topic offers the foundation for both the
fixed point problem and the quest for Liapunov functionals for integral equations with
singular kernels.

Liapunov Theory for Integral Equations II

In 2010 Liapunov theory was advanced to integral equations with singular kernels
and, in particular, to fractional differential equations in the papers:

[30] Burton, T. A. A Liapunov functional for a singular integral equation. Nonlinear Anal-

ysis 73 (2010) 3873–3882.
[31] Burton, T. A. Fractional differential equations and Lyapunov functionals. Nonlinear

Analysis 74 (2011) 5648–5662.

[32] Becker, L. C., Burton, T. A., and Purnaras, I. K., Singular integral equations, Liapunov

functionals, and resolvents. Nonlinear Analysis 75 (2012) 3277–3291.

In the second paper the fractional differential equation was inverted to an integral
equation which was then transformed into an integral equation with completely monotone
kernel, R(t− s), with the property that 0 < R(t) ≤ tq−1 and

∫
∞

0

R(s)ds = 1.

That last property yielded an integral equation defining a natural mapping that was
very fixed point friendly and yielded a number of papers showing qualitative properties
of solutions, culminating in:

[33] Burton, T. A. and Zhang, Bo. Fractional equations and generalizations of Schauder’s

and Krasnoselskii’s fixed point theorems. Nonlinear Analysis 75 (2012) 6485–6495.

With that, the basic Liapunov theory and its relation to fixed point theory seemed
to have been laid and a preliminary book was completed and is available on amazon.com
in the United States, Europe, and the United Kingdom as:

[34] Burton, T. A. Liapunov Theory for Integral Equations with Singular Kernels and Frac-

tional Differential Equations (2012), Amazon.co.uk, 379 pages.

In 2009, T.A. participated in a conference at the N. N. Krasovskii Institute of Math-
ematics and Mechanics in Ekaterinburg, Russia where he presented a basic work on
Liapunov theory for integral equations. As a result of that association a manuscript is
being translated into the Russian language by Prof. Sergey I. Kumkov. An editing of
the translation will be performed by Prof. Nikolay Yurievich Lukoyanov. The transla-
tion is to be published by the Autonomous Nonprofit Organization, Izhevsk Institute of
Computer Science, Universitetskaya, I, Izhevsk, 426034 Russia.
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Fixed Point Theory III

The mapping equation derived in the inversion of the fractional differential equation
concerning the new kernel R(t) has proved to be a unifying concept. At the present
time scalar fractional differential equations, functional differential equations, and neutral
equations are all treated in a unified way using that mapping. It is an intriguing evidence
that Krasnoselskii had a very fruitful and general idea. Pursuing that has now become
the main project. Paper [35] gives all the details of the transformations, shows the fixed
points methods, and illustrates the use of large contractions and the paper [36] employs
very different fixed point techniques.

[35] Burton, T. A. and Zhang, Bo. Fixed points and fractional differential equations: Ex-
amples. Fixed Point Theory, in press.

[36] Burton, T. A. and Zhang, Bo. Lp-solutions of fractional differential equations. Nonlin-

ear Studies 19 (2) (2012) 161–177.

3 T.A.’s Doctoral Students and Dissertation Titles

John Graef, Relaxation and Forced Oscillations in a Second Order Nonlinear Differential Equa-

tion, 1970;
John Haddock, Some Refinements of Liapunov’s Direct Method, 1970;
John Erhart, Lyapunov Theory and Perturbations of Differential Equations, 1970;
Alfredo Somolinos, On the Problem of Lurie and its Generalizations, 1974;
Wadi Mahfoud, Oscillation, Asymptotic Behavior, and Noncontinuation of Solutions of nth

Order Nonlinear Delay Differential Equations, 1975;
Leigh Becker, Stability Considerations for Volterra Integrodifferential Equations, 1979;
Muhammed Islam, Periodic Solutions of Volterra Integral Equations, 1985;
Shou Wang, Stability and Boundedness in Ordinary and Functional Differential Equations, 1987;
Roger Hering, Boundedness and Stability in Functional Differential Equations, 1988;
Tingxiu Wang, On Uniform Asymptotic Stability of the zero Solution of Functional Differential

Equations, 1991;
Bo Zhang, Periodic Solutions of Nonlinear Abstract Differential Equations with Infinite Delay,
1991;
David Dwiggins, Fixed Point Theory and Periodic Solutions for Differential Equations, 1993;

Geza Makay, Boundedness and Periodic Solutions of Functional Differential Equations, 1993.

4 Exceptional Master’s Student

Colleen Kirk, Neural Networks: Convergence and Stability, 1995.

5 Journal Editing

T. A. has periodically been an editor of the following journals:
1. Cubo: A Mathematical Journal ; Chile.
2. Electronic J. Qualitative Theory of Differential Equations (jointly founded with Laszlo Hat-
vani, now honorary editor); Hungary.
3. Fixed Point Theory ; Romania.
4. Journal of Fractional Calculus and Applications; Egypt.
5. Nonlinear Analysis: TMA; United Kingdom.
6. Nonlinear Dynamics and Systems Theory (editor and honorary editor); Ukraine.
7. Nonlinear Studies; United States.

8. Opuscula Mathematica; Poland.
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Abstract: In this paper, a proposed flatness-based controller is designed for an
electronic throttle valve in an internal combustion engine. It is based on the use of
the state space variables of the flat nonlinear model, estimated by a neural observer,
to track a desired trajectory. The case of the control of an electronic throttle valve
study shows the efficiency of the developed control method in terms of tracking in
the presence of non linearities.

Keywords: flat output; flatness-based controller; neural observer; electronic throttle
valve.
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1 Introduction

Quality improvement of the combustion in automobile engine requires the control of the
system of injection as well as the quality of air aspired via the admission collector [3].
This desired air flow is obtained by an electronic throttle valve considered as an electro-
valve which presents nonlinear phenomena, depending on the position and the applied
control voltage, such as: saturation, hysteresis, dead zone, disturbances and parametric
uncertainties of the model.

This paper deals with the use of the differential flatness concept to control this nonlin-
ear system. However, this approach has no systematic methods to detect the flat output
for a given system, and presents the difficulty concerning the robustness study of the
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proposed process control; but, it constitutes a powerful tool for trajectory tracking for
linear and nonlinear systems such as the electronic throttle valve [6, 9].

The aim of this work is to design a flatness-based controller in order to track a
desired angular position trajectory of a throttle plate, by using the tracking error, the
angular velocity and acceleration of this system. The problem concerning the estimation
of the angular velocity and acceleration is solved, in this paper, by the use of a neural
observer. This paper is organized as follows. After the description of the studied non
linear electronic throttle valve in Section 2, the proposed flatness-based controller with
a neural observer is introduced in Section 3. The proposed approach is presented for
a numerical example studied in Section 4 to illustrate the efficiency of the proposed
method.

2 Electronic Throttle Valve Modelization

After a description of the studied electronic throttle valve, a non linear global modal of
this system is proposed in this section.

2.1 System Description

The considered system is constituted of a DC motor with independent excitation coupled
to the throttle valve (Figure 1) [1–3].

E

R

i

u
L Tm

Tg

Tf

TL

Ta

Ts

θm

θ

Figure 1: Electronic throttle valve model.

The electrical part can be described by:

u = L
di

dt
+Ri+ E, E = k

dθm
dt

= kω, (1)

where L is the inductance, R is the resistance, E is the electromotive force of its armature,
u and i are the voltage and the armature current respectively, k is an electromotive force
constant, θ is the plate position of the throttle and ω is the rotor angular velocity. The
mechanical part of the throttle is modeled by a gear reducer characterized by its reduction
ratio n such as:

n =
θm
θ

=
Tg

TL

, (2)

where TL is the load torque, Tg is the gear torque, J is the total inertia of the load
submitted to an electromagnetical torque Te, Te = kei, and Tf , Ts and Ta are other
resistive torques; Tf is the stickslip friction torque, Ts is the nonlinear spring torque and
Ta is the torque generated by the air flow. By considering Ω = ω

n
, as the reduced rotor

angular velocity, the mechanical equation is then given by (3):

J
dΩ

dt
= Te − Tf − Ts − Ta. (3)
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It can be noted that the torque Ta, generated by the air flow, can be considered as an
external perturbation. The electronic throttle valve involves two complex nonlinearities
due to the nonlinear spring torque Ts and the friction torque Tf . They are given by their
static characteristics [3, 4], as shown in Figure 2:

• a dead zone in which the control voltage signal has no effect on the nominal position
of the valve plate;

• two hysteresis combined with a saturation, due to the valve plate movement, limited
by the maximum and minimum angle.
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Figure 2: Static characteristic of the studied throttle.

The static characteristic of the nonlinear spring torque Ts is defined by

Ts = kr(θ − θ0) +D sgn(θ − θ0) (4)

for θmin 6 θ 6 θmax (Figure 3); kr is the spring constant, θ0 is the default position and

D

−D
θ

θmin

θmax

Ts

kr

θ0

Figure 3: Spring torque characteristic.

sgn(·) is the following signum function:

sgn(θ − θ0) =

{
1, if θ ≥ θ0,

−1, else.
(5)

The friction torque function Tf of the angular velocity of the throttle plate, given in
Figure 4, can be expressed as

Tf = fvω + fcsgn(ω), (6)

where fv and fc are two constants.
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ω

Tf

fc

−fc

fvff(fv)

fvff(fv)

Figure 4: Friction torque characteristic.

2.2 Global Nonlinear Model

By substituting in equations (1) and (3), Te, Tf and Ts torques by their expressions, the
nonlinear differential system can be obtained, for the unload case (Ta = 0), as following:




J
n

dω
dt

= kei− fvω − fcsgn(ω)− kr(θ − θ0)−D sgn(θ − θ0),

L di
dt

= u−Ri− kω,

dθ
dt

= 1
n
ω.

(7)

By adopting the following notations:

a12 = 1
n
, a21 = −krn

J
, a22 = − fvn

J
, a23 = ken

J
,

a32 = − k
L
, a33 = −R

L
, µ = fcn

J
, K = Dn

J
, b1 = 1

L
,

(8)

and by the choice of the following state variables:

x1 = θ − θ0, x2 = ẋ1 = a12ω, x3 = ẋ2 = a12ω̇, (9)

the differential system (7) can be rewritten as:




ẋ1 = x2,
ẋ2 = x3,
ẋ3 = β1(x1) + β2x2 + β3x3 + v(x) + bu,

(10)

with

β1 = −a12a21a33, β2 = −a22a33 + a12a21 + a23a32, β3 = a22 + a33,

K ′′ = a12a33K, µ′′ = a12a33µ, b = a12a23b1, K
′ = Ka12, µ

′ = µa12,
(11)

and
v(x) = K ′′sgn(x1) + µ′′sgn(x2)−K ′sgnd(x1)− µ′sgnd(x2), (12)

sgnd(·) denoting the derivative of the signum function. This system description involves
the signum function and its derivatives which present a singularity at the origin. In order
to overcome this problem, this signum function can be approximated by the following
derivable function in any point:

sgn(ξ) ≈
2

π
arctan(αξ), (13)
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where α is a positive constant, chosen equal to 10 000 for instance. Then the derivative
function of sgn(ξ), noted sgnd(·), is given by:

sgnd(ξ) =
2

π

α

1 + (αξ)2
ξ̇. (14)

It comes:

v (x) =
2

π
K ′′ arctan (αx1) +

2

π
µ′′ arctan (αx2)−

2

π
K ′x2

α

1 + (αx1)
2 −

2

π
µ′x3

α

1 + (αx2)
2 .

(15)
The control of the throttle’s angle constitutes a complicated problem because of the
strong nonlinearities of the system and the difficulty to measure the disturbances and
the uncertainty of the parameters of the model. In order to overcome the problem and to
control this throttle, we propose, in the next section, the use of a flatness-based control.

3 Flatness-based Control Design of the Throttle’s Valve

A nonlinear flatness-based control approach is applied, in this section, to the nonlinear
model of the motorized throttle valve. This controller is proposed to follow a given
trajectory planned from the flat output [8], see Appendix and Subsection 3.2, and the
estimation of its derivatives.

3.1 Basic idea

The proposed based-flatness controller uses a state observer as shown in Figure (7).

Throttle valve
Flatness-based

control

State

observer

Angular 

position

Non mesured 

variables

estimations

Mesured

variable

Desired 

trajectory

Control 

variable

Figure 5: Flatness-based control structure with observer.

The idea is to show, firstly, that the studied throttle valve is a flat system and, secondly
to generate the angular velocity and acceleration, which cannot be measured, by the
use of a proposed neural observer. Then, with the measured angular position values, a
flatness-based control has to be, at last, elaborated to make the studied system tracking
desired trajectory.

3.2 Proposed flatness-based controller

Let’s show, first, that the electronic throttle valve is flat. Let’s, then consider the equa-
tions (10) and (15), and the output y equal to x1:

y = x1. (16)
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We note that the state variables x1, x2, and x3 and the input u can be expressed as
functions of this output y and a finite number of its time derivatives [8], as shown in the
following. By replacing x1, x2, and x3 with their expressions given by

x1 = y, x2 = ẏ, x3 = ÿ, (17)

in the expression of ẋ3 given by (10), we obtain:

ẋ3 = f (y, ẏ, ÿ) + bu (18)

with f (.) = β1y + β2ẏ + β3ÿ + 2
π
K ′′ arctan (αy) + 2

π
µ′′ arctan (αẏ) − 2

π
K ′ẏ α

1+(αy)2
−

2
π
µ′ÿ α

1+(αẏ)2
. The input u of the throttle valve can be expressed by

u =
ẋ3 − f (.)

b
(19)

or depending on y and y(3) by

u =
y(3) − f (.)

b
. (20)

The electronic throttle valve is therefore a flat system and the output y is the flat output.
In order to verify that the proposed approach allows to achieve very smooth transitions,
a sinusoidal trajectory shall be planned around y0, the default position of the throttle
plate. To the corresponding reference trajectory yd for the output, is associated the
open-loop control ud given by

ud =
yd(3) − fd (.)

b
(21)

with fd (.) = f
(
yd, ẏd, ÿd

)
. An open-loop control is then determined by the knowledge

of a derived trajectory yd. For the closed-loop control design, the new variable v, chosen
such as

v = bu+ f (.) (22)

and introduced in (19), leads to the following linear model of the throttle valve:

v = y(3). (23)

Let v be expressed by

v = vd +

2∑
i=0

aie
(i). (24)

It comes that:

e(3) +

2∑
i=0

aie
(i) = 0 (25)

such as the error e is defined as e = yd − y, where the coefficient ai has to be chosen
such that the error e converges asymptotically to zero. From the expression of v of
equation (22), the closed loop control law becomes:

u =

yd(3) +
2∑

i=0

aie
(i)− f (.)

b
. (26)
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Replacing vd by its expression, we find the expression of u in terms of ud:

u = ud + (fd (.)− f (.) +
2∑

i=0

aie
(i))b−1

= ud + (fd (.)− f (.) + a0
(
y − yd

)
+ a1

(
ẏ − ẏd

)
+ a2

(
ÿ − ÿd

)
)b−1.

(27)

Finally, by replacing the expression (22) of the open-loop control in the equation (24),
we obtain:

u = (y(3)d − f (y) + a0
(
y − yd

)
+ a1

(
ẏ − ẏd

)
+ a2

(
ÿ − ÿd

)
)b−1. (28)

The controller is then designed to track a reference trajectory yd. The determination of
the control signal u needs the estimation of ẏ and ÿ variables. A neural network observer
will be used and implemented to the electronic throttle’s valve, as shown in the next
section.

3.3 Proposed neural network observer

Many structures of network and learning algorithms, developed in the littrature by using
artificial neural networks [10–12], are efficient in various domains such as the pattern
recognition, the signal processing, the speech recognition or the automatic control do-
mains [13, 14].

In this section, the neural observer generates state variables ẏ and ÿ of the throttle
valve system which can not be measured [16]. The multilayer network of the proposed
observer has two neurons in input layer, three neurons in hidden layer and two neurons
in output layer. For training of this observer, the Levenberg-Marquardt algorithm is
used and data ˆ̇y and ˆ̈y are obtained directly from the values of u, y, ẏ and ÿ at each
instant. The generation of the derivative of y is generally difficult to realize. Many
approximations of the solutions of this problem can be considered:

• by estimation of ẏ as following: ẏ (t) = y(t+∆t)−y(t)
∆t

which increases the distur-
bances effect;

• by application of the inverse principle, as shown in Figure (6), with A as a high
gain, which makes possible the realization of the derivative operator and decreases
the perturbation effect by the use of integration operator [15].

+-
A

1

s

s

Figure 6: Derivative operator realization using the inverse principle.

Validation of the neural observer is based on the error between the target state variables
and the real state variables.
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β1 −4.8617× 104

β2 −6.7101× 104

β3 −553.852
K ′′ −1.3351× 105

µ′′ −6.0979× 104

b′ 1.131× 105

K ′ 256.3278
µ′ 117.0722

Table 1: Parameter numerical values.

4 Control Electronic Throttle Valve Study by Simulation

Simulations are carried out with the following model parameters (see Table 1) [17].

In order to show the efficiency of the tracking behavior of the throttle’s plate with
flatness-based control, an open loop and then a closed loop controllers are considered to
the throttle valve (10). For the first case, applied trajectory takes into account the flat
outputs and its derivatives as shown in relation (21). For sinusoidal desired trajectory
output yd, the results, given in Figure 7, show that the obtained angular position is too
close to the desired trajectory with an acceptable tracking error. Moreover, a closed loop
control is necessary to ameliorate this tracking error and to accelerate the convergence
more speedily. A sinusoidal trajectory is also applied to the closed loop system for which
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Figure 7: (a) Evolution of the angular position in open loop case. (b) Evolution of tracking
error of the angular position in open loop case.
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the evolutions of the angular velocity and angular acceleration, estimated by a neural
observer and their corresponding tracking errors, are given in Figures 8 and 9 .
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Figure 8: (a) Evolution of estimated angular velocity in neural observer case. (b) Evolution
tracking error of the angular velocity in neural observer case.

The obtained state variables are very close to the real state variables, which satisfy
the assigned objectives. Then, the results show the efficiency of the proposed neural
network observer. It must be noted that the evolution of the angular position and the
tracking error, in the closed loop case is better than in the open loop case. In fact,
the convergence becomes speedily with a small tracking error by the use of the closed
loop (Figure 10). The control signal presents minimal and maximum values within the
limits imposed on the system, see Figure 11. The obtained control signal ensures a good
tracking of trajectories in spite of the strong nonlinearities and commutations present in
the throttle.

5 Conclusion

In this paper, a flatness-based tracking controller is proposed for a nonlinear electronic
throttle valve. The system model has been shown to be differentially flat with the angular
position as a flat output. The proposed controller uses angular velocity and angular
acceleration which are needed to be estimated. Thus, a neural observer is implemented
to estimate these state variables. The application of the neural network observer showed
good performances in terms of convergence speed and precision. The proposed method
of flatness-based controller with a neural networks observer ensures the track of a desired
position of the plate, with a small tracking error, in spite of the strong nonlinearities
presented by this system, showing the effectiveness of the proposed approach.
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Figure 9: (a) Evolution of estimated angular acceleration in neural observer case. (b) Evolution
of tracking error of the angular acceleration in neural observer case.
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Figure 11: Control signal applied to the throttle in closed loop case.

Appendix

Flat Systems. The notion of flatness, introduced in 1992 by M. Fliess and al. [5] constitutes a
new perspective in control systems theory. This property, originally developed in the context of
nonlinear systems of finite dimension, defines a class of systems characterized by the existence of
a variable called flat output, which allows to set all other variables in the system. The following
nonlinear system

ẋ = f (x, u) , (29)

y = g (x, u) , (30)

where x is the state vector, x ∈ R
n and u ∈ R

m is the input vector which is called flat, if there
is a variable z, z ∈ R

m, of the form [7]:

z = ψ
(

x, u, u̇, . . . , u
(r)

)

. (31)

The flat output z allows to differentially parameterize the state x and the input u as:

x = φ
(

z, ż, . . . , z
(r)

)

, (32)

u = χ
(

z, ż, . . . , z
(r+1)

)

. (33)

The relation (30) defines the z variable as the flat output of the system or as endogenous variable.
Thus, the actual output of the process y is given by:

y = ξ
(

z, ż, . . . , z
(r)

)

. (34)

The objective of the trajectories planning is to determine an open-loop control ud, carrying
out the objective bringing a given system, of a certain initial state in a known final state: An
important consequence of the parametrization given in (33) is that once having chosen a nominal
desired reference trajectory zd for the flat output, this output determines the necessary nominal
control ud that is [8]:

u
d = χ

(

z
d
, ..., z

d(r+1)
)

, (35)

where zd is the desired path for the flat output, (r + 1) once continuously differentiable.
Generating a trajectory leads to the open loop control that can require the system to get

the expected behavior. However, as the model is not perfect, a closed loop control is needed to
stabilize the system around this trajectory. To accelerate the convergence, stable or unstable
systems need a correction term to track a reference trajectory which is added to the open-loop
control. Closed loop system is characterized by [9]

u = χ
(

z, ż, . . . , z
(r)
, v
)

, v = z
d(r+1) +

r
∑

i=0

aie
(i)
. (36)
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The coefficients ai are chosen so that the error tracking e = zd − z converges asymptotically to
zero.
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1 Département d’Automatique, Université de Tlemcen, Algérie
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1 Introduction

Recently, there has been renewed and extensive research interest in the control of un-
deractuated mechanical systems due to their broad applications and due to the large
number of open theoretical problems they present. Many real-life control mechanical
systems including aircrafts, helicopters, spacecrafts, underwater vehicles, mobile robots,
walking robots and flexible systems are examples of underactuated systems. Underactu-
ated systems are systems that have fewer actuators than configuration variables. This
limitation in actuators makes the control design for these systems rather complicated.

As a result, an underactuated system presents challenges which are not found in a
system with full control. For instance, controllability, at least locally, is not easy to
determine. Most underactuated systems are not fully feedback linearizable, and smooth
feedback stabilization to a single equilibrium point is not possible [10]. Furthermore,
there is no general theory that allows the systematic analysis and control design for all
underactuated systems so that, most of time these systems have to be dealt with on a
case by case basis [15]. Consequently, different control strategies have been proposed
in the literature, among them there is the backstepping and forwarding control in [31],
[14], energy and passivity based control in [12], [17], sliding mode control [5], [9] and
observation [23], hybrid and switched control in [28], [41], intelligent and fuzzy control
in [38], [22] just to mention a few.

In [31], underactuated systems are classified into three types according to their control
flow diagram (CFD) which reflects the way generalized forces are transmitted through
components, namely, the chain, tree and isolated point structures. Additionally, the
author proposes a control design strategy for systems with chain structure. However, the
control design issue for other structures is still an open problem.

In this paper, based on the observation that the CFD of a given system is not in-
variant under change of coordinate, we will show that a subclass of tree structure can be
transformed in a chain structure so that the strategy of control for chain structure can
be applied. However, as a result of this transformation, one assumption that was laid in
the control scheme is satisfied only on a certain domain rather than on the whole space.
As a consequence, a singularity in the control law appears which limits the bassin of
attraction. To make this stability global, we propose a hybrid control allowing to switch
through these singularities.

Others strategies and viewpoints for dealing with singularities involve the use of
nilpotent approximations like in [36] and [26].

The outline of the paper is as follows. In Section 2, a standard model for underac-
tuated systems is presented. Next, in Section 3, definitions of the CFD, the chain and
the tree structure are given. In Section 4, the main result on the transformation of the
structure of an underactuated system from tree to chain is presented. In Section 5, the
proposed design procedure is applied to stabilize the so-called Tora system. Finally, the
hybrid control that permits to switch near the singularities is presented.

2 Dynamics of Underactuated Systems

It is well-known that classical Lagrangian mechanics provides dynamical model of un-
deractuated systems. In this paper, we consider mechanical systems with configuration
vector q ∈ Q, which is an n-dimensional manifold, and with a Lagrangian:

L = K − V =
1

2
q̇TM(q)q̇ − V (q), (1)
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where K is the kinetic energy, V(q) is the potential energy and M(q) is the inertia matrix
of the system which is symmetric and positive definite.

The Euler-Lagrange equation of motion is given by:

M(q)q̈ +H(q, q̇) = F (q)u, (2)

whereH(q, q̇) contains Coriolis, centrifugal and gravity terms and F (q) is identity matrix.
Suppose that q = col(q1, q2) ∈ Q1×Q2 where the dimension of the manifold Qi is denoted
by ni = dim(Qi) for i = 1, 2 and n1 + n2 = n; then, the system (2) can be written as:

m11(q)q̈1 +m12(q)q̈2 + h1(q, q̇) = τ1,
m21(q)q̈1 +m22(q)q̈2 + h2(q, q̇) = τ2.

(3)

The τi’s are the control inputs satisfying the conditions of either one of the following
actuation modes:

A1) τ = τ2 ∈ ℜn2 is the control input and τ1 ≡ 0;

A2) τ = τ1 ∈ ℜn1 is the control input and τ2 ≡ 0.

In both of the above cases, system (3) is an underactuated system. The actuation modes
A1 and A2 are important due to their applications in robotics. The Acrobot [33], the
Tora system [39] are actuated according to mode A1, while the Pendubot [34] and, the
cart-pole system [25] are actuated according to mode A2.

3 Control Flow Diagram

In [31] a Control Flow Diagram (CFD) is constructed for each mechanism to represent the
interaction forces among the degrees of freedom. Each CFD will be comprised of three
possible sructutres: chain (Figure 1(a)), tree (Figure 1(b)) or isolated point (Figure 1(c)).

(a) (b) (c)

Figure 1: CFD structures for an underactuated system with 2 degrees of freedom.

In terms of these structures a precise definition of the degree of complexity is given.
It was shown that the chain structure is the least complex, where both, feedback lin-
earization technique [20] and backstepping strategy [29] can be applied. A system with
tree structure is more difficult to control since we need to control certain configuration
variables in parallel; that is, one control input must control more than one degree of free-
dom simultaneously. For systems with isolated points, certain control goal are difficult to
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achieve because the control input have no influence on some variables at certain states.
Control design for the last two classes is currently under investigation.
From the above discussions, it is clear that if we can transform the tree structure (or at
least a subclass of tree structure) to a chain structure, then we will considerably simplify
the control design for this class of systems.

4 Systems with Chain Structure

The configuration variables in a chain structure affect each other in a serial way. The
most general representation of this serial connection is a triangular form given by Seto
and Baillieul in [31]:

q̈i = Ni(q1, · · · , qi+1, q̇1, · · · , q̇i+1), i = 1, · · · , n− 1, (4)

q̈n = Nn(q, q̇) +G(q, q̇)u,

where G(q, q̇) 6= 0, Ni(.)i = 1, · · · , n − 1 are smooths functions and either ∂Ni

∂q̇i+1

6= 0 or
∂Ni

∂q̇i+1

= 0 but ∂Ni

∂qi+1

6= 0 ∀(q, q̇) ∈ ℜ2n.

The former condition ensures the conrollability of the system while the latter one
ensures the connection between the degrees of freedom.

Note that the chain structure proposed here is different from the chained form systems
studied in [1], generally represented by the following configuration:

ξ̈1 = u1, (5)

ξ̈2 = u2,

ξ̈3 = ξ2u1.

In [31], Seto and Baillieul propose a systematic backstepping control strategy which
globally asymptotically stabilize systems in chain structure (4). However, few underatu-
ated systems are naturally in this form, the only examples we found are the mass sliding
on a cart system [31] and the robot with joint elasticity [7]. Most of the underatuated
systems are either in tree structure as the Acrobot, the Tora system, the Inverted pendu-
lum, or in isolated point as the Ball and Beam system [16], as far as simple systems with
two degrees of freedom are considered. As there is no systematic procedure for dealing
with tree structure and isolated point, such structures are generally studied on a case by
case basis.

In the next section, we propose to transform a subclass with tree structure into a
chain structure so that the well established backstepping design procedure associated
with chain structure can be applied.

5 Transformation from Tree Structure to Chain Structure

The construction of CFD for a given system depends on its coordinates, specially on the
choice of generalized coordinates and the external forces. Thus, the CFD is not invariant
under coordinate transformation. This simple observation leads us to search for a change
of coordinates in order to transform the CFD. Thus, we consider underactuated systems
satisfying the following assumptions:
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Assumptions 1

B1) q2 is the actuated variable (case A1).

B2) the considered system possesses a kinetic symmetry property, that is the inertia
matrix depends only on the variable q2 so that M(q) = M(q2).

B3) the quantity m−1
11 (q2)m12(q2) is integrable.

It is important to note that these assumptions are satisfied by a broad class of un-
deractuated systems. Our main result is presented in the next theorem.

Theorem 5.1 Assumming that Assumptions B1)-B3) hold, then an underactuated
system with tree structure can be transformed in a system with chain structure.

Proof. The proof can be broken down in two parts: first, we will show how an
underactuated system can be partially linearized. Next, we will show how the linearized
system can be expressed under a chain form.

In [32], Spong shows that all underatuated systems can be partially linearized using
the following change of control law:

τ = α(q)u + β(q, q̇) (6)

which transforms the dynamics of (3) into

q̇1 = p1, (7)

ṗ1 = f(q, p) + g0(q)u,

q̇2 = p2,

ṗ2 = u,

where α(q) is an m×m positive definite symmetric matrix and

g0(q) = −m−1
11 (q)m12(q).

In fact, from the first line of (3), for τ1 = 0 we have

q̈1 = −m−1
11 (q)h1(q, q̇)−m−1

11 (q)m12q̈2

which yields the expression for g0(q). Substituting this in the second line of (3), we get

(m22(q)−m21(q)m
−1
11 (q)m12(q))q̈2 + h2(q, q̇)−m21(q)m

−1
11 (q)h1(q, q̇) = τ

thus, defining

α(q) = m22(q)−m21(q)m
−1
11 (q)m12(q),

β(q, q̇) = h2(q, q̇)−m21(q)m
−1
11 (q)h1(q, q̇),

and observing that α(q) is positive definite and symmetric complete the first part of the
proof.

However, after applying this change of control law, the new control input u appears
both in linear and nonlinear subsystems. This means that (7) has a tree structure. The
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idea is to decouple the linear and nonlinear subsystems so that the system (7) will be in
a triangular form.

According to [25], an underactuated system which satisfies the preceding assumptions
can be transformed in a strict feedback normal form. In fact, the following change of
coordinates:

qr = q1 + γ(q2), (8)

pr = m11(q2)p1 +m12(q2)p2 :=
∂L

∂q̇1
,

transforms the dynamics of the system (7) into a cascade nonlinear system in strict
feedback form:

q̇r = m−1
11 (q2)pr, (9)

ṗr = g(qr, q2),

q̇2 = p2,

ṗ2 = u,

where

γ(q2) =

∫ q2

0

m−1
11 (θ)m12(θ) dθ, g(qr, q2) = −

∂V (q)

∂q1
.

The so obtained system is also in a triangular form. More precisely, in a chain structure,
since the control appears in the last equation and each variable affects the other in a
serial way. Hence, the tree structure is transformed in a chain structure.

Remark 5.1 For case A2 (i.e. q2 is not actuated) there is an other change of co-
ordinates to transform the initial system but the obtained normal form is not in strict
feedback form. It means that some tree structure could not be transformed in chain
structure as the cart pole system, the pendubot, the rotating pendulum and others.

In the next section, we will illustrate this procedure design by an example.

6 Application

The problem of controlling the Tora (Translational oscillator with rotational actuator)
system was introduced first by Wan, Brenstein and Coppola at the University of Michi-
gan [39] and has attracted much attention of control theorists recently; since it exhibits
nonlinear interaction between the translational and rotational motions. As a result,
it has been extensively used as a benchmark for nonlinear controllers for cascade sys-
tems; namely for passivity based approaches [19], integrator backstepping procedure [39],
sliding mode and robust controllers [24], dynamic surface control [27], Tensor product
distributed compensation and linear matrix inequality based controller [3], speed gradi-
ent [13] and even fuzzy controller with [18]. In the best of our knowledge, this work is
the first one where a switched control is applied to the Tora system. As a matter of fact,
this constitutes the second contribution of the present paper.

The Tora system, depicted in Figure 2, consists of a platform that can oscillate
without damping in the horizontal plane. On the platform a rotating eccentric mass is
actuated by a DC motor whose motion applies a force to the platform which can be used
to damp the translational oscillations. Assuming that the motor torque is the control
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variable, our task is to find a control law that stabilizes both rotation and translation to
the rest. This implies the Tora is an underactuated mechanical system.

Note that this system possesses 2 degrees of freedom (q1, q2) where q1 is the unactu-
ated variable and q2 is the actuated one. The Euler-Lagrange equation of motion for the

Figure 2: The Tora system.

Tora system is given by:

(m1 +m2)q̈1 +m2r cos(q2)q̈2 −m2r sin(q2)q̇
2
2 + kq1 = 0, (10)

m2r cos(q2)q̈1 + (m2r
2 + I2)q̈2 +m2gr sin(q2) = τ,

where m1 is the mass of the cart, m2 is the mass of the eccentric mass, r is the radius
of the rotation, k is the spring constant, g is the gravity acceleration and τ is the torque
input.

The system (10) can be rewritten as:

q̈1 =
1

detM(q2)
(−m2r cos(q2)τ + gm2

2r
2
2 cos(q2) sin(q2) (11)

−(m2r
2 + I2)(kq1 −m2r sin(q2)q̇

2
2)),

q̈2 =
1

detM(q2)
((m1 +m2)τ − (m1 +m2)m2gr sin(q2)

+m2r cos(q2)(kq1 −m2r sin(q2)q̇
2
2)),

with detM(q2) = (m1 +m2)(m2r
2 + I2)− (m2r cos(q2))

2.
The associated CFD to (11) is given by Figure 3 which is in tree structure. After a

partial linearization using change of control input:

τ = α(q)u + β(q, q̇) (12)

with

α(q2) = (m2r
2 + I2)−

(m2r cos(q2))
2

m1 +m2
∀q2 ∈ [−π, π],

β(q, q̇) = m2gr sin(q2)−
m2r cos(q2)

m1 +m2
(kq1 −m2r sin(q2)q̇

2
2).

The dynamics of the Tora becomes
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Figure 3: Tora system CFD.

q̇1 = p1, (13)

ṗ1 = f0(q, p) + g0(q)u,

q̇2 = p2,

ṗ2 = u,

with

f0(q, p) =
(m2r sin(q2))p2 − kq1

m1 +m2
, g0 =

m2r cos(q2)

m1 +m2
.

Note that M(q) = M(q2), that the Tora system is actuated according to mode A1
and the function γ(q2) can be calculated explicitly as

γ(q2) =

∫ q2

0

m2r cos(θ)

m1 +m2
dθ =

m2r sin(q2)

m1 +m2

so all the assumptions B1-B3 are verified. Thus, the global change of coordinates:

qr = q1 +
m2r sin(q2)

m1 +m2
, (14)

pr = (m1 +m2)p1 +m2r cos(q2)p2,

transforms the dynamics of the Tora system into cascade nonlinear system in strict
feedback form:

q̇r =
1

(m1 +m2)
pr, (15)

ṗr = −kqr + kγ(q2),

q̇2 = p2,

ṗ2 = u.

The system (15) can be written as:

q̈r = −
k

m1 +m2
qr +

km2r

(m1 +m2)2
sin(q2), (16)

q̈2 = u,

which is in the form of a chain structure. The associated CFD to (16) is given by Figure
4 Hence, the change of control (12) and the coordinates transformation (14) transform
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Figure 4: CFD of the transformed Tora system.

the tree structure of the Tora system into a chain structure.

Next, as the Tora is now expressed as a chain structure, we can then apply the
procedure proposed by Seto and Baillieul in [31], to design the control law that globally
asymptotically stabilizes the system. In order to apply this procedure, one must first
verify the following assumptions:

Assumptions 2

C1) Ni(0) = 0, i = 1, · · · , n.

C2) For each i = 1, · · · , n − 1, Ni(.) are smooth functions with bounded states
q1, · · · , qi, q̇1, · · · , q̇i, the boundedness of the function Ni implies the boundedness
of the states qi+1 and q̇i+1.

C3) Either ∂Ni

∂q̇i+1

6= 0 or ∂Ni

∂q̇i+1

= 0 but ∂Ni

∂qi+1

6= 0 ∀(q, q̇) ∈ ℜ2n.

C4) For any ∂Ni

∂q̇i+1

6= 0 , the nonlinear system

Ni(0, · · · , 0, qi+1, 0, · · · , 0, q̇i+1) = 0 is globally asmptotically stable at the origin, or
when ∂Ni

∂q̇i+1

= 0 but ∂Ni

∂qi+1

6= 0, the nonlinear system

Ni(0, · · · , 0, qi+1, 0, · · · , 0) = 0 is globally asmptotically stable at the origin.

Assumption C1 is a necessary condition for the origin to be an equilibrium point of
the closed loop system. C2 is necessary to avoid the peaking phenomenon, C3 ensures
the connection between degrees of freedom of the system and C4 is equivalent to the
condition on the global asymptotic stability of the zero dynamics.

Then, the procedure is defined as follows. Let q̄1 = [q1, q̇1]
T , b = [0, 1]T , P is a

positive definite matrix with all elements being positive and Ni, Nn and G are variables
defined in (4). The sequences ei, Gi and Wi are defined as:

e1 = q̄T1 Pb, G1 = 1, W1 = 0,

for i = 1, · · · , n− 1,

ei+1 = GiNi +Wi + kiei,

Gi+1 = ∂Ni

∂q̇i+1

Gi,

Wi+1 =
∑i+1

j=1
∂ei+1

∂qj
q̇j +

∑i

j=1
∂ei+1

∂q̇j
Nj + ei,


 if ∂Ni

∂q̇i+1

6= 0;

(17)
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ei+1 = Gi+1q̇i+1 +W(i+1)1 + k(i+1)1e(i+1)1,
e(i+1)1 = GiNi +Wi + kiei,

Gi+1 = ∂Ni

∂qi+1

Gi,

Wi+1 =
∑i+1

j=1
∂ei+1

∂qj
q̇j +

∑i

j=1
∂ei+1

∂q̇j
Nj + e(i+1)1,

W(i+1)1 =
∑i

j=1(
∂e(i+1)1

∂qj
q̇j +

∂e(i+1)1

∂q̇j
Nj) + ei,




if ∂Ni

∂q̇i+1

= 0;

and k(i+1)1, ki, i = 1, · · ·n− 1, kn are positive constants.
The control law is chosen according to the following theorem.

Theorem 6.1 [31] Under assumptions C1-C4, the system (4) is globally asymptot-
ically stable at the origin if the control law is chosen as

u = −(GnNn + wn + knen)(GnG)−1. (18)

The application of the above control scheme to the Tora system leads to the following
control law:

unL = −
(m1 +m2)

2

k cos(q2)
(c1q̇r +

k

(m1 +m2)2
q̇2(c2 cos(q2)− q̇2) + c3qr + c4 sin(q2)), (19)

where c1, c2, c3, c4 are positive constants. Clearly the obtained control law is simple and
easy to implement. In addition, the rate of convergence can be controlled by adjusting
the gain constants ci.

Nevertheless, this control is valid for any q2 6= (2k + 1)π/2. This is a consequence
of the fact that assumption C3, is not always verified ∀(q, q̇) ∈ ℜ2n, since for the Tora
system ∂Ni

∂qi+1

6= 0 only for q2 6= (2k + 1)π/2.

This means that the control has singularities that make the bassin of attraction not
the entire space and hence the stability is not global.

One solution to avoid divergence of the states is to adjust the gains such that the
trajectories are kept near the equilibrium. However, keeping trajectories near the equi-
librium will imply little effort but will induce large settling time. Moreover, if the initial
conditions of q2 are chosen greater or equal to π/2, the states and the control will diverge
due to the singularity; therefore, this solution must be discarded.

In the next section, we present a solution to make the asymptotic stability global; i.e.
a control system that is valid for any initial conditions.

7 Switching Through Singularities

The idea is to use a hybrid control law which switches between the designed control
law (19) away from singularities and another control law that will be designed close the
singularities. Control techniques based on switching between different controllers have
been applied extensively in recent years [35, 40, 41]. The importance of such control
stems from the existence of systems that cannot be asymptotically stabilized by a single
continuous feedback control law.

Now, we must design the second control law and the procedure we used is very
simple. The idea is to use the Jacobian linearized system around the singularity point to
calculate a linear control law that will be applied near singularities. Once the trajectories
go through the neighborhood of singularities, we come back to the nonlinear control law
to achieve global asymptotic stabilization of all the states.
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7.1 Expression of the linear control law

The linearized model of the Tora system around (qr, pr, q2, p2) = (0, 0, π/2, 0) is given
by:

δ̇qr =
1

(m1 +m2)
δpr, (20)

δ̇pr = −kδqr,

δ̇q2 = δp2,

δ̇p2 = δu.

The new problem that appears now is that the subsystem (δqr, δpr) is not controllable;
fortunately, it is stable. Due to Borckett in [4], if the uncontrollable modes are stable,
the whole system can still be stabilized.

The linear control law is given by:

uL = −Kx, (21)

where x = [δq2, δp2]
T and K = [K1 K2] is a matrix gain fixed either by LQR or by pole

placement approaches.

Remark 7.1 Note that, even the uncontrolled modes of the linearized system around
the singularity point are stable, it does not mean that the whole system is stable. Indeed,
if any control is applied to the Tora system, all trajectories will go to infinity since 1

cosq2
becomes very large.

The application in simulation of this switched control to the Tora system with the
parameters m1 = 10kg,m2 = 1kg, k = 5N/m, r = 1m, I = 1kg/m, shows the effective-
ness of the proposed procedure, see Figure 5. In fact, even for hard initial conditions
like the singularity point q2 = π/2 (Figure 6) or a far initial point q2 = π (Figure 7),
the proposed control law still stabilizes the system. The switch from one control to the
other is orchestrated by the state q2, so that, while |q2| is out of the interval π

2 ± e, the
nonlinear control unL is applied and when |q2| goes through this interval, we switch to
the linear control uL )Figure 8). The size of this interval is directly related to the control
effort. In fact, we have noted that small value of e (around 0.2 or 0.3) (Figure 9) leads
to more important effort than larger value of e (like 0.5 or 0.6) (Figure 5). This is due to
the fact that with a large interval, we do not allow cos(q2) to become too small in order
to avoid great value for unl.

7.2 Stability proof of the hybrid control

Mathematically, a switched system can be described by a differential equation of the
form:

ẋ = fp(x), p ∈ P , (22)

where P is an index set and let σ(t) = p = {1, 2} be a switching signal. We are assuming
here that the individual subsystems have the origin as a common equilibrium point
fp(0) = 0.

Remark 7.2 A necessary condition for asymptotic stability under arbitrary switch-
ing is that all of the individual subsystems are asymptotically stable. However, this
condition is not sufficient [21]. Nevertheless, if switching among asymptotically stable
subsystems is slow enough, one would intuitively expect a stable response.



356 A. CHOUKCHOU-BRAHAM, B. CHERKI AND M. DJEMÄI

Figure 5: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, 0, 0, 0).

It is easy to see that if the family of systems (22) has a common Lyapunov function
V such that ∇V (x)fp(x) < 0 for all x 6= 0 and all p ∈ P , then the switched system is
asymptotically stable for any switched signal σ [21]. Hence, one possible approach to
prove the stability of the hybrid system is to find a common Lyapunov function for the
family (22). If we can not find such function, one tool for proving stability in such cases
employs multiple Lyapunov functions (see [2], [8] and the references therein). Since the
individual subsystems in the family (22) are assumed to be asymptotically stable, there
is a family of Lyapunov functions [Vp : p ∈ P ] such that the value of Vp decreases on
each interval where the p− th subsystem is active. Then, the switched system is globally
asymptotically stable if for every p the value of Vp at the end of each such interval exceeds
the value at the end of the next interval on which the p− th subsystem term is active [21]

For the Tora system, these functions are given by:
VnL = 1

2 q̄
T
1 P q̄1 +

1
2e

2
21 +

1
2e

2
2 for the nonlinear subsystem,

VL = 1
2 x̃

TRx̃ for the linearized subsystem,
where q̄1, P , e21 and e2 are variables defined in the sequences of the control scheme (17),
x̃ = (δqr, δpr, δq2, δp2) is the vector of coordinates of the linearized system and R is a
symmetric positive definite matrix.

In a previous work [6], we give the proof that VnL is a Lyapunov function for the
nonlinear subsystem under unL control. We first recall briefly this proof and then give
the one related to the linearized subsystem under uL control.

In [31], the authors did not give the proof of Theorem 6.1 and refer the reader to
the proof given for the adaptive case for system with parametric uncertainties in [30].
Moreover, the proof there is given only for the control derived from the first sequences
in (17). We propose to give the proof of Theorem 6.1 for system with no parametric
uncertainties and for the case when the control is derived from the second sequences in
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Figure 6: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, π

2
, 0, 0).

(17) since for the Tora system ∂Ni

∂q̇i+1

= 0 but ∂Ni

∂qi+1

6= 0.

Proof. As the Tora system possesses two degrees of freedom, we limit the proof
to the case n = 2. For each degree of freedom qi, qi+1 can be considered as a ”control
variable” which governs the behavior of qi. Hence, we determine a reference position qr2
for q2 such that when q2 → qr2, q1 will behave as desired.
Step 1 i = 1.

When ∂N1

∂q̇2
= 0 and ∂N1

∂q2
6= 0, we obtain the differential equation

q̈1 = N1(q1, q2, q̇1) (23)

and define a reference position qr2 as qr2 = q2−N1− k1q1− k2q̇1. The error between the
reference and the actual position is given by
e21 = q2 − qr2 = N1 + k1q1 + k2q̇1 ⇒ N1 = e21 − k1q1 − k2q̇1. Define

q̄1 =

(
q1
q2

)
, A =

(
0 1

−k1 −k2

)
, b =

(
0
1

)
,

where k1 and k2 are chosen such that q̈1 + k2q̇1 + k1q1 = 0 is asymptotically stable at
(q1, q̇1) = (0, 0). This implies the existence of a positive definite matrix P such that
ATP + PA = −Q < 0. Applying the above definitions to (23), we get

˙̄q1 = Aq̄1 + be21.

Consider the following Lyapunov function

V11 =
1

2
(q̄T1 P q̄1 + e221) (24)
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Figure 7: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, π, 0, 0).

The time derivative V̇ is given by

V̇11 = −
1

2
q̄T1 Qq̄1 + q̄T1 Pbe21 + e21 ˙e21,

if e1 = q̄T1 Pb and ν11 = 1
2 q̄

T
1 Qq̄1, then

V̇11 = −ν11 + e21(ė21 + e1)

= −ν11 + e21(Ṅ1 + k1q̇1 + k2q̈1 + e1)

= −ν11 + e21(
∂N1

∂q1
q̇1 +

∂N1

∂q2
q̇2 +

∂N1

∂q̇1
q̈1 +

∂N1

∂q̇2
q̈2

+k1q̇1 + k2q̈1 + e1)

= −ν11 + e21((
∂N1

∂q1
− k1)q̇1 +

∂e21
∂q2

q̇2 + (
∂e21
∂q̇1

− k2)q̈1

+k1q̇1 + k2q̈1 + e1)

= −ν11 + e21(
∂N1

∂q2︸ ︷︷ ︸
def
= G2

q̇2 +
∂e21
∂q1

q̇1 +
∂e12
∂q̇1

N1 + e1
︸ ︷︷ ︸

def
= W21

)

= −ν11 + e21(G2q̇2 +W21).

Note that, we cannot reach u through q̇2 but rather through q̈2. Hence, we add a step
where we determine a reference velocity q̇r2 for q̇2 such that e21(G2q̇2 + W21) is made
nonpositive q̇r2 = q̇2 −G2q̇2 −W21 − k21e21.
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Figure 8: Switching regions for the control.

Figure 9: States trajectories and control input of the Tora system for the initial condition
(q1, q2, p1, p2) = (1, 0, 0, 0) and e = 0.2.
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The error between the reference and the actual velocity is given by
e2 = q̇2 − q̇r2 = G2ẋ2 +W21 + k21e21 ⇒ G2q̇2 +W21 = e2 − k21e21, then

V̇11 = −ν11 + e21(e2 − k21e21)

= −ν11 − k21e
2
21 + e21e2

= −ν1 + e21e2

with ν1 = ν11 + k21e
2
21.

To compensate for e2, we modify the scalar function V11 as V1 = V11 +
1
2e

2
2. Differ-

entiating V1, we obtain

V̇1 = V̇11 + e2ė2

= −ν1 + e21e2 + e2ė2

= −ν1 + e2(ė2 + e21)

= −ν1 + e2(
∂e2
∂q1

q̇1 +
∂e2
∂q2

q̇2 +
∂e2
∂q̇1

q̈1 + e21
︸ ︷︷ ︸

def
= W2

+
∂e2
∂q̇2︸︷︷︸
G2

q̈2)

= −ν1 + e2(G2q̈2 +W2)

= −ν1 + e2(G2(N2 +Gu) +W2).

Finally, the expression of the Lyapunov derivative is

V̇1 = −ν1 + e2(G2N2 +G2Gu+W2). (25)

In order to make V̇1 nonpositive, it is enough to choose u such that

e2(G2N2 +G2Gu +W2) = −k2e
2
2. (26)

Thus the expression of the control law that globally asymptotically stabilizes the system
is given by

u = −(GnNn + wn + knen)(GnG)−1.

Note that, GnG is invertible since both Gn and G are different from 0 by assumptions
(G 6= 0 to ensure controllability and Gn 6= 0 because of Gn definition in sequences (17)
and of assumption C3).

Step 2 i = 2.

The final Lyapunov function is given by V2 = V1 such that V̇2 = −ν2 − k2e
2
2.

In this work, we take VnL = V2 as the Lyapunov function of the nonlinear subsystem.
Next, as the subsystem (20) is linear, we can choose a Lyapunov function of the form

VL =
1

2
x̃TRx̃.

If the matrix R is chosen diagonal then, VL can be expressed as:

VL =
1

2
(R1x̃

2
1 +R2x̃

2
2 +R3x̃

2
3 +R4x̃

2
4).
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Differentiating VL, we obtain:

V̇L = R1x̃1
˙̃x1 +R2x̃2

˙̃x2 +R3x̃3
˙̃x3 + R4x̃4

˙̃x4

= (
R1

m1 +m2
−R2k)x̃1x̃2 + (R3 −K1R4)x̃3x̃4 −K2R4x̃

2
4.

(27)

If the elements of the matrix R are chosen so that the conditions
{

R1

m1+m2

= R2k,

R3 = K1R4,

are verified. Then
V̇L = −K2R4x̃

2
4.

The use of the LaSalle invariance principle finishes the proof.
The analysis of the stability of switched control is very difficult by means of analytical

tools, so, often we are bounded to use numerical calculations [11]. The energy profile of
the switched control is illustrated in Figure 10.

Figure 10: Energy profile of the switched system.

According to this figure, the Lyapunov functions VnL and VL satisfy the above con-
dition and hence we can conclude that the Tora system is globally asmptotically stable.

8 Conclusion

In this paper, a transformation methodology for a class of underactuated system with
tree structure to another underactuated system with chain structure is proposed by using
a change of control and coordinates; so that control design strategies pertaining to the
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last structure can be applied. This transformation is possible under some conditions
on integrability, symmetry property and actuation of certain variables that hold for
broad applications of underactuated systems such as the Acrobot, Tora, Inertia-wheel
pendulum, VTOL aircraft and others. As an illustrating example, the design procedure
has been applied to an underactuated system with initially tree structure. However, as
the obtained control law contains singularities, a hybrid control scheme that switches
between a linear control law, in a neighborhood of the singularities, and a nonlinear
one outside of this neighborhood is presented. Simulation results have shown the good
performance and effectiveness of the proposed control strategy.
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Abstract: Continual model of a complex medium with oscillating inclusions is con-
sidered. Travelling wave (TW) solutions to the source system are shown to satisfy a
four-dimensional dynamical system. Qualitative study of the factorized system en-
ables to show the existence of homoclinic and heteroclinic contours in vicinities of
fixed points. Existence of the homoclinic loops results in the complex global be-
havior of phase trajectories, including the bifurcations of tori, that are investigated
numerically.
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1 Introduction

Experimental investigations of deformations of geomedia in the wide range of loading
velocities, carried out in the last decades, testify that geomedia possess two basic features,
namely, a discrete structure and oscillating motion of the discrete elements [1, 2].

Oscillating modes can be incorporated into the continual model by means of adding
extra volumetric forces, causing the movements of the elements of the structure. In the
papers [3, 4] a linear mathematical model for structured media taking into account the
oscillations of structural elements has been suggested. In the simplest form the equations
of motion can be written as follows:

ρ
∂2u

∂t2
=

∂σ

∂x
−mρ

∂2w

∂t2
,

∂2w

∂t2
+ ω2 (w − u) = 0, (1)
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where ρ is the density, σ is the stress, u (x, t), w (x, t) are the displacements of the bulk
medium and typical oscillator with natural frequency ω, mρ is the density of oscillating
inclusions.

But it is well known that the real geomaterials manifest a strong nonlinear effects
when being subjected to high-intense impulse loading. In the situation when the medium
is far from equilibrium, various relaxing processes within the elements of structure take
place and the linear model becomes completely incorrect.

Thus, generally speaking, one should take into account both physical nonlinearity
and nonlocal effects. This can be done by incorporating into the modelling system the
following equation of state [5, 6]:

σ = E1ε+ E3ε
3 + θ

(
σxx − σx

εx
ε+ 1

− η

[
εxx −

(εx)
2

ε+ 1

])
. (2)

Equations (1), (2) form a closed system, which will be studied below. In our previous
work [7], preliminary investigations of the system with θ = 0 were carried out, revealing,
in particular, the existence of periodic and soliton-like (especially important in nonlinear
physics and engineering applications [8]) TW solutions.

The aim of the present paper is to study a set of TW solutions to (1)-(2) in the
general case and to investigate an influence of spatial nonlocality on the structure of
wave regimes.

2 Qualitative Analysis of the Dynamical System Describing Autowave

Solutions

We restrict our consideration to the set of TW solutions, having the form

u = U(s), w = W (s), s = x−Dt. (3)

Here the parameter D stands for the constant velocity of the wave front. Substituting
(3) into the equations (1), (2), we obtain the dynamical system

D2U ′′ = F ′ −mD2W ′′, (4)

W ′′ +Ω2 (W − U) = 0, (5)

F = e1U
′ + e3 (U

′)
3
+ θ

(
F ′′ − F ′

U ′′

U ′ + 1
− η

[
U ′′′ −

(U ′′)
2

U ′ + 1

])
, (6)

where Ω = ωD−1.
Integrating once equation (4), we get

F = D2 (U ′ +mW ′) . (7)

Excluding the function F with the help of formula (7), we obtain the following system:

W ′′ +Ω2 (W − U) = 0,

D2 (U ′ +mW ′) = e1U
′ + e3 (U

′)
3
+ θ

(
F ′′ − F ′

U ′′

U ′ + 1
− η

[
U ′′′ −

(U ′′)
2

U ′ + 1

])
.

(8)
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It is easily seen, that this system can be rewritten as four-dimensional dynamical system
(8):

Z ′ = Y, Y ′ = −Ω2 (Z −R) , R′ = X,

X ′ =
1

θ (D2 − η)

(
−e1R− e3R

3 +
X2
{
D2 − η

}
θ +D2θmXY

R+ 1
+

+θmD2Ω2 {Z −R}+D2 {R+mZ}
) (9)

Analysis shows that system (9) has three fixed (or stationary) points: the point M1

coinciding with the origin, and the pair of the points M2, 3, given by the formulae

X = Y = 0, Z2 = R2 = ±

√
D2 (1 +m)− e1

e3
≡ ±G.

It is easy to get convinced, that the Jacobi matrix of the system has the form:

J =




0 1 0 0
−Ω2 0 Ω2 0
0 0 0 1
K1 0 K2 0


 ,

where K1 =
mD2

(
1 + Ω2θ

)
(D2 − η) θ

, and K2 =
D2 − e1 −mω2θ

(D2 − η) θ
at the point M1, and K2 =

2e1 −D2
(
2 + 3m+mΩ2θ

)
(D2 − η) θ

at the points M2, 3. The eigenvalues of the matrix J satisfy

the biquadratic equation

λ4 + λ2
(
Ω2 −K2

)
− (K1 +K2)Ω

2 = 0.

It is then obvious that λ2 = 1

2

(
K2 − Ω2 ±

√
(Ω2 +K2)

2
+ 4Ω2K1

)
. Depending on the

values of λ the fixed points of the dynamical system are centers, saddles, or degenerate
ones.

Some analytical results concerning the behavior of solutions in some vicinities of the
fixed points can be obtained on the basis of the local asymptotic analysis. Let us consider
the dynamical system (9) in the vicinity of the points M2, 3. For convenience, we replace
the origin at the point Mi, i = 1, 2, making the change of variables Z = x1+G, Y = y1,
R = x2 +G, X = y2:

x′

1 = y1, y′1 = −Ω2 (x1 − x2) , x′

2 = y2,

y′2 = K1x1 +K2x2 −
3Ge3

(D2 − η)θ
x2

2 −
e3

(D2 − η)θ
x3

2 +
y2
(
−ηy2 +D2my1 +D2y2

)
(D2 − η)(1 + x2 +G)

(10)

To analyze the dynamics in a vicinity of the critical point of system (10), we introduce
a formal parameter ε. Using the scaling transformation xi = εxi, yi = εyi and the

expansion in series
1

1 + εx2 +G
=
∑
j=0

(−1)jεjxj
2

(1 +G)j+1
we can rewrite our system up to

O(ε3) in the following form:
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x′

1
= y1, y′

1
= −Ω2 (x1 − x2) , x′

2
= y2,

y′2 = K1x1 +K2x2 + ε
(
H1x

2

2 +H2y1y2 +H3y
2

2

)
+ ε2

(
L1x

3

2 + L2x2y1y2 + L3x2y
2

2

)
,

(11)

where H1 =
−3e3G

(D2 − η)θ
, H2 =

D2m

(1 +G)(D2 − η)
, H3 =

1

1 +G
, L1 =

−e3
(D2 − η)θ

, L2 =

−
D2m

(1 +G)2(D2 − η)
, L3 = −

1

(1 +G)2
.

The expansion of the dynamical system (9) in vicinity of the stationary point M1 can
be written in the same form but with different coefficients Ki, i = 1, 2 and Hi, Li, i =
1, 2, 3.

Now let us remind, that any linear system of coupled oscillators can be presented
in an uncoupled form by means of passing to the normal modes (see e.g. [9]). This
procedure is connected with the separation of general system dynamics onto the simpler
motions described by systems with single degree of freedom, and expresses the principle
of superposition for linear systems. For nonlinear systems analogs of the superposition
principle can also be stated in many cases. For weakly non-linear systems like (11) the
superposition principle can be established on the basis of the method of nonlinear normal
modes [10,11]. In accordance with [12], we assume that it is possible to split the degrees
of freedoms into the ”master” coordinates x1 = u, y1 = v and the ”slave” coordinates
x2, y2 functionally, dependent on the ”master” ones: x2 = X2(u, v), y2 = Y2(u, v).
Such relations just express the nonlinear principle of superposition. On the other hand,
the nonlinear normal modes technique could be regarded as the next step of a local
asymptotic analysis, following the qualitative analysis of the linearized system.

If we assume that the master system has the form

x′

1 = y1, y′1 = f1(xi, yi),
x′

2
= y2, y′

2
= f2(xi, yi),

then X2 and Y2 satisfy the equations

Y2 =
∂X2

∂u
v +

∂X2

∂v
f1(u, v,X2, Y2),

f2(u, v,X2, Y2) =
∂Y2

∂u
v +

∂Y2

∂v
f1(u, v,X2, Y2).

(12)

Now we are going to find the solution of (12) in the form of the following series expansions:

X2 = a1u+ a2v + a3u
2 + a4uv + a5v

2 + a6u
3 + a7u

2v + a8uv
2 + a9v

3 + ...,
Y2 = b1u+ b2v + b3u

2 + b4uv + b5v
2 + b6u

3 + b7u
2v + b8uv

2 + b9v
3 + ....

(13)

Inserting (13) into (12) and equating to zero the coefficients of the same monomials uivj ,
we get a set of algebraic equations with respect to the parameters ai, bi. The first four
coefficients obtained in this way are as follows:

for mode I

a1 =
1

2Ω2
(K2 +Ω2 −

√
(K2 +Ω2)2 + 4K1Ω2), a2 = 0,

b1 = 0, b2 =
1

2Ω2
(K2 +Ω2 −

√
(K2 +Ω2)2 + 4K1Ω2).

(14)

for mode II



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (4) (2012) 365–374 369

a1 =
1

2Ω2
(K2 +Ω2 +

√
(K2 +Ω2)2 + 4K1Ω2), a2 = 0,

b1 = 0, b2 =
1

2Ω2
(K2 +Ω2 +

√
(K2 +Ω2)2 + 4K1Ω2).

(15)

Note that the sets of the parameters (14) and (15) correspond to the case when the
linearly coupled system breaks up into a pair of uncoupled equations describing linear
oscillations.

Using (14), we can express the coefficients of the quadratic monomials in the following
form:

for mode I and II

a3 = −
a1

(
2H2Ω

4 (a1 − 1)
2
+
(
H1

(
K2 +Ω2 (2− 3 a1)

)
+ 2H3Ω

4 (a1 − 1)
2
)
a1

)

(K2 +Ω2 (4− 5 a1)) (K2 − Ω2 a1)
,

a4 = 0,

a5 = −
a1
(
H2

(
K2 +Ω2 (2− 3 a1)

)
+
(
2H1 +H3

(
K2 +Ω2 (2− 3 a1)

))
a1
)

(K2 +Ω2 (4− 5 a1)) (K2 − Ω2 a1)
,

b3 = 0,

b4 =
−2 a1

(
H2 Ω

2 (a1 − 1) +
(
H1 +H3 Ω

2 (a1 − 1)
)
a1
)

K2 +Ω2 (4− 5 a1)
, b5 = 0.

(16)
Remark. One can easily see, that the coefficients defined by (16) become infinite,

when the corresponding denominators nullify. This occurs if K2 − Ω2a1 = 0, K2 −
Ω2 (5 a1 − 4) = 0, K2 − Ω2 (10 a1 − 9) = 0, and so on. In these cases the corresponding
resonances take place, namely 1 : 1, 1 : 2, 1 : 3, ..., and the coupled system cannot be
presented as a pair of uncoupled ones.

In the third order approximation we get:
for mode I and II

a7 = a9 = 0, b6 = b8 = 0, (17)

while the rest ones are nonzero. We don’t present them because they are very cumber-
some.

Since u′ = v, v′ = f1(u, v,X2, Y2), then taking into account the parameters values
corresponding to the first mode, we get the following planar system (instead of the fourth
order one):

u′ = v, v′ = µ1u+ µ2u
2 + µ3v

2 + µ4u
3 + µ5uv

2, (18)

where µ1 = Ω2(a1 − 1), µ2 = Ω2a3, µ3 = Ω2a5, µ4 = Ω2a6, µ5 = Ω2a8. Note that the
value

√
µ1 coincides with the pair of eigenvalues of the matrix J .

Nonlinear system (18) proves to be completely integrable. Indeed, dividing the second
equation by the first one, we obtain the following equation:

1

2

dρ

du
= µ1u+ µ2u

2 + µ3ρ+ µ4u
3 + µ5uρ, (19)

where ρ = v2. The general solution of (19) can be presented in the form

v2 = 2

∫ u

u0

(
µ1τ + µ2τ

2 + µ4τ
3
)
exp [(u − τ)(2µ3 + µ5(u+ τ))] dτ+

+v2
0
exp [(u− u0)(2µ3 + µ5(u+ u0))] ,

(20)
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a) µ1 > 0, ∆ > 0 b) µ1 < 0, ∆ < 0

c) µ1 < 0, ∆ > 0 d) µ1 < 0, ∆ > 0, µ2 = −1.3274589

Figure 1: The phase portraits of dynamical system (19) at the different values of the parameters
µi.

where (u0, v0) stand for the initial data. Hence, the general solution of system (18) has
the form s =

∫
v−1du. To analyze the behavior of the solution obtained, it is desired to

perform the qualitative integration [13] of the planar system (18).
The fixed points of system (18) have the coordinates

v = 0, u1 = 0, u2 =
−µ2 −

√
µ2

2
− 4µ1µ4

2µ4

, u3 =
−µ2 +

√
µ2

2
− 4µ1µ4

2µ4

.

The fixed points (u2,3; 0) exist if ∆ ≡ µ2

2 − 4µ1µ4 ≥ 0. The type of the fixed points is
defined by the eigenvalues λ of the linearized matrix

M =

(
0 1

µ1 + 2µ2ui + 3u2

i 0

)
.

For the fixed point (0; 0) λ2 = µ1 then if µ1 < 0 the fixed point is a center, if µ1 > 0
then it is a saddle. For another fixed points, if λ2 = µ1 + 2µ2ui +3u2

i < 0 then the fixed
points are centers otherwise they are saddles. Let us consider the typical phase portraits
of dynamical system (18).

We can distinguish the following cases
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• µ1 > 0. The phase plane has a saddle (0; 0) if ∆ < 0; the phase plane has a saddle
(0; 0) and a pair (u2,3; 0) of centers, if ∆ > 0 (Figure 1a).

• µ1 < 0. In the case when ∆ < 0, there is a center (0; 0) at the origin, Figure
1b. In the case ∆ > 0 the center is accompanied by the pair of saddles (u2,3; 0).
Separatrices of one of the saddles form a homoclinic loop, whereas the separatrices
of another one do not intersect, and surround the homoclinic loop (Figure 1c).

The last case is more complicated and interesting. Indeed, small changes of the
parameters (e.g. µ2) may cause a global qualitative changes of the phase portrait. The
saddle separatrices under certain conditions can interconnect, forming a heteroclinic loop.

Using the exact solution (20), one can estimate the conditions of the heteroclinic
loop creation. Suppose that a trajectory connecting the fixed points (u2, 0) and (u3, 0)
exists. Then the coordinates of the fixed points must satisfy relation (20), where u0 = u2,
v0 = 0, u = u3, v = 0. As a result, the following relation is derived

∫ u2

u3

(
µ1τ + µ2τ

2 + µ4τ
3
)
exp [(u2 − τ)(2µ3 + µ5(u2 + τ))] dτ = 0.

It poses certain restrictions on the parameters of the dynamical system, the value of some
parameter can be calculated precisely. Following this way, we succeeded in constructing
the figure 1d, corresponding to µ1 = −1, µ3 = 3, µ4 = 0.5, and µ5 = −2.

3 Application of Local Analysis to the Dynamical System

Let us apply the results presented above to the investigation of the local dynamics of the
system (9) in the vicinity of the fixed points. For the parameters values D = 0.9, ω = 1,
m = 0.8, e1 = 1, e3 = 0.7, η = 0.105, θ = 0.7 the linearization matrix J taken at the fixed
point (Z1; 0;R1; 0) has the eigenvalues (±1.767i;±0.606). At the fixed point (Z2; 0;R2; 0)
the eigenvalues of J are the following: (±2.256i;±0.671i). In the vicinity of each fixed
point the system (9) splits into a pair of separated planar dynamical systems,both written
in the form (18), but differing by the values of the parameters µi.

Thus, for fixed point (Z2; 0;R2; 0), the mode I is described by the dynamical system
(18) with µi = {−5.0882,−17.8235,−4.1475,−128.7057,−26.4049}. The corresponding
phase plane of the system is depicted in Figure 1b.

The parameters µi = {−0.4504,−0.4457, 0.3738, 0.4805,−2.4475} relate to the mode
II. Then dynamical system (18) has three fixed points (0; 0), (−0.6097; 0), (1.5373; 0) and
the phase plane is presented in Figure 2.

The analysis of the system (18) in the vicinity of the fixed point (Z1; 0;R1; 0) is carried
out in the same way. The parameter values µi = {−3.1214,−4.7475,−1.6104,
− 16.4902,−5.3289} correspond to the mode I. Corresponding phase portrait is shown in
Figure 1b.

For the mode II we have the following values of the parameters µi =
{0.367067,−0.06678, 0.9554,−0.8903, 0.0763}. The phase plane of the system (18) con-
tains the fixed points with the coordinates (0; 0), (0.6057; 0), (−0.6807; 0). Its phase
portrait is illustrated by Figure 1a.

It is well known, that the presence of the homoclinic loops in the phase space of
the multidimensional dynamical system can lead to the very complex dynamical be-
haviour [14]. In the case under consideration the homoclinic loops observed in the phase
portrait of system (18) can rupture in the next approximations, causing the presence of
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Figure 2: Phase plane of dynamical system (18).

complicated dynamics, coexisting with the homoclinic loops. In this case the complex
trajectories can be observed in the phase space of a dynamical system.

In order to check the existence of complicated regimes, we integrated the dynamical
system (9) numerically. In numerical experiments all the parameters but one were fixed.
The θ played the rule of the bifurcation parameter. We started from the value θ of the
order 0.01. Starting from the initial data

(
10−6; 0; 0; 0

)
, we obtained the trajectories

oscillating closely to the saddle separatices of the stationary point placed at the origin.
Note, that for small θ a qualitative behavior of separatrices can be obtained by means of
the asymptotic analysis.

a b

Figure 3: The Poincare sections of the tori existing in the phase space of dynamical system (9)
at a) θ = 0.7, b) θ = 0.72.

Now let us consider the case when θ ∼ O(1). It is evident that different initial data
for dynamical system (9) lead to surfaces with different structure. We considered the
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a b

Figure 4: The Poincare sections of the tori existing in the phase space of dynamical system (9)
at a) θ = 0.74, b) θ = 0.7517.

most interesting of them only. Integrating the dynamical system (9) with the initial data
(0.6; 0.3; 0.8; 0.4) and θ = 0.7, one can observe the torus. For its visualization, we used
the Poincare section technique. Let the surface Z = 0.8 be the target hyperplane. The
locus of the intersection of the trajectories with the hyperplane Z = 0.8 is a 3D set.
The part of this set is projected on the two-dimensional coordinate plane (Y ;R) and is
depicted in figure 3a. Analyzing the obtained Poincare section, we see that the torus
surface consists of four separated pipes.

Let us choose θ = 0.72 and integrate dynamical system (9) from the same initial
data. Using the same section plane, we get another Poincare diagram (fig.3b). The
main peculiarities of the diagram are the appearance of the pipe of large radius and the
presence of tightly enclosed pipes. The set of curves drown in the diagram looks like a
fractal structure, though this has not been studied in detail yet. If parameter θ increases
(Figure 4) the structure of the internal region changes most of all. Besides, one can select
the regions that the running point visits more frequently (see the pointers in Figure 4).

The analysis of the Poincare sections shows that the trajectories in the four dimen-
sional phase space of dynamical system (9) form a complex object which undergoes
bifurcations as the parameter θ increases.

Applying the results of the local asymptotic analysis of the dynamical system (9) we
can state, that the complex behavior of the phase space is connected with the reorgani-
zation of the homoclinic trajectories and their neighborhoods.

4 Conclusion

In summary, we would like to stress a key role of nonlocal effects, nonlinearity, and oscil-
lating degrees of freedom in the formation of complex wave regimes. When the load ap-
plied senses the internal structure of media (and this is the case when the spatio-temporal
characteristics of the load and the elements of the internal structure are comparable),
then we cannot neglect the dynamics of internal degrees of freedom. Let us stress, that
results obtained in this study essentially differ from those predicted by linear models
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(both local and nonlocal ones) [7].
From the mathematical point of view investigations of the modelling system (1)-

(2) are more difficult in comparison with their local analogs, nevertheless, under some
additional assumptions they can be treated within the traditional asymptotic techniques.
Besides, the variety of observed regimes indicate the existence of another important type
of solutions, inherent for essentially nonlocal models.
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Abstract: In this paper we have built special exact solutions to rotating stratified
Boussinesq equations in the form of nonlinear plane waves. We also conclude that
these solutions grow exponentially in unstable stratifications. Whereas, in the special
case of stable stratification these waves are oscillatory in nature. Consequently, we
determined internal gravity waves and some sinusoidal wave forms.
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1 Introduction

The stratified Boussinesq equations form a system of PDEs modelling the movements
of planetary atmospheres. It may be noted that the Boussinesq approximation in the
literature is also referred to as the Oberbeck-Boussinesq approximation for which, the
reader is referred to an interesting paper of Rajagopal et al [1] providing a rigorous
mathematical justification of use of these equations as perturbations of the Navier-Stokes
equations. Majda & Shefter [2] have chosen certain special solutions of this system of
PDEs to demonstrate onset of instability when the Richardson number is less than 1/4.
In their study of instability in stratified fluids at large Richardson number, Majda &
Shefter [2] have obtained the exact solutions to stratified Boussinesq equations neglecting
the effects of rotations and viscosity. Further, in the absence of strain field Srinivasan et
al [3] have shown that the reduced system of ODEs is completely integrable. Desale and
Dasre [4] have obtained the numerical solutions of this reduced system of ODEs. For the
similar kind of work the reader may refer to Maas [5,6]. In his monograph Majda [7] has
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obtained the special solution of stratified Boussinesq equations excluding the effects of
viscosity and finite rotation. Whereas, Desale & Sharma [8] included the effect of rotation.
In his earlier study Desale [9] has proved the complete integrability of the system of six
coupled ODEs, which arises in the reduction of rotating stratified Boussinesq equations
in context to the theory of basin scale dynamics. Since the rotating stratified Boussinesq
equations admit the periodic solution near the critical point. On the other hand Desale
& Patil [10] deployed the Painlevé test to determine the complete integrability of the
same system. Further, the stability criteria can be resolved via Floquet theory. In their
paper Slane & Tragesser [11] explained the use of Floquet theory to discuss the stability
of homogeneous parametrically excited system.

In this paper we deploy the procedure of Majda & Shefter [2] to build the exact
solutions of rotating stratified Boussinesq equations in the form of nonlinear plane waves.
In the steady state these solutions increase exponentially. We conclude that the steady
state is unstable. Whereas, in the special case of stable stratification these waves are
oscillatory in nature. In this case, we also find internal gravity waves as some sinusoidal
wave forms.

2 Nondimensional Rotating Stratified Boussinesq Equations

The motion of an incompressible flow of fluid in the atmosphere and in the ocean is
considered where, the flow velocities are too slow to account for compressible effects.
The flow of fluid is governed by the following rotating stratified Boussinesq equations
(we ignore the effects of viscosity and heat dissipation) that involve the interaction of
gravity with density stratification about the reference state.

D~v

Dt
+ f(ê3 × ~v) = −∇

p̃

ρb
−

gρ

ρb
ê3,

div~v = 0,
Dρ̃

Dt
= 0,

(1)

where D/Dt = ∂/∂t+~v·∇, the unit vector in vertical direction is ê3 = (0, 0, 1), the space
variable ~x = (x1, x2, x3) and fluid velocity is given by ~v = (v1, v2, v3). The full density
ρ̃ consists of perturbations ρ about the density ρ in hydrostatic balance, which itself
creates only small deviations from the baseline constant ρb, ρ̃(~x, t) = ρb+ρ(x3)+ρ(~x, t).
We make the usual assumption valid for local consideration that dρ/dx3 is constant.

Now we consider the following nondimensional form of (1). For more details one may
refer to Desale & Sharma [8].

D~v

Dt
+

1

R0
~u = −P∇p− Γρê3,

div ~v = 0,
Dρ̃

Dt
=

Dρ

Dt
+

(
dρ

dx3

)
v3 = 0.

(2)

Here, we have ~u = (u1, u2, u3) = ê3 × ~v, Γ is the nondimensional number, R0 is the
Rossby number and P is the Euler number. Nondimensional density function is

ρ̃(~x, t) = ρb + ρ(x3) + ρ(~x, t). (3)
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The more elaborative discussion about the nondimensional analysis of rotating stratified
Boussinesq equations is also given by Majda in his monograph [7]. In the following
section we have obtained exact solutions of (2) in the form of nonlinear plane waves.

3 Nonlinear Plane Waves

In this section we have determined the exact solutions of rotating stratified Boussinesq
equations (2) in the form of nonlinear plane waves. These solutions are suggested by the
following Theorem 3.1. The following trivial lemma is useful step towards the proof of
Theorem 3.1.

Lemma 3.1 For ~v of the form ~v = ~A(t)F (~α(t) · ~x), div ~v = 0 implies

(i) ~A(t) · ~α(t) = 0 and
(ii) ~v · ∇W (~α(t) · ~x) = 0,

for arbitrary W , where ~A(t) = (A1(t), A2(t), A3(t)) and ~α(t) = (α1(t), α2(t), α3(t)).

For the proof of this lemma one may refer to Majda [7], pp. 20.

Theorem 3.1 The rotating stratified Boussinesq equations (2) have exact solutions
in the form of nonlinear plane waves

~v = ~A(t)F (~α(t) · ~x), ρ = B(t)F (~α(t) · ~x), p = P (t)G(~α(t) · ~x), (4)

where F and G are arbitrary functions of ~α(t) · ~v with the condition G′(s) = F (s)

provided that ~α(t), ~A(t), B(t) and P (t) satisfy the following ODEs:

d~α

dt
= 0,

~A(t) · ~α(t) = 0,

P (t) = −
1

R0P

(
~α(t) · (ê3 × ~A(t))

|~α(t)|2

)
−

Γα3(t)

P |~α(t)|2
B(t),

d~A(t)

dt
=

−1

R0
(ê3 × ~A(t)) +

[
~α(t) · (ê3 × ~A(t))

R0|~α(t)|2
+

Γα3(t)

|~α(t)|2
B(t)

]
~α(t)− ΓB(t)ê3,

dB(t)

dt
+

dρ

dx3
A3(t) = 0.

(5)

Proof. Now we begin with the first equation of (2)

∂~v

∂t
+ ~v · ∇~v = −

1

R0
(ê3 × ~v)− P∇p− Γρê3.

We have ~v = ~A(t)F (~α(t) · ~x), ρ = B(t)F (~α(t) · ~x), p = P (t)G(~α(t) · ~x) and div ~v = 0.
Hence by substituting ~v, ρ and p in above equation with G′(s) = F (s) and using Lemma
3.1 we get
(
d~A

dt
+

1

R0
(ê3 × ~A) + PP (t)~α(t) + ΓB(t)ê3

)
F (~α · ~x) = −~A

(
d~α

dt
· ~x

)
F ′(~α · ~x). (6)
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Since F and F ′ are arbitrary functions, they must be treated as independent terms

implying d~α(t)
dt

= 0, which is the first equation of (5). Consequently, (6) gives us

d~A(t)

dt
= −

1

R0
(ê3 × ~A(t))− PP (t)~α(t)− ΓB(t)ê3. (7)

Lemma 3.1 proves the second equation of (5). Taking time derivative of ~A(t) · ~α(t) = 0

with the validity of the first equation of (5), we have d~A(t)
dt

· ~α(t) = 0. Then we take the

dot product of the equation above for d~A(t)
dt

with ~α(t) and we determine equation for
P (t) as in the required form in (5). Plugging back P (t) into (7) and recasting it we get
the fourth equation of (5). Finally plugging plane waves into the third equation of (2)
we get the differential equation for B(t) as in the form of the last equation of (5). Hence
we complete the proof of the theorem. 2

The first equation in (5) shows that vector ~α(t) is a constant vector and we have
dρ
dx3

is constant. We can write ~α = (α1, α2, α3) and the last two equations of (5) can be
written in component form as:

dA1(t)

dt
=

1

R0
A2(t) +

[
A1(t)α2 −A2(t)α1

R0|~α|2
+

Γα3B(t)

|~α|2

]
α1,

dA2(t)

dt
= −

1

R0
A1(t) +

[
A1(t)α2 −A2(t)α2

R0|~α|2
+

Γα3B(t)

|~α|2

]
α2,

dA3(t)

dt
=

[
A1(t)α2 −A2(t)α2

R0|~α|2
+

Γα3B(t)

|~α|2

]
α3 − ΓB(t),

dB(t)

dt
+

(
dρ

dx3

)
A3(t) = 0.

(8)

We see that above system (8) is a linear system with constant coefficients, hence there
exists a unique solution passing through the given initial values that satisfy the condition
~A(t) · ~α = 0. Plugging these solutions into plane waves given by (4), we determine the
physical terms velocity, density and pressure.

In the following section we classified the fluids in the special case of plane waves in
which the vectors ê3, ~A(t) and ~α are coplanar. Consequently we determined the internal
gravity waves and sinusoidal waves.

4 Classification in the Special Case of Plane Waves

In this section we consider the special case of plane waves in which ê3, ~A(t) and ~α are

coplanar. It means we consider ê3 · (~A(t)× ~α) = 0. So that equations (8) reduce to

dA1(t)

dt
=

1

R0
A2(t) +

Γα3α1

|~α|2
B(t),

dA2(t)

dt
= −

1

R0
A1(t) +

Γα3α2

|~α|2
B(t),

dA3(t)

dt
=

(
α2
3

|~α|2
− 1

)
ΓB(t),

dB(t)

dt
=

(
−

dρ

dx3

)
A3(t).

(9)
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The scalar function P (t) in pressure term becomes

P (t) = −
Γα3

P |~α|2
B(t). (10)

Differentiating the last equation of (9) with respective time variable t we get

d2B(t)

dt2
=

(
−

dρ

dx3

)
dA3(t)

dt
. (11)

We recast the above equation by plugging back the equation for dA3(t)
dt

from the third
equation of (9) as follows

d2B(t)

dt2
=

dρ

dx3

(
1−

α2
3

|~α|2

)
ΓB(t) = −ω2(~α)B(t). (12)

Thus we observe that the behavior of solutions depends on the sign of ω2. Because the
Γ is nondimensional positive number and angular term in parentheses is always positive,
the overall sign depends on the sign of the density gradient dρ

dx3

.

• Case(i): dρ

dx3

> 0 (Heavier fluids on top). This case will have exponentially

growing solutions of the form e|ω|t. We conclude that steady state is unstable.
• Case(ii): dρ

dx3

< 0 (Heavier fluids at bottom). In this case equation (12)
suggests that solutions will be oscillatory in nature. Hence we refer to it as stable
stratification.

4.1 Sinusoidal Waves

In this subsection we determine sinusoidal plane waves in stable stratifications for dρ
dx3

<
0. We write the nondimensional form of buoyancy frequency or Brunt-Väisälä frequency

N =

(
−Γ

dρ

dx3

)1/2

. (13)

We use the notation to the general parameter ~α as wave vector ~k = (k1, k2, k3) =

(~kH , k3) = ~α = (α1, α2, α3), so that ω as defined in (12) is given by

ω(~k) = N
|~kH |

|~k|
. (14)

The general solution of (12) is

B(t) = c1 sin(ω(~k)t) + c2 cos(ω(~k)t), (15)

where c1 and c2 are arbitrary constants. The scalar function in pressure terms is given
by

P (t) = −
Γk3

P |~k|2

[
c1 sin(ω(~k)t) + c2 cos(ω(~k)t)

]
. (16)

Substituting (15) into the last equation of (9) we determine A3(t) as:

A3(t) =
Γ|~kH |

N |~k|

[
c1 cos(ω(~k)t)− c2 sin(ω(~k)t)

]
. (17)
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Now to determine A1(t) and A2(t) we have the vector ê3, ~A(t) and ~k are coplanar.
So that they satisfy the equation A2(t)k1 − A1(t)k2 = 0. But A(t) is a function of time

variable t and wave vector ~k is constant. Hence to meet the requirement A2(t)k1 −

A1(t)k2 = 0, we consider the following cases that are related with the magnitude ~kH .

1. |~kH | 6= 0: In this case we have the following possibilities.

(a) Suppose that k1 6= 0, k2 = 0. But this assumption along with A2(t)k1 −
A1(t)k2 = 0 implies that A2(t) = 0. If we plug A2(t) = 0 in the first and
second equations of (9) and solve these equations we get A1(t) = 0. This is
also true in either case k1 = 0 and k2 6= 0.

(b) Suppose k1 6= 0, k2 6= 0. But we required that A2(t)k1 −A1(t)k2 = 0, so that
A1(t) must be equal to the constant multiple of A2(t). But in order to satisfy
the first and second equations of (9) we conclude that A1(t) and A2(t) must
be equal to zero.

In this case we have

A1(t) = 0, A2(t) = 0,

A3(t) =
Γ|~kH |

N |~kH |

(
c1 cos(ω(~k)t)− c2 sin(ω(~k)t)

)
,

B(t) = c1 sin(ω(~k)t) + c2 cos(ω(~k)t),

P (t) = −
Γk3

P |~k|2

[
c1 sin(ω(~k)t) + c2 cos(ω(~k)t)

]
.

(18)

In order to write the physical variables, we must merely remember their definitions
in Theorem 3.1. Recalling that G′(s) = F (s), we have

~v =
Γ|~kH |

N |~k|

[
c1 cos(ω(~k)t)− c2 sin(ω(~k)t)

]
F (~k · ~x)ê3,

ρ =
[
c1 sin(ω(~k)t) + c2 cos(ω(~k)t)

]
F (~k · ~x),

p = −
Γk3

P |~k|2

[
c1 sin(ω(~k)t) + c2 cos(ω(~k)t)

]
G(~k · ~x).

(19)

Equations (19) represent the special case of nonlinear plane waves with k3 6= 0
and are supported by the stable stratification, so we call them the internal gravity
waves.

In order to find sinusoidal wave forms, we put

F (~k · ~x) = sin(~k · ~x). (20)

The density function in this case is

ρ =
c1
2

[
cos(ω(~k)t− ~k · ~x)− cos(ω(~k)t+ ~k · ~x)

]

+
c2
2

[
sin(ω(~k)t+ ~k · ~x)− sin(ω(~k)t− ~k · ~x)

]
.

(21)
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These calculations illustrate that there are waves moving in different directions
corresponding to the two branches of dispersion relation. Let us simplify the case
c2 = 0 and we write the solutions

ρ =
c1
2

[
cos(ω(~k)t− ~k · ~x)− cos(ω(~k)t+ ~k · ~x)

]
,

p =
c1
2

Γk3

P |~k|2

[
sin(ω(~k)t− ~k · ~x) + sin(ω(~k)t+ ~k · ~x)

]
,

~v =
c1
2

Γ|~kH |

N |~k|

[
sin(ω(~k)t+ ~k · ~x)− sin(ω(~k)t− ~k · ~x)

]
ê3.

(22)

2. |~kH | = 0 : In this case the horizontal components of wave vector are k1 = k2 = 0.

The vector ~A(t) and scalar function B(t) have to satisfy the following differential
equations:

dA1(t)

dt
=

1

R0
A2(t),

dA2(t)

dt
= −

1

R0
A1(t),

dA3(t)

dt
= 0,

dB(t)

dt
=

(
−

dρ

dx3

)
A3(t).

(23)

Solving these equations, we get

A1(t) = c1 cos(t/R0) + c2 sin(t/R0),

A2(t) = −c1 sin(t/R0) + c2 cos(t/R0),

A3(t) = c3, B(t) = c4(−
dρ

dx3

)t+ c5,

(24)

where c1, c2, c3, c4 and c5 are arbitrary constants. The scalar function P (t) in
pressure term is

P (t) = −
Γ

Pk3

[
c4

(
−

dρ

dx3

)
t+ c5

]
. (25)

In this special case of plane waves, the physical terms, namely the velocity, density
and pressure involved in (2) are given by the following equations

~v =
(
c1 cos(

t
R0

) + c2 sin(
t
R0

), −c1 sin(
t
R0

) + c2 cos(
t
R0

), c3

)
F (k3x3),

ρ =
(
c4(−

dρ

dx3

)t+ c5

)
F (k3x3),

p = − Γ
Pk3

[
c4

(
− dρ

dx3

)
t+ c5

]
G(k3x3).

(26)

Now we put F (~k · ~x) = F (k3x3) = sin(k3x3) in equations (26) with G′(s) = F (s)
to determine the sinusoidal wave forms. These wave forms are:

~v=
(

c1
2

[
sin( t

R0

+ k3x3)−sin( t
R0

− k3x3)
]
+ c2

2

[
cos( t

R0

− k3x3)−cos( t
R0

+ k3x3)
]
,

− c1
2

[
cos( t

R0

− k3x3)− cos( t
R0

+ k3x3)
]
+ c2

2

[
sin( t

R0

+ k3x3)− sin( t
R0

− k3x3)
]
,

c3 sin(k3x3)
)
,

ρ =
[
c3(−

dρ

dx3

)t+ c4

]
sin(k3x3),

p = Γ
Pk2

3

[
c3

(
− dρ

dx3

)
t+ c4

]
cos(k3x3).

(27)
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The sinusoidal waves given by (27) with k3 6= 0 are supported by stable stratification
so termed as internal gravity waves.

5 Conclusion

The special exact solutions of rotating stratified Boussinesq equations (2) in the form of
nonlinear plane waves are obtained from the solutions of linear system (8). In the special

case of fluids in which ê3, ~A(t), ~α = ~k are coplanar and dρ

dx3

> 0, the nonlinear plane
waves given by (9) with P (t) as in (10) grow exponentially. Whereas, if heavier fluids are
at the bottom with k3 6= 0 then the plane waves given by (19) and (26) are oscillatory
in nature. These waves are called the internal gravity waves. The exact solutions of (2)
in the form of sinusoidal waves are given by (22) and (27).
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Abstract: For the ordinary differential equation, y(n) = f(x, y, y′, . . . , y(n−1)), of
order n = 3, 4, or 5, it is shown that the existence of unique solutions of certain 4-
point nonlocal boundary value problems implies a compactness condition on uniformly
bounded sequences of solutions.
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1 Introduction

In a recent paper, for n ≥ 3 and 1 ≤ k ≤ n − 1, Henderson [6] studied solutions of the
ordinary differential equation,

y(n) = f(x, y, y′, . . . , y(n−1)), a < x < b, (1)

satisfying the (k + 2)-point nonlocal boundary conditions,

y(i−1)(xj) = yij , 1 ≤ i ≤ mj, 1 ≤ j ≤ k,
y(xk+1)− y(xk+2) = yn,

(2)

for positive integers m1, . . . ,mk such that m1 + · · ·+mk = n− 1, points a < x1 < x2 <
· · · < xk < xk+1 < xk+2 < b, real values yij , 1 ≤ i ≤ mj , 1 ≤ j ≤ k, and yn ∈ R.
In particular, sufficient conditions were given under which the existence of solutions for
4-point nonlocal boundary value problems for (1), (2), (that is, when k = 2), led to the
existence of unique solutions of (k + 2)-point nonlocal boundary value problems for (1),
(2), for all 1 ≤ k ≤ n− 1.

Fundamental to that paper’s main result was the following list of assumptions on
solutions of (1).

† In memory of Professor Keith W. Schrader, April 22, 1938 – December 27, 2010.
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(A) f : (a, b)× R
n → R is continuous.

(B) Solutions of initial value problems for (1) are unique and extend to (a, b).

(C) Boundary value problems (1), (2), for k = 2, have solutions on (a, b).

(D) Boundary value problems (1), (2), for k = n− 2, have at most one solution.

(E) If {yν(x)} is a sequence of solutions of (1) which is uniformly bounded on a non-
degenerate compact subinterval [c, d] ⊂ (a, b), then there is a subsequence {yνj (x)}

such that {y
(i)
νj (x)} converges uniformly on each compact subinterval of (a, b), for

each i = 0, . . . , n− 1.

Under these assumptions, and in conjunction with a uniqueness implies existence
result by Eloe and Henderson [3], the following existence result was the main result of
paper [6].

Theorem 1.1 Assume that with respect to (1), conditions (A)–(E) are satisfied.

Then, for each 1 ≤ k ≤ n− 1, solutions of (1), (2) exist and are unique on (a, b).

One question that arises, and which is the motivation for this paper, is whether
conditions (A) – (D) imply the so-called “Compactness Condition” (E) on sequences of
solutions of (1). The study of hypotheses sufficient to imply (E) has a long history,
especially in the context of boundary value problems for (1) satisfying ℓ-point conjugate
boundary conditions, for 2 ≤ ℓ ≤ n, of the form,

y(i−1)(tj) = rij , 1 ≤ i ≤ pj , 1 ≤ j ≤ ℓ, (3)

where p1, . . . , pℓ are positive integers such that p1 + · · ·+ pℓ = n, a < t1 < · · · < tℓ < b,
and rij ∈ R, 1 ≤ i ≤ pj , 1 ≤ j ≤ ℓ.

In the conjugate boundary value problem context, a principal question of the 1960’s
through the mid-1980’s involved whether conditions (A) and (B) and uniqueness of so-
lutions of n-point conjugate boundary value problems (1), (3) implied the Compactness
Condition (E). This was answered in the affirmative for equation (1), when n = 2 and
3, by Jackson [10] and Jackson and Schrader [13]. Other extensive inroads were made in
addressing the question for (1) of arbitrary order n in the papers [1,5,7–9,11,12,14–17].
In 1985, in an unpublished paper, Schrader [18] announced that the conjecture had been
verified. Later, Agarwal [2] gave a detailed presentation of the history and resolution of
the conjecture for conjugate boundary value problems.

Much in the spirit of the work done regarding (E) with respect to solutions of con-
jugate boundary value problems, we show in this paper that when (1) is of any of the
orders, n = 3, 4, or 5, then existence of unique solutions of (1), (2), for k = 2, and
conditions (A) and (B) imply the Compactness Condition (E).

Each of these cases for n will depend on continuous dependence of solutions of (1), (2)
on boundary conditions. We will refer to the following continuous dependence theorem
[3], whose proof relies on a standard application of the Brouwer theorem on invariance
of domain [19].

Theorem 1.2 Assume that with respect to (1), (2), conditions (A) and (B) are

satisfied. Assume that, for k = 2 and any positive integers m1 and m2 such that m1 +
m2 = n− 1, solutions of the corresponding nonlocal boundary value problem (1), (2) are
unique, when they exist. Given a solution y(x) of (1), an interval [c, d], points c < x1 <
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x2 < x3 < x4 < d and an ǫ > 0, there exists δ(ǫ, [c, d]) > 0 such that, if |xi − ξi| < δ,
i = 1, 2, 3, 4, and c < ξ1 < ξ2 < ξ3 < ξ4 < d, and if |y(i−1)(xj) − zij | < δ, 1 ≤ i ≤ mj ,
j = 1, 2 and |y(x3)− y(x4) − zn| < δ, then there exists a solution z(x) of (1) satisfying

z(i−1)(ξj) = zij, 1 ≤ i ≤ mj , j = 1, 2, z(ξ3) − z(ξ4) = zn, and |y(i)(x) − z(i)(x)| < ǫ on

[c, d], 0 ≤ i ≤ n− 1.

2 The Compactness Condition: n =3, 4, 5

In this section, we show that, for n = 3, 4, or 5, conditions (A) and (B) and the existence
of unique solutions of (1), (2), for k = 2, imply the Compactness Condition (E).

Theorem 2.1 For n = 3, 4, or 5, assume that with respect to (1), conditions (A)
and (B) hold, and in addition, that there exist unique solutions of (1), (2), for k = 2.
Then condition (E) also holds.

Proof. We will address the case of each n independently.
(a) n = 3. In this case, we are assuming that, for each pair of positive integers m1 and
m2 such that m1 +m2 = n− 1 = 2 (that is, m1 = m2 = 1), there exist unique solutions
of (1), (2); that is, there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y(x3)− y(x4) = y3,

where a < x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R. From Rolle’s theorem, solutions of
3-point conjugate boundary value problems (1), (3) are unique, when they exist. As a
consequence of the Jackson and Schrader [13] result for third order conjugate boundary
value problems, or as a result of the more general result by Schrader [18] which was
detailed in the Introduction, it follows that the Compactness Condition (E) is satisfied.

(b) n = 4. In this case, we are assuming that, for each pair of positive integers
m1 and m2 such that m1 +m2 = n− 1 = 3, there are unique solutions of (1), (2); that
is, for any a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4 ∈ R, there exists a unique
solution of (1) satisfying

y(x1) = y1, y′(x1) = y2, y(x2) = y3, y(x3)− y(x4) = y4,

and there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y′(x2) = y3, y(x3)− y(x4) = y4.

We now assume there are a < c < d < b, a number M > 0, and a sequence {yν} of
solutions of (1) such that, for each ν ≥ 1,

|yν(x)| ≤ M, c ≤ x ≤ d.

Next, let the points c < η1 < x2 < x3 < x4 < d be given. Then, for each ν ≥ 1, there
exists ξν ∈ (c, η1) such that

|y′ν(ξν)| ≤
2M

η1 − c
.

This leads to the five bounded sequences of real numbers,

{ξν} ⊂ (c, η1), {yν(ξν)} ⊂ [−M,M ], {y′ν(ξν)} ⊂

[
−2M

η1 − c
,

2M

η1 − c

]
,

{yν(x2)} ⊂ [−M,M ], and {yν(x3)− yν(x4)} ⊂ [−2M, 2M ].
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Hence, there exist a subsequence {νj} ⊂ {ν}, a point x1 ∈ [c, η1] and γ1, γ2, γ3, γ4 ∈ R

such that

ξνj → x1, yνj (ξνj ) → γ1, y′νj (ξνj ) → γ2,

yνj (x2) → γ3, and {yνj (x3)− yνj (x4)} → γ4.

Now, let y(x) be the solution of (1), (2), for k = 2, satisfying

y(x1) = γ1, y′(x1) = γ2, y(x2) = γ3, and y(x3)− y(x4) = γ4.

It follows from Theorem 1.2 that

lim y(i)νj
(x) = y(i)(x) uniformly on [c, d],

for each i = 0, 1, 2, 3. It follows in turn, from (A) and (B) and the Kamke Convergence
Theorem [4, page 14, Theorem 3.2], that these convergences are uniform on each
compact subinterval of (a, b).

(c) n = 5. This time, we assume that, for each pair of positive integers m1 and
m2 such that m1 + m2 = n − 1 = 4, there are unique solutions of (1), (2); that is, for
any a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4, y5 ∈ R, there exists a unique solution
of (1) satisfying

y(x1) = y1, y′(x1) = y2, y′′(x1) = y3, y(x2) = y4, y(x3)− y(x4) = y5,

there exists a unique solution of (1) satisfying

y(x1) = y1, y′(x1) = y2, y(x2) = y3, y′(x2) = y4, y(x3)− y(x4) = y5,

and there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y′(x2) = y3, y′′(x2) = y4, y(x3)− y(x4) = y5.

Again, we assume there are a < c < d < b, a number M > 0, and a sequence {yν} of
solutions of (1) such that, for each ν ≥ 1,

|yν(x)| ≤ M, c ≤ x ≤ d.

Let the points c < η1 < η2 < η3 < x3 < x4 < d be given. Then, for each ν ≥ 1, there
exist ξν ∈ (c, η1) and σν ∈ (η2, η3) such that

|y′ν(ξν)| ≤
2M

η1 − c
and |y′ν(σν)| ≤

2M

η3 − η2
.

Then we have the seven bounded sequences of real numbers,

{ξν} ⊂ (c, η1), {σν} ⊂ (η2, η3), {yν(ξν)} ⊂ [−M,M ], {y′ν(ξν)} ⊂

[
−2M

η1 − c
,

2M

η1 − c

]
,

{yν(σν)} ⊂ [−M,M ], {y′ν(σν)} ⊂

[
−2M

η3 − η2
,

2M

η3 − η2

]
, & {yν(x3)− yν(x4)} ⊂ [−2M, 2M ].
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As in the previous case, there exist a subsequence {νj} ⊂ {ν}, points x1 ∈ [c, η1] and
x2 ∈ [η2, η3], and γ1, γ2, γ3, γ4, γ5 ∈ R such that,

ξνj → x1, σνj → x2, yνj (ξνj ) → γ1, y′νj (ξνj ) → γ2,

yνj (σνj ) → γ3, y′νj (σνj ) → γ4, and {yνj(x3)− yνj (x4)} → γ5.

Let y(x) be the solution of (1), (2), for k = 2, satisfying

y(x1) = γ1, y′(x1) = γ2, y(x2) = γ3, y′(x2) = γ4, and y(x3)− y(x4) = γ5.

As above, it follows from Theorem 1.2 that

lim y(i)νj
(x) = y(i)(x) uniformly on [c, d],

for each i = 0, 1, 2, 3, 4, and from (A) and (B) and the Kamke Convergence The-
orem [4, page 14, Theorem 3.2], these convergences are uniform on each compact
subinterval of (a, b). 2

We remark that in [6], it was proved that condition (D) implies uniqueness of solutions
of (1), (2), when solutions exist, for 1 ≤ k ≤ n − 2. As a consequence of that and by
Theorem 2.1, we can give a stronger result than Theorem 1.2, for n = 3, 4, 5.

Theorem 2.2 For n = 3, 4, or 5, assume that with respect to (1), conditions (A)–
(D) are satisfied. Then, for each 1 ≤ k ≤ n−1, solutions of (1), (2) exist and are unique

on (a, b).
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Abstract: In this paper we present a reliable algorithm for solving a system of
Volterra integro-differential equations using Taylor series expansion method and com-
puter algebra. This method converts a system of Volterra integro-differential equa-
tions to a system of linear algebraic equations. Some illustrative examples have
been presented to illustrate the implementation of the algorithm and efficiency of the
method.
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1 Introduction

A number of problems in chemistry, physics and engineering are modeled in terms of
system of Volterra integro-differential equations. Various methods have been developed
to prove existence and uniqueness of solutions to integro-differential equations [3].

In this paper, we use a modified Taylor-series expansion method for solving system of
Volterra integro-differential equations. This method was first presented by Kanwal and
Liu et. al. [1] for solving integral equations and in [2, 6] for solving Fredholm integral
equations of second kind. Daftardar-Gejji et. al. have used this method for solving
system of ordinary differential equations [4]. Maleknejad et. al. have applied this
method for solving Volterra integral equations and system of Volterra integral equations
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of second kind [5,7]. Yalcinbas and Sezer [8] have studied the following type of nonlinear
Fredholm-Volterra integral equations

y(x) = f(x) + λ1

∫ x

a

k1(x, t)[y(t)]
p dt+ λ2

∫ b

a

k2(x, t)y(t) dt, (1)

and the high-order linear and nonlinear Volterra-Fredholm integro-differential equations
have been considered in [9, 10]

m∑
j=0

Pj(x) y
(j)(x) = f(x) + λ1

∫ x

a

k1(x, t)y(t) dt + λ2

∫ b

a

k2(x, t)y(t) dt, (2)

m∑
j=0

Pj(x) y
(j)(x) = f(x) + λ1

∫ x

a

k1(x, t)[y(t)]
p dt+ λ2

∫ b

a

k2(x, t)[y(t)]
q dt. (3)

In this paper, the basic ideas of the previous work [6] are developed and applied to the
high-order system of Volterra integro-differential equation of the form

n∑
i=1

m∑
j=0

aijs(x) y
(j)

i (x) = fs(x) +

n∑
i=1

∫ x

a

kis(x, t)yi(t)dt, s = 1, 2, · · · , n, (4)

where aijs(x) , fs(x) (s = 1, 2, · · · , n) and kis(x, t) are known functions which are lth
derivatable on interval a ≤ x, t ≤ b.

We assume that (4) has a unique solution. Suppose the solution of (4), can be
expressed in the form:

yi(x) =

N∑
r=0

1

r!
y
(r)

i (ξ) (x− ξ)r, a ≤ x, ξ ≤ b, (5)

which is a Taylor polynomial of degree N , where N ≥ {nijs, ns}, and y(s)(ξ) (s =
0, 1, · · · , N) are the coefficients to be determined.

2 Analysis of Method

First, we rewrite (4) in the following form

D(x) = I(x), (6)

where D(x) = [D1(x), D2(x), ..., Dn(x)]
T , I(x) = [I1(x), I2(x), ..., In(x)]

T ,

Ds(x) =
n∑

i=1

m∑
j=0

aijs(x)y
(j)

i (x), Is(x) = fs(x) +
n∑

i=1

Vis(x), s = 1, 2, · · · , n, (7)

with

Vis(x) =

∫ x

a

kis(x, t)yi(t)dt. (8)

Then D(x) is called the differential part and I(x) the integral part of (4). Differentiating
Eq. (6) N times with respect to x, we get

Dl
s(x) = I ls(x), l = 0, 1, · · · , N, s = 1, 2, · · · , n. (9)
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In the following part, we will analyse the expressions Dl
s(x) and I ls(x). It is easy to see

that

D(l)
s (x) =


 n∑

i=1

m∑
j=0

aijs(x) y
(j)

i (x)



(l)

=


 m∑
j=0

a1js(x) y
(j)
1

(x)



(l)

+ · · ·+


 m∑
j=0

anjs(x) y
(j)
n (x)



(l)

,

l = 0, 1, · · · , N, s = 1, 2, · · · , n (10)

Using Leibnitz’s rule (dealing with differentiation of products of functions), simplifying
and then substituting x = ξ into the resulting relation, we can get

D(l)
s (x) =

n∑
i=1

m∑
j=0

l∑
p=0

(
l

p

)
a
(l−p)

ijs (x) y
(p+j)

i (x), l = 1, 2, · · · , N, s = 0, 1, · · · , n. (11)

The system (11) can be written in the matrix form as:

D = WY, (12)

where Y =
[
y
(0)

1
, y

(1)

1
, · · · , y

(N)

1
, y

(0)

2
, · · · , y

(N)

2
, · · · , y

(0)

n , · · · , y
(N)

n

]T
. Note that

W = [Wis] i, s = 1, 2, · · · , n, (13)

is a matrix, where each Wis is again a matrix:

wlp
is =

m∑
q=0

(
l

p−m+ q

)
a
(l−p+m−q)

im−qs (ξ), l, p = 0, 1, · · · , N. (14)

Note: For r < 0, a
(r)

ijs = 0 and for j < 0 and j > i,

(
i

j

)
= 0, where i, j and r are

integers. On the other hand, for the integral part I ls(x), it is easy to know that

I(l)s (x) = f (l)
s (x) +

n∑
i=1

V
(l)

is (x), l = 0, 1, · · · , N, (15)

where

V
(l)

is (x) =
∂l

∂xl

∫ x

a

kis(x, t)yi(t)dt

=

l−1∑
j=0

[
hj
is(x)yi(x)

]l−j−1

+

∫ x

a

∂lkis(x, t)

∂xl
yi(t)dt (16)

=

l−1∑
r=0

l−r−1∑
j=0

(
l − j − 1

r

)(
hj
is(x)

)(l−r−j−1)

y
(r)

i (x) +

∫ x

a

∂lkis(x, t)

∂xl
yi(t)dt,
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with

hj
is(x) =

∂jkis(x, t)

∂xj
|t=x .

By Using Leibnitz’s rule and substituting (5) in (16), we can get

I(l)s (ξ) = f (l)
s (ξ) +

l−1∑
r=0

l−r−1∑
j=0

(
l− j − 1

r

)(
hj
is(ξ)

)(l−r−j−1)

y
(r)

i (ξ)

+

∫ ξ

a

∂lkis(x, t)

∂xl
|x=ξ

[
∞∑
r=0

1

r!
y
(r)

i (ξ) (t− ξ)r

]
dt (17)

= f (l)
s (x) +

l−1∑
r=0

(H lr
is + T lr

is )y
(r)

i (ξ) +
∞∑
r=l

T lr
is y

(r)

i (ξ).

For the case of computing in practice, the approximate form of system (17) can be
put in as follows:

I(l)s (ξ) = f (l)
s (ξ) +

l−1∑
r=0

(H lr
is + T lr

is )y
(r)

i (ξ) +

N∑
r=l

T lr
is y

(r)

i (ξ), (18)

where for l = 1, 2, · · · , N ; r = 0, 1, · · · , l− 1 (l > r)

H lr
is =

l−r−1∑
j=0

(
l − j − 1

r

)(
hj
is(ξ)

)(l−r−j−1)

(19)

and for l ≤ r, H lr
is = 0. and

T lr
is =

1

r!

∫ ξ

a

∂lkis(x, t)

∂xl
|x=ξ (t− ξ)rdt, l, r = 0, 1, · · · , N. (20)

This system can be put in the matrix form as

I = F+TY. (21)

(21) combined with (13)

WY = F+TY or (W −T)Y = F, (22)

where

W = [wlr
is] =




w00
11 w01

11 · · · w0N
11 · · · w00

1n w01
1n · · · w0N

1n

w10

11
w11

11
· · · w1N

11
· · · w00

1n w01

1n · · · w0N
1n

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
wN0

11 wN1
11 · · · wNN

11 · · · wN0
1n wN1

1n · · · wNN
1n

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

w00

n1 w01

n1 · · · w0N
n1 · · · w00

nn w01

nn · · · w0N
nn

w10

n1 w11

n1 · · · w1N
n1 · · · w00

nn w01

nn · · · w0N
nn

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
wN0

n1 wN1

n1 · · · wNN
n1 · · · wN0

nn wN1

nn · · · wNN
nn




,
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F =
[
f
(0)

1
, f

(1)

1
, · · · , f

(N)

1
, f

(0)

2
, · · · , f

(N)

2
, · · · , f (0)

n , · · · , f (N)

n

]T
, (23)

T = [H lr
is + T lr

is ] =




A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann


 ,

Ais =




T 00

is T 01

is T 02

is · · · T 0N
is

H10

is + T 10

is T 11

is T 12

is · · · T 1N
is

H20

is + T 20

is H21

is + T 21

is T 22

is · · · T 2N
is

· · · · · · · · · · · · · · ·
HN0

is + TN0

is HN1

is + TN1

is HN2

is + TN2

is · · · TNN
is


 ,

Y =
[
y
(0)

1
(ξ), y

(1)

1
(ξ), · · · , y

(N)

1
(ξ), y

(0)

2
(ξ), · · · , y

(N)

2
(ξ), · · · , y(0)n (ξ), · · · , y(N)

n (ξ)
]T

≡ [y10, y11, · · · , y1N , y20, · · · , y2N , · · · , yn0, · · · , ynN ]
T
, (24)

which is to be solved.

Substituting (23) in (22), we can convert (22) into an algebraic equations with vari-
ables y10, y11, · · · , y1N , y20, · · · , y2N , · · · , yn0, · · · , ynN , we can determine the variables

yir (i=1,2,...,n; r=0,1,...,N), i.e., the unknown Taylor coefficients y
(r)

i (ξ) (i=1,2,...,n;
r = 0,1,...,N), thus we can get the Taylor polynomial solution of the system (4) as follows:

yi(x) =
N∑
r=0

1

r!
y
(r)

i (ξ) (x− ξ)r. (25)

Example 2.1 Consider the following Volterra system of integro-differential equa-
tions:




y1 − y
′

1 + 2y
′′

1 − 4y2 −
3

2
y

′

2 +
5

4
y

′′

2 − 2y
′

3 −
1

3
y

′′

3 = f1(x) +
∫ x

0
(t− x) y1(t)dt

+
∫ x

0
5 y2(t)dt+

∫ x

0
(5x+ 1

2
) y3(t)dt,

− 1

4
y

′′

1
+ y

2
+ y

′

2
− 2y

′′

2
+ 1

6
y

′′

3
= f2(x) +

∫ x

0
(x + 1) y1(t)dt+

∫ x

0
t2 y2(t)dt

+
∫ x

0
y3(t)dt,

2

3
y

′

1 +
1

6
y

′′

1 − 1

2
y2 + y

′′

2 + 3

4
y3 = f3(x) +

∫ x

0
(3x− t) y2(t)dt+

∫ x

0
x y3(t)dt,

(26)

where f1(x) = −x6− 5

4
x5− 1

8
x4−3x3+ 1

2
x2, f2(x) = − 9

10
x5−x4 , f3(x) = − 1

5
x6− 1

4
x5+

7

12
x3 − 23

6
and the matrix form of the above system for N = 4 and ξ = 0 is as follows:

WY −KY = F,
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where

W =




1 −1 2 0 0 −4 − 3

2

5

4
0 0 0 −2 −1

3
0 0

0 1 −1 2 0 0 −4 − 3

2

5

4
0 0 0 −2 −1

3
0

0 0 1 −1 2 0 0 −4 − 3

2

5

4
0 0 0 −2 −1

3

0 0 0 1 −1 0 0 0 −4 − 3

2
0 0 0 0 −2

0 0 0 0 1 0 0 0 0 −4 0 0 0 0 0
0 0 − 1

4
0 0 1 1 −2 0 0 0 0 1

6
0 0

0 0 0 − 1

4
0 0 1 1 −2 0 0 0 0 1

6
0

0 0 0 0 − 1

4
0 0 1 1 −2 0 0 0 0 1

6

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 2

3

1

6
0 0 − 1

2
0 1 0 0 3

4
0 0 0 0

0 0 2

3

1

6
0 0 − 1

2
0 1 0 0 3

4
0 0 0

0 0 0 2

3

1

6
0 0 − 1

2
0 1 0 0 3

4
0 0

0 0 0 0 2

3
0 0 0 − 1

2
0 0 0 0 3

4
0

0 0 0 0 0 0 0 0 0 − 1

2
0 0 0 0 3

4




,

F =




0
0
1

−18
−3
0
0
0
0

−24
− 23

6

0
0
7

2

0




, K =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 1

2
0 0 0 0

−1 0 0 0 0 0 5 0 0 0 10 1

2
0 0 0

0 −1 0 0 0 0 0 5 0 0 0 15 1

2
0 0

0 0 −1 0 0 0 0 0 5 0 0 0 20 1

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 3 1 0 0 2 0 0 0 0 0 0 1 0 0
0 0 4 1 0 0 6 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 9 0 0 0 0 4 0 0




.

Then we can get the following algebraic equations:


− 1

4
y12 + y20 + y21 − 2y22 +

1

6
y32 = 0,

− 1

4
y14 + y22 + y23 − 2y24 +

1

6
y34 − 2y10 − y11 − y31 = 0,

2

3
y12 +

1

6
y13 −

1

2
y21 + y23 +

3

4
y31 = 0,

− 1

4
y13 + y21 + y22 − 2y23 +

1

6
y33 − y10 − y30 = 0,

− 1

2
y24 +

3

4
y34 − 9y22 − 4y32 = 0,

y23 + y24 − 3y11 − y12 − 2y20 − y32 = 0,
y13 − y14 − 4y23 −

3

2
y24 − 2y34 + y11 − 5y22 − 15y31 −

1

2
y32 = −18,

2

3
y13 +

1

6
y14 −

1

2
y22 + y24 +

3

4
y32 − 5y20 − 2y30 = 0,

y24 − 4y12 − y13 − 6y21 − y33 = −24,
y10 − y11 + 2y12 − 4y20 −

3

2
y21 +

5

4
y22 − 2y31 −

1

3
y32 = 0,

2

3
y11 +

1

6
y12 −

1

2
y20 + y22 +

3

4
y30 = − 23

6
,

2

3
y14 −

1

2
y23 +

3

4
y33 − 7y21 − 3y31 = 7

2
,

y14 − 4y24 + y12 − 5y23 − 20y32 −
1

2
y33 = −3,

y11 − y12 + 2y13 − 4y21 −
3

2
y22 +

5

4
y23 − 2y32 −

1

3
y33 − 5y20 −

1

2
y30 = 0,

y12 − y13 + 2y14 − 4y22 −
3

2
y23 +

5

4
y24 − 2y33 −

1

3
y34 + y10 − 5y21 − 10y30 −

1

2
y31 = 1.
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The solution of this system of algebraic equations is as follows:

Y = {y12 = 0, y23 = 0, y30 = −4, y22 = 2, y11 = −2, y20 = 3, y31 = −2, y10 = 5,

y34 = 24, y14 = 0, y33 = 6, y21 = 1, y32 = 0, y13 = 12, y24 = 0}.

Then in view of (25) we can obtain the solution of (26) as

y1(x) = 2x3 − 2x+ 5,

y2(x) = x2 + x+ 3,

y3(x) = x4 + x3 − 2x− 4.

which is exact solution.

Example 2.2 Consider the following Volterra system of integro-differential equa-
tions: {

y1 + y
′

1 = f1(x) +
∫ x

0
(sin(x− t)− 1) y1(t)dt +

∫ x

0
(1− tcos(x)) y2(t)dt,

−y
1
+ y

2
= f2(x) +

∫ x

0
y1(t)dt +

∫ x

0
(x− t) y2(t)dt,

where f1(x) and f2(x) are chosen such that the exact solution is f1(x) = cos(x) and
f2(x) = sin(x). Numerical results for N=12 and ξ = 0 are given in Table 1.

x
y1(x)

Exact Approximate
y2(x)

Exact Approximate
0.0 1.0 1.002264127 0.0 -0.002264127328
0.1 0.9950041653 0.9970320650 0.09983341665 0.09759183946
0.2 0.9800665778 0.9818454811 0.1986693308 0.1965212957
0.3 0.9553364891 0.9568714640 0.2955202067 0.2936886078
0.4 0.9210609940 0.9224004551 0.3894183423 0.3885026325
0.5 0.8775825619 0.8788683493 0.4794255386 0.4806769283
0.6 0.8253356149 0.8268785893 0.5646424734 0.5702225351
0.7 0.7648421873 0.7672136234 0.6442176872 0.6572875444
0.8 0.6967067093 0.7008073298 0.7173560909 0.7415468153
0.9 0.6216099683 0.6285990889 0.7833269096 0.8203856200
1.0 0.5403023059 0.5510745228 0.8414709848 0.8842821006

Table 1: Numerical results for N=12 and ξ = 0.

3 Conclusion

In this paper, we use modified Taylor-series expansion method for solving a system of
Volterra integro-differential equations. By using the theories and methods of mathemati-
cal analysis and computer algebra, we convert the system of integro-differential equations
into a system of linear algebraic equations and then we obtain the solution of the system
of integro-differential equations. The Taylor polynomial method proposed in this inves-
tigation is simple and effective for solving various system of integro-differential equations
and can provide an accuracy approximate solution or exact solution.
Maple has been used for computations in this paper.
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1 Introduction

Atmospheric flows exhibit self-similar fractal space-time fluctuations on all space-time
scales associated with inverse power law distribution or 1/ν noise, where ν is the fre-
quency, for power spectra of meteorological parameters such as wind, temperature, etc
[60]. Such 1/ν noise imply long-range correlations, identified as self-organized critical-
ity generic to dynamical systems in nature and are independent of the exact physical,
chemical, physiological and other properties of the dynamical system.

Mathematical modelling of Nonlinear dynamics is a multidisciplinary area of inten-
sive study in recent years. Real world and mathematical models of dynamical systems
are characterized by unpredictable or chaotic fractal fluctuations. Simple mathematical
models of dynamical systems exhibit very complicated or chaotic dynamics [3]. A review
of the several real world models was presented by Martunyuk [62] to illustrate the im-
portance of the theory and applications of the general methods of stability analysis [5,
22, 23]. Slane and Tragesser [89] analysed a class of near-periodic systems in which the
dynamics can be described by a set of nonlinear differential equations with no known
equilibrium solution. Special solutions to rotating stratified Boussinesq equations were
discussed by Desale and Sharma [24]. A fuzzy approach for the optimal design of robust
control for uncertain systems was proposed by Chen [19]. Fuzzy theory was originally
introduced to describe information (for example, the linguistic information) that is in
lack of a sharp boundary with its environment [103].

The signature of fractals, namely, inverse power law form for power spectra of fluctu-
ations was identified for isotropic homogeneous turbulence by Kolmogorov in the 1940s.
The concept of fractals and its quantitative measure for space-time fluctuations of all
scales was introduced by Mandelbrot in the late 1960s. The robust pattern of selfsimilar
space-time fluctuations was identified by Bak, Tang and Wiesenfeld in the late 1980s
as self-organised criticality (SOC) whereby the cooperative existence of fluctuations of
all space-time scales maintains the dynamical equilibrium in dynamical systems. In this
paper the author presents a general systems theory model applicable to all dynamical
systems. The quantitative characteristics of the observed fractal space-time fluctuations
and SOC are derived directly as a natural consequence of model concepts based on collec-
tive statistical probabilities of fluctuations such as in kinetic theory of gases as explained
in the following. Visconti [97] states that according to Edward Lorenz the atmosphere
may be intrinsically unpredictable. Today there is no theory that could predict the
evolution of a cloud in the presence of updraft, wind, humidity advection, etc. In a
completely different context, the kinetic theory of gases solves another impossible prob-
lem and avoids the question of how to describe the exact position of each molecule in a
gas. Instead it gives their collective properties, describing their statistical behavior [97].
The most important problem of statistical mechanics is the Kinetic Theory of Gases.
Notions like pressure, temperature and entropy were based on the statistical proper-
ties of a large number of molecules [20]. Recent work in dynamical systems theory has
shown that many properties that are associated with irreversible processes in fluids can
be understood in terms of the dynamical properties of reversible, Hamiltonian systems.
That is, stochastic-like behavior is possible for these systems [27]. Maxwell’s (1860s)
and Boltzmann’s (1870s) work on the kinetic theory of gases, and the creation of the
more general theory of statistical mechanics persuaded many thinkers that certain very
important large scale regularities – the various gas laws, and eventually the second law of
thermodynamics were indeed to be explained as the combined effect of the probability
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distributions governing those systems parts [90].

A general systems theory developed by the author visualizes the fractal fluctuations
to result from the coexistence of eddy fluctuations in an eddy continuum, the larger scale
eddies being the integrated mean of enclosed smaller scale eddies. The model predicts
that the probability distributions of component eddy amplitudes and the corresponding
variances (power spectra) are quantified by the same universal inverse power law dis-
tribution which is a function of the golden mean. Atmospheric particulates are held in
suspension by the vertical velocity distribution (spectrum). The atmospheric particulate
size spectrum is derived in terms of the model predicted universal inverse power law
characterizing atmospheric eddy energy spectrum.

Information on the size distribution of atmospheric suspended particulates (aerosols,
cloud drops, raindrops) is important for the understanding of the physical processes
relating to the studies in weather, climate, atmospheric electricity, air pollution and
aerosol physics. Atmospheric suspended particulates affect the radiative balance of the
Earth/atmosphere system via the direct effect whereby they scatter and absorb solar and
terrestrial radiation, and via the indirect effect whereby they modify the microphysical
properties of clouds thereby affecting the radiative properties and lifetime of clouds [36].
At present empirical models for the size distribution of atmospheric suspended particu-
lates is used for quantitative estimation of earth-atmosphere radiation budget related to
climate warming/cooling trends. The empirical models for different locations at different
atmospheric conditions, however, exhibit similarity in shape implying a common univer-
sal physical mechanism governing the organization of the shape of the size spectrum.
The pioneering studies during the last three decades by Lovejoy and his group [59, 60]
show that the particulates are held in suspension in turbulent atmospheric flows which
exhibit selfsimilar fractal fluctuations on all scales ranging from turbulence (mm-sec) to
climate (kms-years). Lovejoy and Schertzer [59] have shown that the rain drop size dis-
tribution should show a universal scale invariant shape. The non-linear coupling between
statistical mechanics, particle microphysics and atmospheric dynamics must be studied
from scaling point of view [51].

In the present study a general systems theory for fractal space-time fluctuations
developed by the author [78, 84-86] is applied to derive universal (scale independent)
inverse power law distribution incorporating the golden mean for atmospheric eddy en-
ergy distribution. Atmospheric particulates are held in suspension by the spectrum of
atmospheric eddy fluctuations (vertical). The suspended atmospheric particulate size
distribution is expressed in terms of the atmospheric eddy energy spectrum and is ex-
pressed as a function of the golden mean τ (≈ 1.618), the total number concentration
and the mean volume radius (or diameter) of the particulate size spectrum. A knowl-
edge of the mean volume radius and total number concentration is sufficient to compute
the total particulate size spectrum at any location. Model predicted atmospheric eddy
energy spectrum is in agreement with earlier observational results [79, 81-83, 87]. Model
predicted suspended particulate (aerosol) size spectrum is in agreement with observations
using VOCALS 2008 PCASP-B data (Sections 8 and 9).

The paper is organized as follows. Section 2 contains the current state of knowl-
edge of the size distribution of atmospheric suspended particulates. Section 3 contains
a brief summary of the observed characteristics of selfsimilar fractal fluctuations in at-
mospheric flows. Section 4 summarizes the general systems theory for fractal space-time
fluctuations in atmospheric flows. The normalized (scale independent) atmospheric eddy
energy spectrum and the associated aerosol size spectrum are derived in Section 5. In
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Section 6 it is shown that the General Systems Theory presented in this paper satisfies
the Maximum Entropy Principle of classical Statistical Physics. Section 7 contains de-
tails of observational data sets used for validating the model predictions. Sections.8 and
9 contain results of analyses of the data sets and conclusions of the study respectively.

2 Atmospheric Suspended Particulates: Current State of Knowledge

2.1 Aerosol size distribution

As aerosol size is one of the most important parameters in describing aerosol properties
and their interaction with the atmosphere, its determination and use is of fundamental
importance. Aerosol size covers several decades in diameter and hence a variety of
instruments are required for its determination. This necessitates several definitions of the
diameter, the most common being the geometric diameter d. The size fraction with d >
1-2 µm is usually referred to as the coarse mode, and the fraction d < 1-2 µm is the fine
mode. The latter mode can be further divided into the accumulation d∽ 0.1-1 µm, Aitken
d ∽ 0.01-0.1 µm, and nucleation d < 0.01m modes. Due to the d3 dependence of aerosol
volume (and mass), the coarse mode is typified by a maximum volume concentration and,
similarly, the accumulation mode by the surface area concentration and the Aitken and
nucleation modes by the number concentration. As the sources and sinks of the coarse and
fine modes are different, there is only a weak association of particles in both modes [37].
The aerosol chemistry data organized first by Peter Mueller and subsequently analyzed by
Friedlander and co-workers showed that the fine and coarse mass modes were chemically
distinctly different [38]. Based on tedious and careful size distribution measurements
performed over many different parts of the world, Junge and co-workers[43-46] have
observed that there is a remarkable similarity in the gathered size distributions (number
concentration N versus radius ra): they follow a power law function over a wide range
from 0.1 to over 20µ m in particle radius [38]

dN

dlogra
= cr−α

a .

The inverse power law exponent α of the number distribution function ranged between 3
and 5 with a typical value of 4. This power-law form of the size distribution became known
as the Junge distribution of atmospheric aerosols. In the 1960s the physical mechanisms
that were responsible for maintaining the observed quasi-stationary size distribution of
the size spectra were not known.

Whitby [99] introduced the concept of the multimodal nature of atmospheric aerosol
and Jaenicke and Davies [41] added the mathematical formalism used today. Semi-
quantitative explanation of the observed fine particle dynamics provided the scientific
support for the bimodal concept and became the basis of regional dynamically coupled
gas-aerosol models. Typically, the planetary boundary layer (PBL) aerosol is combination
of three modes corresponding to Aitken nuclei, accumulation mode aerosols, and coarse
aerosols, the shape of which is often modeled as the sum of lognormal modes [100, 18].
In a nutshell, the bimodal distribution concept states that the atmospheric aerosol mass
is distributed in two distinct size ranges, fine and coarse and that each aerosol mode has
a characteristic size distribution, chemical composition and optical properties [38].
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3 Selfsimilar Fractal Fluctuations from Turbulence to Climate Scales in At-

mospheric Flows

The Atmospheric particulates are suspended in the selfsimilar wind fluctuation pattern
ranging from turbulence to climate scales manifested as inverse power law form for power
spectra of temporal fluctuations of wind speed. A brief summary of observed long-range
correlations on all space-time scales in atmospheric flows and implications for modeling
atmospheric dynamical transport processes is given in the following.

Atmospheric flows exhibit self-similar fractal fluctuations generic to dynamical sys-
tems in nature. Self-similarity implies long-range space-time correlations identified as
self-organized criticality [4]. The physics of self-organized criticality ubiquitous to dy-
namical systems in nature and in finite precision computer realizations of non-linear nu-
merical models of dynamical systems is not yet identified. During the past three decades,
Lovejoy and his group [60] have done extensive observational and theoretical studies of
fractal nature of atmospheric flows and emphasized the urgent need to formulate and
incorporate quantitative theoretical concepts of fractals in mainstream classical theory
relating to Atmospheric Physics.

The empirical analyses summarized by Lovejoy and Schertzer [60], Bunde et al.[15],
Bunde and Havlin [13, 14], Eichner et al. [28], Rybski et al. [73, 74], directly demonstrate
the strong scale dependencies of many atmospheric fields, showing that they depend in
a power law manner on the spacetime scales over which they are measured. In spite of
intense efforts over more than 50 years, analytic approaches have been surprisingly inef-
fective at deducing the statistical properties of turbulence. Atmospheric Science labors
under the misapprehension that its basic science issues have long been settled and that
its task is limited to the application of known laws albeit helped by ever larger quantities
of data themselves processed in evermore powerful computers and exploiting ever more
sophisticated algorithms. Conclusions about anthropogenic influences on the atmosphere
can only be drawn with respect to the null hypothesis, i.e. one requires a theory of the
natural variability, including knowledge of the probabilities of the extremes at various
resolutions. At present, the null hypotheses are classical so that they assume there are
no long-range statistical dependencies and that the probabilities are thin-tailed (i.e. ex-
ponential). However observations show that cascades involve long-range dependencies
and (typically) have fat tailed (algebraic) distributions in which extreme events occur
much more frequently and can persist for much longer than classical theory would allow
[60, 10, 11, 29, 12, 9].

A general systems theory for the observed fractal space-time fluctuations of dynamical
systems developed by the author [78, 85] helps formulate a simple model to explain the
observed vertical distribution of number concentration and size spectra of atmospheric
aerosols. The atmospheric aerosol size spectrum is derived in terms of the universal in-
verse power law characterizing atmospheric eddy energy spectrum. The physical basis
and the theory relating to the model are discussed in Section 4. The model predictions
are (i) The fractal fluctuations can be resolved into an overall logarithmic spiral trajec-
tory with the quasiperiodic Penrose tiling pattern for the internal structure. (ii) The
probability distribution of fractal space-time fluctuations (amplitude) also represents the
power (variance or square of amplitude) spectrum for fractal fluctuations and is quanti-
fied as universal inverse power law incorporating the golden mean. Such a result that the
additive amplitudes of eddies when squared represent probability distribution is observed
in the subatomic dynamics of quantum systems such as the electron or photon. Therefore
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the irregular or unpredictable fractal fluctuations exhibit quantum-like chaos. (iii) At-
mospheric aerosols are held in suspension by the vertical velocity fluctuation distribution
(spectrum). The normalized (scale independent) atmospheric aerosol size spectrum is de-
rived in terms of the universal inverse power law characterizing atmospheric eddy energy
spectrum. Model predicted spectrum is in agreement (within two standard deviations
on either side of the mean) with experimentally determined data sets for homogeneous
aerosol size intervals (Sections 7 and 8).

4 General Systems Theory for Fractal Space-Time Fluctuations in Atmo-

spheric Flows

The study of the spontaneous, i.e., self-organized formation of structures in systems far
from thermal equilibrium in open systems belongs to the multidisciplinary field of syn-
ergetics [35]. Formation of structure begins by aggregation of molecules in a turbulent
fluid (gas or liquid) medium. Turbulent fluctuations are therefore not dissipative, but
serve to assemble and form coherent structures [63, 69, 70, 39], for example, the for-
mation of clouds in turbulent atmospheric flows. Traditionally, turbulence is considered
dissipative and disorganized. Yet, coherent (organized) vortex roll circulations (vortices)
are ubiquitous to turbulent fluid flows [93, 50, 32]. The exact physical mechanism for
the formation and maintenance of coherent structures, namely vortices or large eddy
circulations in turbulent fluid flows is not yet identified.

Turbulence, namely, seemingly random fluctuations of all scales, therefore, plays a
key role in the formation of selfsimilar coherent structures in the atmosphere. Such a
concept is contrary to the traditional view that turbulence is dissipative, i.e., ordered
growth of coherent form is not possible in turbulent flows. The author [78, 85] has shown
that turbulent fluctuations self-organize to form selfsimilar structures in fluid flows.

In summary, spatial integration of enclosed turbulent fluctuations give rise to large
eddy circulations in fluid flows. Therefore, starting with turbulence scale fluctuations,
progressively larger scale eddy fluctuations can be generated by integrating circulation
structures at different scale ranges. Such a concept envisages only the magnitude (in-
tensity) of the fluctuations and is independent of the properties of the medium in which
the fluctuations are generated. Also, self-similar space-time growth structure is implicit
to hierarchical growth process, i.e., the large scale structure is the envelope of enclosed
smaller scale structures. Successively larger scale structures form a hierarchical network
and function as a unified whole. Large eddy is the integrated mean of enclosed turbulent
eddies and functions as a fuzzy logic network with two-way energy (information) flow
between the scales. Fuzzy descriptions of system performance adds more insight to view
the system performance [19].

The role of surface frictional turbulence in weather systems is discussed in Section 4.1.
The common place occurrence of long-lived organized cloud patterns and their important
contribution to the radiation budget of the earths atmosphere is briefly discussed in
Section 4.1.1.

4.1 Frictional convergence induced weather

Roeloffzen et al. [72] discussed the importance of frictional convergence induced weather
as follows. The coastline generally represents a marked discontinuity in surface rough-
ness. The resulting mechanical forcing leads to a secondary circulation in the boundary
layer, and consequently to a vertical motion field that may have a strong influence on the
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weather in the coastal zone. In potentially unstable air masses, frictional convergence
may cause a more-or-less stationary zone of heavy shower activity, for example. Of all
meteorological phenomena typical for coastal regions, the fair weather sea-breeze circu-
lation has probably been studied most extensively, e.g., Estoque [30], Walsh [98], Pielke
[68], Pearson et al. [67]. In contrast to this thermally-driven circulation, the mechanical
forcing due to the discontinuity in surface roughness may create circulation patterns of
similar amplitude and scale. Frictional convergence is mentioned in some studies as the
cause of increased precipitation in coastal zones under specific conditions, e.g., Bergeron
[7], Timmerman [94], Oerlemans [64]; but its effect is generally underestimated [72].

Frictional convergence is analogous to Ekman pumping, namely, the process of induc-
ing vertical motions by boundary layer friction [91].

Cotton and Anthes [21] emphasized the importance of the role of Ekman pumping
on large scale weather systems. The strong control of cumulus convection by the larger
scales of motion in tropical cyclones has been recognized for a long time. Syono et al. [92]
showed that the rate of precipitation in typhoons was related to the updrafts produced by
frictional convergence in the PBL (so-called Ekman pumping). Later observational and
modeling studies have confirmed the cooperative interaction between cumulus convection
and the tropical cyclones through frictionally induced moisture convergence and enhanced
evaporation in the PBL (see review in Anthes [2]). Local winds such as Sea breezes
actually are very important because they are determined mainly by the interaction of
large scale motions with local topography [97].

New research suggests that rough areas of land, including city buildings and naturally
jagged land cover like trees and forests can actually attract passing hurricanes. It was
observed that storms traveling over river deltas hold together longer than those over dry
ground. As a result, the city of New Orleans might feel a greater impact of hurricanes
coming off the Gulf of Mexico than existing computer models predict [61].

4.1.1 Mesoscale cellular convection and radiation budget of the earth

Feingold et al. [31] discussed the importance of the observed large scale organized pat-
tern of clouds in the radiation budget of the earths atmosphere. Cloud fields adopt many
different patterns that can have a profound effect on the amount of sunlight reflected
back to space, with important implications for the Earths climate. These cloud pat-
terns can be observed in satellite images of the Earth and often exhibit distinct cell-like
structures associated with organized convection at scales of tens of kilometers [49, 1, 33],
i.e. mesoscale cellular convection. These clouds are important because they increase
the reflectance of shortwave radiation and therefore exert a cooling effect on the climate
system that is not compensated by appreciable changes in outgoing longwave radiation
[96].

4.2 Growth of macro-scale coherent structures from microscopic domain

fluctuations in atmospheric flows

The non-deterministic model [78, 85, 86] incorporates the physics of the growth of macro-
scale coherent structures from microscopic domain fluctuations in atmospheric flows. In
summary, the mean flow at the planetary ABL possesses an inherent upward momentum
flux of frictional origin at the planetary surface. This turbulence-scale upward mo-
mentum flux is progressively amplified by the exponential decrease of the atmospheric
density with height coupled with the buoyant energy supply by micro-scale fractional
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condensation on hygroscopic nuclei, even in an unsaturated environment [71]. The mean
large-scale upward momentum flux generates helical vortex-roll (or large eddy) circu-
lations in the planetary atmospheric boundary layer and under favourable conditions
of moisture supply, is manifested as cloud rows and (or) streets, and mesoscale cloud
clusters MCC in the global cloud cover pattern. A conceptual model of large and tur-
bulent eddies in the planetary ABL is shown in Figures 1 and 2. The mean airflow
at the planetary surface carries the signature of the fine scale features of the planetary
surface topography as turbulent fluctuations with a net upward momentum flux. This
persistent upward momentum flux of surface frictional origin generates large-eddy (or
vortex-roll) circulations, which carry upward the turbulent eddies as internal circulations.
Progressive upward growth of a large eddy occurs because of buoyant energy generation
in turbulent fluctuations as a result of the latent heat of condensation of atmospheric
water vapour on suspended hygroscopic nuclei such as common salt particles. The latent
heat of condensation generated by the turbulent eddies forms a distinct warm envelope or
a micro-scale capping inversion layer at the crest of the large-eddy circulations as shown
in Figure 1.

 

Figure 1: Micro-scale capping inversion (MCI) layer at the crest of the large-eddy circulations.

Progressive upward growth of the large eddy occurs from the turbulence scale at
the planetary surface to a height R and is seen as the rising inversion of the daytime
atmospheric boundary layer (Figure 2).

The turbulent fluctuations at the crest of the growing large-eddy mix overlying en-
vironmental air into the large-eddy volume, i.e. there is a two-stream flow of warm air
upward and cold air downward analogous to superfluid turbulence in liquid helium [25,
26]. The convective growth of a large eddy in the atmospheric boundary layer therefore
occurs by vigorous counter flow of air in turbulent fluctuations, which releases stored
buoyant energy in the medium of propagation, e.g. latent heat of condensation of at-
mospheric water vapour. Such a picture of atmospheric convection is different from
the traditional concept of atmospheric eddy growth by diffusion, i.e. analogous to the
molecular level momentum transfer by collision. Molecules and turbulence eddies must
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Figure 2: Progressive upward growth of the large eddy from the turbulence scale at the plan-
etary surface.

have influence on atmospheric particles. However most theories on particle diffusional
growth emphasize molecular effects, e.g., based on classical transport laws (Fick’s first
law for mass diffusion, Fourier law for heat diffusion) whereas the effects of turbulence
are underestimated [51].

The generation of turbulent buoyant energy by the micro-scale fractional condensation
is maximum at the crest of the large eddies and results in the warming of the large-
eddy volume. The turbulent eddies at the crest of the large eddies are identifiable by a
micro-scale capping inversion that rises upward with the convective growth of the large
eddy during the course of the day. This is seen as the rising inversion of the daytime
planetary boundary layer in echosonde and radiosonde records and has been identified
as the entrainment zone [8, 34] where mixing with the environment occurs.

The general systems theory for eddy growth discussed so far for planetary atmospheric
boundary layer (ABL) can be extended up to the upper atmospheric levels. In summary, a
gravity wave feedback mechanism for the vertical mass exchange between the troposphere
and the stratosphere is proposed. The vertical mass exchange takes place through a chain
of eddy systems. The atmospheric boundary layer (ABL) contains large eddies (vortex
rolls) which carry on their envelopes turbulent eddies of surface frictional origin [76,
78, 85]. The buoyant energy production by microscale-fractional-condensation (MFC)
in turbulent eddies is responsible for the sustenance and growth of large eddies [77, 78,
85]. The buoyant energy production of turbulent eddies by the microscale-fractional-

condensation (MFC) process is maximum at the crest of the large eddies and results in
the warming of the large eddy volume. The turbulent eddies at the crest of the large
eddies are identifiable by a microscale-capping-inversion (MCI) layer which rises upwards
with the convective growth of the large eddy in the course of the day. The MCI layer is
a region of enhanced aerosol concentrations. As the microscale-fractional-condensation

(MFC) generated warm parcel of air corresponding to the large eddy rises in the stable
environment of the microscale-capping-inversion (MCI), Brunt Vaisala oscillations are
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generated [77, 78, 85]. The growth of the large eddy is associated with generation of a
continuous spectrum of gravity (buoyancy) waves in the atmosphere. The atmosphere
contains a stack of large eddies. Vertical mixing of overlying environmental air into the
large eddy volume occurs by turbulent eddy fluctuations [76, 78, 85]. The circulation
speed of the large eddy is related to that of the turbulent eddy according to the following
expression [95, 78]

W 2 =
2r

πR
w2. (1)

In the above equation (1), W and w are respectively the r.m.s (root mean square) circu-
lation speeds of the large and turbulent eddies and R and r are their respective radii.

The relationship between the time scales T and t respectively of the large and turbu-
lent eddies can be derived in terms of the circulation speeds W and w and their respective
length scales R and r from equation (1) [78] as follows

T =
2πR

W
and t =

2πr

w
,

T

t
=

Rw

rW
=

R

r

√
πR

2r
=

[
R

r

] 3

2

√
π

2
.

As seen from Figures 1 and 2 and from the concept of eddy growth, vigorous counter flow
(mixing) characterizes the large-eddy volume. The total fractional volume dilution rate
of the large eddy by vertical mixing across unit cross-section is derived from equation (1)
[76, 78, 85] and is given as follows

k =
wr

dWR
. (2)

In equation (2), w is the increase in vertical velocity per second of the turbulent eddy
due to microscale fractional condensation (MFC) process and dW is the corresponding
increase in vertical velocity of large eddy.

The fractional volume dilution rate k is equal to 0.4 for the scale ratio z, i.e. R/r
=10. Identifiable large eddies can exist in the atmosphere for scale ratios more than 10
only since, for smaller scale ratios the fractional volume dilution rate k becomes more
than half. Thus atmospheric eddies of various scales, i.e., convective, meso-, synoptic
and planetary scale eddies are generated by successive decadic scale range eddy mixing
process starting from the basic turbulence scale [77, 78, 85]. From equation (2) the
following logarithmic wind profile relationship for the ABL is obtained [76, 78, 85].

W =
w

k
lnz. (3)

The steady state fractional upward mass flux f of surface air at any height z can be
derived using equation (3) and is given by the following expression [76, 78, 85].

f =

√
2

πz
. (4)

In equation (4) f represents the steady state fractional volume of surface air at any level
z. Since atmospheric aerosols originate from surface, the vertical profile of mass and
number concentration of aerosols follow the f distribution.
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The magnitude of the steady state vertical aerosol mass flux is dependent on m∗, the
aerosol mass concentration at the initial level (earth surface) and is equal to m∗f from
(4), the non-zero values of f being given in terms of the non-dimensional length scale
ratio z. Similarly the aerosol number concentration N at normalized height z is equal to
N∗f , where N∗ is the number concentration at the surface.

 

Figure 3: Model predicted aerosol vertical distribution.

The aerosol concentration vertical profile in Figure 3 is computed using equation
(4) with appropriate length scale ratio z values corresponding to the associated steady
state fractional volume dilution k values (2). The fractional volume dilution rate k is
equal to 0.4 for the scale ratio z, i.e., R/r =10. Identifiable large eddies can exist in
the atmosphere only for scale ratios more than 10 since, for smaller scale ratios the
fractional volume dilution rate k becomes more than half. Thus atmospheric eddies of
various scales, i.e., convective, meso-, synoptic and planetary scale eddies are generated
by successive decadic scale range eddy mixing process starting from the basic turbulence
scale [42, 76-87].

The peaks in the aerosol concentration at 1 km (lifting condensation level) and at
about 10-15 km (stratosphere) identify the microscale capping inversion (MCI, Figure
1) at the crests of the convective and meso-scale eddies respectively, the appropriate
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scale ratios for the convective and meso-scale eddies being 10 and 100 with respect to
the turbulence scale. Thus for the turbulent eddy of radius 100m, the MCI’s for the
convective and meso-scale eddies occur at 1 km and 10 km respectively.

The model predicted profiles closely resemble the observed profiles associated with
major quasi-permanent tropospheric inversion (temperature) layers reported by other
investigators [46].

The vertical mass exchange mechanism predicts the f distribution for the steady state
vertical transport of aerosols at higher levels. Thus aerosol injection into the stratosphere
by volcanic eruptions gives rise to the enhanced peaks in the regions of microscale capping
inversion (MCI) in the stratosphere and other higher levels determined by the radius of
the dominant turbulent eddy at that level.

The time T taken for the steady state aerosol concentration f to be established at the
normalised height z is equal to the time taken for the large eddy to grow to the height z
and is computed using the following relation (see Section 4.3.2 below)

T =
r

w

√
π

2
li
√
z. (5)

In equation (5), li is the logarithm integral.
The vertical dispersion rate of aerosols/pollutants from known sources (e.g., volcanic

eruptions, industrial emissions) can be computed using the relation for f and T (equations
4 and 5).

4.3 Computations of model predictions and comparison with observations

4.3.1 Vertical velocity profile

The microscale fractional condensation (MFC) generated values of vertical velocity have
been calculated for different heights above the surface for clear-air conditions and above
the cloud-base for in-cloud conditions for a representative tropical environment with
favourable moisture supply. A representative cloud-base height is considered to be 1000m
above sea level (a.s.l) and the corresponding meteorological parameters are, surface pres-
sure 1000 mb, surface temperature 30 oC, relative humidity at the surface 80%, turbulent
length scale 1 cm. The values of the latent heat of vapourisation LV and the specific
heat of air at constant pressure Cp are 600 cal gm−1 and 0.24 cal gm−1 respectively.
The density of air at surface is 1.1495 Kg m−3. The ratio values of mw/m0, where m0 is
the mass of the hygroscopic nuclei per unit volume of air and mw is the mass of water
condensed on m0, at various relative humidities as given by Winkler and Junge [101, 102]
have been adopted and the value ofmw/m0 is equal to about 3 for relative humidity 80%.
For a representative value of m0 equal to 100g m−3 the temperature perturbation θ’ is
equal to 0.000650C and the corresponding vertical velocity perturbation (turbulent) w∗

is computed and is equal to 21.1x10−4 cm sec−1 from the following relationship between
the corresponding virtual potential temperature θv, and the acceleration due to gravity
g equal to 980.6 cm sec−2

w∗ =
g

θv
θ′.

Heat generated by condensation of water equal to 300 µg on 100 µg of hygroscopic nu-
clei per metre3 generates vertical velocity perturbation w∗ (cm sec−2) equal to 21.1x10−4

cm sec−2 at surface levels. In the following it is shown that a value of w∗ equal to 30x10−7
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cm sec−2, i.e. about three orders of magnitude less than that shown in the above example
is sufficient to generate clouds as observed in practice.

From the logarithmic wind profile relationship (3) and the steady state fractional
upward mass flux f of surface air at any height z (4) the corresponding vertical velocity
perturbation W can be expressed in terms of the primary vertical velocity perturbation
w∗ as

W = w∗fz. (6)

W may be expressed in terms of the scale ratio z as given below.

From equation (4)

f =

√
2

πz
lnz.

Therefore,

W = w∗z

√
2

πz
lnz = w∗

√
2z

πz
lnz.

The steady state values of large eddy vertical velocity perturbationW equal to w∗fz
at normalized heights z produced by the constant value of primary perturbation w∗

generated by microscale fractional condensation at surface levels are computed from (6)
and given in the Table 1.

Height z above surface Vertical velocity perturbation
i.e., large eddy radius W = w∗fz cm sec−1

1 cm 30x10−7

100 cm 1.10x10−4

100 m 2.20x10−3

1000 m 8.71x10−3 ≈ 0.01

Table 1: The steady state values of large eddy vertical velocity perturbation W.

Microscale fractional condensation generated turbulent eddy perturbation speed in-
creases progressively with height z from surface, the turbulent eddies being carried on
the envelope of large eddy circulation of radius z and may be visualized as follows:
The 1 cm eddy at the surface generates perturbation speed w∗ by microscale fractional
condensation. At height z cm corresponding to the envelope of large eddy of z cm radius,
the 1 cm eddy carried on the envelope of the large eddy has a perturbation speed of w∗fz.
Thus at 1000m corresponding to large eddy radius 1000m, the 1cm eddy on the envelope
has a perturbation speed of 0.01 cm sec−1. The large eddy circulation time period at
height z can be expressed in terms of the primary 1 cm radius eddy perturbation speed
on its envelope as given in (5) (see Section 4.3.2 for the detailed derivation).

The above values of microscale fractional condensation related vertical velocities,
although small in magnitude, are present for long enough periods in the lower levels and
contribute for the formation and development of clouds as explained below.
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4.3.2 Large eddy growth time

The time required for the large eddy of radius R to grow from the primary turbulence
scale radius r∗ is computed as follows

The scale ratio z =
R

r∗
.

Therefore for constant turbulence radius r∗

dz =
dR

r∗
.

The incremental growth dR of large eddy radius is equal to

dR = r∗dz.

The time dt for the incremental cloud growth is expressed as follows

dt =
dR

W
=

r∗dz

W
.

W is the increase in large eddy circulation speed resulting from enclosed turbulent
eddy circulations of speed w∗ and is given as W = w∗fz from (6). Therefore

dt =
r∗dz

w∗fz
=

r∗dz

w∗z
√

2
πz

lnz
,

t =
r∗
w∗

√
π

2

∫ z

2

dz
√
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.

The above equation can be written in terms of
√
z as follows

√
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dz

2
√
z
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√
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Therefore,
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√
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√
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√
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In the above equation z1 and z2 refer respectively to lower and upper limits of inte-
gration and li is the Soldner′s integral or the logarithm integral. The large eddy growth
time t (equation 5 in Section 4.2) can be computed from the above equation in terms of
the internal primary small eddy radius r∗ (equal to 1 cm) and the corresponding eddy
acceleration w∗fz.

Starting from surface, the time t seconds taken for the evolution of the 1000m (105

cm) eddy from the 1 cm radius (r∗) eddy energized by the microscale fractional con-
dendensation (MFC) induced primary perturbation w∗fz equal to 0.01cm sec−2 can be
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computed from the above equation by substituting for z1 = 1cm and z2 = 105 cm such
that x1 =

√
1=1 and x2=

√
105 ≈ 317 ,

t =
1

.001

√
π

2

∫ 317

1

li
√
z.

The value of
∫ 317

1
li
√
z is equal to 71.3. Hence t ≈ 8938 sec ≈ 2 hrs 30 mins.

Thus starting from the surface level cloud growth begins after a time period of 2 hrs
30 mins. This is consistent with the observations that convective cloud growth is visible
in the afternoon hours.

5 Atmospheric Aerosol Size Spectrum

5.1 Vertical variation of aerosol number concentration

The atmospheric eddies hold in suspension the aerosols and thus the mass size spectrum
of the atmospheric aerosols is dependent on the vertical velocity fluctuation spectrum of
the atmospheric eddies as explained in the following. The distribution of atmospheric
aerosols is not only determined by turbulence, but also by dry and wet chemistry, sed-
imentation, gas to particle conversion, coagulation, (fractal) variability at the surface,
amongst others. However, at any instant, the mass (and therefore the radius for homoge-
neous aerosols) size distribution of atmospheric suspensions (aerosols) is directly related
to the wind vertical velocity (eddy energy) spectrum which is shown to be universal
(scale independent). The source for aerosols in the fine mode (diameter less than 1 µm)
and coarse mode (diameter greater than 1µm) are different [38] and may account for the
differences in the departures of the observed from model predicted radius size spectrum
for the fine and coarse aerosol modes (Section 6).

From the logarithmic wind profile relationship (3) and the steady state fractional
upward mass flux f of surface air at any height z (4) the vertical velocity perturbation W

is expressed in (6) as
W = w∗fz.

The corresponding moisture content q at height z is related to the moisture content
q∗ at the surface (or reference level) and is given as (6)

q = q∗fz. (7)

The aerosols are held in suspension by the eddy vertical velocity perturbations. Thus
the suspended aerosol mass concentration m at any level z will be directly related to the
vertical velocity perturbation W at z, i.e., W ≈ mg where g is the acceleration due to
gravity. Therefore

m = m∗fz. (8)

In (8), m∗ is the suspended aerosol (homogeneous) mass concentration in the surface
layer. Let ra and N represent the mean volume radius and number concentration of
aerosols at level z. The variables ras and N∗ relate to corresponding parameters at the
surface levels. Substituting for the average mass concentration in terms of mean radius
ra and number concentration N at normalized height z above surface

4

3
πra

3N =
4

3
πras

3N∗fz. (9)



412 A.M.SELVAM

The number concentration N of aerosol decreases with normalised height z according
to the f distribution as shown earlier in Section 4.2 and is expressed as follows:

N = N∗f. (10)

5.2 Vertical variation of aerosol mean volume radius

The mean volume radius of aerosol increases with height (eddy radius) z as shown in the
following. At any height z, the fractal fluctuations (of wind, temperature, etc.) carry the
signatures of eddy fluctuations of all size scales since the eddy of length scale z encloses
smaller scale eddies and at the same time forms part of internal circulations of eddies
larger than length scale z.

The wind velocity perturbation W is represented by an eddy continuum of corre-
sponding size (length) scales z. The aerosol mass flux across unit cross-section per unit
time is obtained by normalizing the velocity perturbation W with respect to the corre-
sponding length scale z to give the volume flux of air equal to Wz and can be expressed
as follows from (6):

Wz = (w∗fz)z. (11)

The corresponding normalized moisture flux perturbation is equal to qz where q is
the moisture content per unit volume at level z. Substituting for q from (7)

normalised moisture flux at level z = q∗fz
2. (12)

The moisture flux increases with height resulting in increase of mean volume radius
of CCN (cloud condensation nuclei) because of condensation of water vapour. The cor-
responding CCN (aerosol) mean volume radius ra at height z is given in terms of the
aerosol number concentration N at level z and mean volume radius ras at the surface (or
reference level) as follows from (12)

4

3
πra

3 =
4

3
πras

3N∗fz
2. (13)

Substituting for N from (10) in terms of N∗ and f

ra
3 = ras

3z2, (14)

ra = rasz
2

3 .

The mean aerosol size increases with height according to the cube root of z2 (14). As
the large eddy grows in the vertical, the aerosol size spectrum extends towards larger sizes
while the total number concentration decreases with height according to the f distribu-
tion. The atmospheric aerosol size spectrum is dependent on the eddy energy spectrum
and may be expressed in terms of the recently identified universal characteristics of fractal
fluctuations generic to atmospheric flows [86, 87] as shown in Section 5.3 below.

5.3 Probability distribution of fractal fluctuations in atmospheric flows

The atmospheric eddies hold in suspension the aerosols and thus the size spectrum of the
atmospheric aerosols is dependent on the vertical velocity spectrum of the atmospheric
eddies. Atmospheric air flow is turbulent, i.e., consists of irregular fluctuations of all
space-time scales characterized by a broadband spectrum of eddies. The suspended
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aerosols will also exhibit a broadband size spectrum closely related to the atmospheric
eddy energy spectrum.

Atmospheric flows exhibit self-similar fractal fluctuations generic to dynamical sys-
tems in nature such as fluid flows, heart beat patterns, population dynamics, spread of
forest fires, etc. Power spectra of fractal fluctuations exhibit inverse power law of form
ν−α where α is a constant indicating long-range space-time correlations or persistence.
Inverse power law for power spectrum indicates scale invariance, i.e., the eddy energies
at two different scales (space-time) are related to each other by a scale factor (α in this
case) alone independent of the intrinsic properties such as physical, chemical, electrical
etc of the dynamical system.

A general systems theory for turbulent fluid flows predicts that the eddy energy spec-
trum, i.e., the variance (square of eddy amplitude) spectrum is the same as the probability
distribution P of the eddy amplitudes, i.e. the vertical velocity W values. Such a re-
sult that the additive amplitudes of eddies, when squared, represent the probabilities is
exhibited by the subatomic dynamics of quantum systems such as the electron or pho-
ton. Therefore, the unpredictable or irregular fractal space-time fluctuations generic to
dynamical systems in nature, such as atmospheric flows is a signature of quantum-like
chaos. The general systems theory for turbulent fluid flows predicts [78, 84-87] that
the atmospheric eddy energy spectrum follows inverse power law form incorporating the
golden mean τ [ 86, 87] and the normalized deviation for values of σ ≥ 1 and σ ≤ -1 as
given below

P = τ−4σ. (15)

The vertical velocity W spectrum will therefore be represented by the probability
distribution P for values of σ ≥ 1 and σ ≤ -1 given in (15) since fractal fluctuations
exhibit quantum-like chaos as explained above:

W = P = τ−4σ . (16)

Values of the normalized deviation σ in the range -1 < σ < 1 refer to regions of
primary eddy growth where the fractional volume dilution k (2) by eddy mixing process
has to be taken into account for determining the probability distribution P of fractal
fluctuations (see Section 5.4 below).

5.4 Primary eddy growth region fractal space-time fluctuation probability

distribution

Normalized deviation σ ranging from -1 to +1 corresponds to the primary eddy growth
region. In this region the probability P is shown to be equal to P = τ−4k (see below),
where k is the fractional volume dilution by eddy mixing (2).

For the primary eddy growth region, the normalized deviation σ represents the length
step growth number for growth stages more than one. The first stage of eddy growth
is the primary eddy growth starting from unit length scale perturbation, the complete
eddy forming at the tenth length scale growth, i.e., R = 10r and scale ratio z equals to
10 [78, 85]. The steady state fractional volume dilution k of the growing primary eddy
by internal smaller scale eddy mixing is given by (2) as

k =
wr

WR
. (17)
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The expression for k in terms of the length scale ratioz equal to R
r
is obtained from

(1) as

k =

√
π

2z
. (18)

A fully formed large eddy length R = 10r (z=10) represents the average or mean level
zero and corresponds to a maximum of 50% probability of occurrence of either positive
or negative fluctuation peak at normalized deviation σ value equal to zero by convention.
For intermediate eddy growth stages, i.e., z less than 10, the probability of occurrence
of the primary eddy fluctuation does not follow conventional statistics, but is computed
as follows taking into consideration the fractional volume dilution of the primary eddy
by internal turbulent eddy fluctuations. Starting from unit length scale fluctuation,
the large eddy formation is completed after 10 unit length step growths, i.e., a total of
11 length steps including the initial unit perturbation. At the second step (z = 2) of
eddy growth the value of normalized deviation σ is equal to 1.1 - 0.2 (= 0.9) since the
complete primary eddy length plus the first length step is equal to 1.1. The probability
of occurrence of the primary eddy perturbation at this σ value however, is determined
by the fractional volume dilution k which quantifies the departure of the primary eddy
from its undiluted average condition and therefore represents the normalized deviation
σ. Therefore, the probability density P of fractal fluctuations of the primary eddy is
given using the computed value of k as shown in the following equation

P = τ−4k. (19)

The vertical velocity W spectrum will therefore be represented by the probability
density distribution P for values of -1 ≤ σ ≤ 1 given in (19) since fractal fluctuations
exhibit quantum-like chaos as explained above (16):

W = P = τ−4k. (20)

The probabilities of occurrence (P) of the primary eddy for a complete eddy cycle
either in the positive or negative direction starting from the peak value (σ = 0) are given
for progressive growth stages (σ values) in the following Table 2. The statistical normal
probability density distribution corresponding to the normalized deviation σ values are
also given in the Table 2.

The model predicted probability density distribution P along with the corresponding
statistical normal distribution with probability values plotted on linear and logarithmic
scales respectively on the left and right hand sides are shown in Fig.4. The model
predicted probability distribution P for fractal space-time fluctuations is very close to
the statistical normal distribution for normalized deviation σ values less than 2 as seen
on the left hand side of Figure 4. The model predicts progressively higher values of
probability P for values of σ greater than 2 as seen on a logarithmic plot on the right
hand side of Figure 4.

5.5 Atmospheric wind spectrum and aerosol size spectrum

The steady state flux dN of cloud condensation nuclei (CCN) at level z in the normalized
vertical velocity perturbation (dW)z is given as

dN = N(dW )z. (21)
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Growth step no ±σ k Probability(%) Probability (%)
model predicted Statistical normal

2 .9000 .8864 18.1555 18.4060
3 .8000 .7237 24.8304 21.1855
4 .7000 .6268 29.9254 24.1964
5 .6000 .5606 33.9904 27.4253
6 .5000 .5118 37.3412 30.8538
7 .4000 .4738 40.1720 34.4578
8 .3000 .4432 42.6093 38.2089
9 .2000 .4179 44.7397 42.0740
10 .1000 .3964 46.6250 46.0172
11 0 .3780 48.3104 50.0000

Table 2: Primary eddy growth.
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Figure 4: Model predicted probability distribution P along with the corresponding statistical
normal distribution with probability values plotted on linear and logarithmic scales respectively
on the left and right hand sides.
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The logarithmic wind profile relationship for W at (3) gives

dN = Nz
w∗

k
(dln z). (22)

The general systems theory predicts universal logarithmic wind profile [78, 83] as
manifested in the spiralling vortex air flows of tornadoes and the hurricane spiral cloud
circulations.

Substituting for k from (2)

dN = Nz
w∗

w∗

Wz(dln z) = NWz2(dln z). (23)

The length scale z is related to the aerosol radius ra (14). Therefore

lnz =
3

2
ln

(
ra
ras

)
. (24)

Defining a normalized radius ran equal to ra/ras , i.e., ran represents the CCN mean
volume radius ra in terms of the CCN mean volume radius ras at the surface (or reference
level). Therefore,

lnz =
3

2
ln ran, (25)

dlnz =
3

2
dln ran. (26)

Substituting for dlnz in (23)

dN = NWz2
3

2
(dln ran), (27)

dN

(dln ran)
=

3

2
NWz2. (28)

Substituting for W from equations (16) and (20) in terms of the universal probability
density P for fractal fluctuations

dN

(dln ran)
=

3

2
NPz2. (29)

The general systems theory predicts that fractal fluctuations may be resolved into
an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern
for the internal structure such that the successive eddy lengths follow the Fibonacci
mathematical series [78, 85]. The eddy length scale ratio z for length step σ is therefore
a function of the golden mean τ given as

z = τσ . (30)

Expressing the scale length z in terms of the golden mean τ in (29)

dN

d(ln ran)
=

3

2
NPτ2σ. (31)
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In (31) N is the steady state aerosol concentration at level z. The normalized aerosol
concentration at any level z is given as

1

N

dN

d(ln ran)
=

3

2
Pτ2σ. (32)

The fractal fluctuations probability density is P = τ−4σ (16) for values of the nor-
malized deviation σ ≥ 1 and σ ≤ -1 on either side of σ = 0 as explained earlier (Sections
5.3 and 5.4). Values of the normalized deviation -1 ≤ σ ≤ 1 refer to regions of primary
eddy growth where the fractional volume dilution k (2) by eddy mixing process has to
be taken into account for determining the probability density P of fractal fluctuations.
Therefore the probability density P in the primary eddy growth region (σ ≥ 1 and σ ≤
-1) is given using the computed value of k as P = τ−4k (20).
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Figure 5: Model predicted universal (scale independent) aerosol size spectrum.

The normalized radius ran is given in terms of σ and the golden mean τ from equations
(25) and (30) as follows

ln z =
3

2
ln ran, (33)

ran = z
2

3 = τ
2σ

3 .
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The normalized aerosol size spectrum is obtained by plotting a graph of normal-
ized aerosol concentration 1

N
dN

d(ln ran)
= 3

2Pτ2σ (32) versus the normalized aerosol radius

ran = τ
2σ

3 (33). The normalized aerosol size spectrum is derived directly from the univer-
sal probability density P distribution characteristics of fractal fluctuations (equations 16
and 20) and is independent of the height z of measurement and is universal for aerosols
in turbulent atmospheric flows. The aerosol size spectrum is computed starting from
the minimum size, the corresponding probability density P (32) refers to the cumulative
probability density starting from 1 and is computed as equal to P = 1− τ−4σ . The uni-
versal normalized aerosol size spectrum represented by 1

N
dN

d(ln ran)
versus the normalized

aerosol radius ran is shown in Figure 5.

6 General Systems Theory and Maximum Entropy Principle of Classical

Statistical Physics

Kaniadakis [47] states that the correctness of an analytic expression for a given power-
law tailed distribution, used to describe a statistical system, is strongly related to the
validity of the generating mechanism. In this sense the maximum entropy principle, the
cornerstone of statistical physics, is a valid and powerful tool to explore new roots in
searching for generalized statistical theories [47]. The concept of entropy is fundamental
in the foundation of statistical physics. It first appeared in thermodynamics through
the second law of thermodynamics. In statistical mechanics, we are interested in the
disorder in the distribution of the system over the permissible microstates. The measure
of disorder first provided by Boltzmann principle (known as Boltzmann entropy) is given
by S = KBlnM , where KB is the thermodynamic unit of measurement of entropy and
is known as Boltzmann constant equal to 1.38×10−16 erg/oC. The variable M, called
thermodynamic probability or statistical weight, is the total number of microscopic com-
plexions compatible with the macroscopic state of the system and corresponds to the
degree of disorder or missing information [16].

The maximum entropy principle concept of classical statistical physics is applied
to determine the fidelity of the inverse power law probability distribution P (15) for
exact quantification of the observed space-time fractal fluctuations of dynamical systems
ranging from the microscopic dynamics of quantum systems to macro-scale real world
systems. The eddy energy probability distribution (P) of fractal space-time fluctuations
for each stage of hierarchical eddy growth is given by (15) derived earlier, namely

P = τ−4t.

The r.m.s circulation speed W of the large eddy follows a logarithmic relationship
with respect to the length scale ratio z equal to R/r (3) as given below

W =
w∗

k
logz.

In the above equation the variable k represents for each step of eddy growth, the
fractional volume dilution of large eddy by turbulent eddy fluctuations carried on the
large eddy envelope [78] and is given as (2)

k =
w∗r

WR
.
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Substituting for k in (3), we have

W = w∗

WR

w∗r
logz =

WR

r
logz, (34)

and
r

R
= logz.

The ratio r/R represents the fractional probability P of occurrence of small-scale
fluctuations (r) in the large eddy (R) environment. Since the scale ratio z is equal to
r/R, (34) may be written in terms of the probability P as follows

r

R
= logz = log

(
R

r

)
= log

(
1

(r/R)

)
, (35)

P = log

(
1

P

)
= −logP.

For a probability distribution among a discrete set of states the generalized entropy
for a system out of equilibrium is given as [75, 16, 6, 88]

S = −

n∑
j=1

Pj lnPj . (36)

In (36) Pj is the probability for the jth stage of eddy growth in the present study and
the entropy S represents the missing information regarding the probabilities. Maximum
entropy S signifies minimum preferred states associated with scale-free probabilities.

The validity of the probability distribution P (15) is now checked by applying the
concept of maximum entropy principle [47]. Substituting for logPj (36) and for the
probabilityPj in terms of the golden mean τ derived earlier (15) the entropy S is expressed
as

S = −

n∑
j=1

Pj lnPj =

n∑
j=1

P 2
j =

n∑
j=1

(
τ−4n

)2
, (37)

S =
n∑

j=1

τ−8n ≈ 1 for large n.

In (37) S is equal to the square of the cumulative probability density distribution and
it increases with increase in n, i.e., the progressive growth of the eddy continuum and
approaches 1 for large n. According to the second law of thermodynamics, increase in
entropy signifies approach of dynamic equilibrium conditions with scale-free characteristic
of fractal fluctuations and hence the probability distribution P (15) is the correct analytic
expression quantifying the eddy growth processes visualized in the general systems theory.
The ordered growth of the atmospheric eddy continuum is associated with maximum
entropy production.

Paltridge [65] states that the principle of maximum entropy production (MEP) is the
subject of considerable academic study, but is yet to become remarkable for its practical
applications. The ability of a system to dissipate energy and to produce entropy ”ought
to be” some increasing function of the systems structural complexity. It would be nice if
there were some general rule to the effect that, in any given complex system, the steady
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state which produces entropy at the maximum rate would at the same time be the steady
state of maximum order and minimum entropy [65].

Selvam [87] has shown that the eddy continuum energy distribution P (15) is the
same as the Boltzmann distribution for molecular energies. The derivation of Boltzmann’s

equation from general systems theory concepts visualises the eddy energy distribution as
follows: (i) The primary small-scale eddy represents the molecules whose eddy kinetic
energy is equal toKBT whereKB is the Boltzmann’s constant and T is the temperature as
in classical physics. (ii) The energy pumping from the primary small-scale eddy generates
growth of progressive larger eddies [78]. The r.m.s circulation speeds W of larger eddies
are smaller than that of the primary small-scale eddy (1). (iii) The space-time fractal

fluctuations of molecules (atoms) in an ideal gas may be visualized to result from an
eddy continuum with the eddy energy E per unit volume relative to primary molecular
kinetic energy KBT decreasing progressively with increase in eddy size.

The eddy energy probability distribution (P) of fractal space-time fluctuations also
represents the Boltzmann distribution for each stage of hierarchical eddy growth and is
given by (15) derived earlier, namely

P = τ−4t.

The general systems theory concepts are applicable to all space-time scales rang-
ing from microscopic scale quantum systems to macroscale real world systems such as
atmospheric flows.

A systems theory approach based on maximum entropy principle has been applied
earlier in cloud physics to obtain useful information on droplet size distributions without
regard to the details of individual droplets [51-57]. Liu, Daum et al. [57] conclude that
a combination of the systems idea with multiscale approaches seems to be a promising
avenue. Checa and Tapiador [17] have presented a maximum entropy approach to Rain
Drop Size Distribution (RDSD) modelling. Liu, Liu and Wang [58] have given a review
of the concept of entropy and its relevant principles, on the organization of atmospheric
systems and the principle of the Second Law of thermodynamics, as well as their appli-
cations to atmospheric sciences. The Maximum Entropy Production Principle (MEPP),
at least as used in climate science, was first hypothesised by Paltridge [66].

7 Data

VOCALS PCASP-B data sets were used for comparison of observed with model predicted
suspended particle size spectrum in turbulent atmospheric flows.

During October and November, 2008, Brookhaven National Laboratory (BNL) par-
ticipated in VOCALS (VAMOS Ocean-Cloud-Atmosphere Land Study), a multi agency,
multi-national atmospheric sampling field campaign conducted over the Pacific Ocean
off the coast of Arica, Chile. Support for BNL came from DOE’s Atmospheric Science
Program (ASP) which is now part of the Atmospheric System Research (ASR) program
following a merger with DOE’s Atmospheric Radiation (ARM) program. A description of
the VOCALS field campaign can be found at http://www.eol.ucar.edu/projects/vocals/

Measurements made from the DOE G-1 aircraft are being used to assess the effects of
anthropogenic and biogenic aerosol on the microphysics of marine stratus. Aerosols affect
the size and lifetime of cloud droplets thereby influencing the earth climate by making
clouds more or less reflective and more or less long-lived. Climatic impacts resulting
from interactions between aerosols and clouds have been identified by the IPCC (2007)
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as being highly uncertain and it is toward the improved representation of these processes
in climate models that BNL’s efforts are directed.

The parent data set from which the Excel spreadsheet has been derived is archived
at the BNL anonymous ftp site:
ftp://ftp.asd.bnl.gov/pub/ASP%20Field%20Programs/2008VOCALS/Processed Data/
PCASP BPart/.

Data are archived as ASCII files.

7.1 VOCALS 2008 PCASP-B aerosol size spectrum

Data from the DOE G-1 Research Aircraft Facility operating during the 2008 VAMOS
Ocean Cloud Atmosphere Land Study (VOCALS) 2008 based in part at Chacalluta
Airport (ARI) north of Arica, CHILE.

PCASP BPart - Contains detailed size-binned (30 bins, 0.1 - 3 µm diameter) data
obtained from the PCASP (Passive Cavity Aerosol Spectrometer Probe, Unit B). This
probe was on the isokinetic inlet in the cabin before 10/29/08. On flight 081029a it was
moved to the nose pylon of the plane.

The following 17 data sets were used for the study, the file names giving Flight Des-
ignation (yymmddflight of day letter), 081014a 10.txt, 081017a 10.txt, 081018a 10.txt,
081022a 10.txt, 081023a 10.txt, 081025a 10.txt, 081026a 10.txt, 081028a 10.txt,
081029a 10.txt, 081101a 10.txt, 081103a 10.txt, 081104a 10.txt, 081106a 10.txt,
081108a 10.txt, 081110a 10.txt, 081112a 10.txt, 081113a 10.txt. The letter is a for first
flight. Max.Data Frequency is 10s-1 indicated as 10 in the file name.

8 Analysis and Discussion of Results

The atmospheric suspended particulate size spectrum is closely related to the vertical
velocity spectrum (Section 5). The mean volume radius of suspended aerosol particu-
lates increases with height (or reference level z) in association with decrease in number
concentration. At any height (or reference level) z, the fractal fluctuations (of wind, tem-
perature, etc.) carry the signatures of eddy fluctuations of all size scales since the eddy
of length scale z encloses smaller scale eddies and at the same time forms part of internal
circulations of eddies larger than length scale z (Section 5.2). The observed atmospheric
suspended particulate size spectrum also exhibits a decrease in number concentration
with increase in particulate radius. At any reference level z of measurement the mean
volume radius ras will serve to calculate the normalized radius ran for the different radius
class intervals as explained below.

The general systems theory for fractal space-time fluctuations in dynamical systems
predicts universal mass size spectrum for atmospheric suspended particulates (Section
5). For homogeneous atmospheric suspended particulates, i.e. with the same particulate
substance density, the atmospheric suspended particulate mass and radius size spectrum
is the same and is given as (Section 5.5) the normalized aerosol number concentration
equal to 1

N
dN

d(ln ran)
versus the normalized aerosol radius ran, where (i) ran is equal to

ra
ras

, ra being the mean class interval radius and ras being the mean volume radius for
the total aerosol size spectrum (ii) N is the total aerosol number concentration and dN
is the aerosol number concentration in the aerosol radius class interval dra (iii) d(ln ran)
is equal to dra

ra
for the aerosol radius class interval ra to ra+dra.
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8.1 Analysis results, VOCALS PCASP-B aerosol size spectrum

A total of 17 data sets between 14 October and 13 November 2008 are available for the
study. The data used in this study for each of the 17 flights are (i) average and standard
deviation for particle number concentration per cc in 29 class intervals ranging from .1
to 3 µm for the particle diameter (ii) average and standard deviation for total particle
number concentration per cc (bins 2 to 30) (iii) average and standard deviation for total
volume (cc).

Details of data sets used for the study are shown in Figure 6(a - d) as follows. (i) Fig-
ure 6a: lower and upper radius size limits for bin numbers 2 to 30 (ii) Figure 6b: average
and standard deviation for total particle number concentration per cc for the 17 flights
(iii) Figure 6c: average and standard deviation for total volume (cc) for the 17 flights
(bins 2 to 30) (iv) Figure 6d: average and standard deviation for mean volume radius
(µm) for the 17 flights. The dispersion (equal to standard deviation/mean) expressed as
percentage gives a statistical measure of variability of measured particle number concen-
tration. Computed dispersion (%) values are plotted for the two size ranges (i) less than
1 µm diameter (bins 2 to 20) and (ii) 1 to 3 µm diameter (bins 21 to 30) in Figure 7a
and Figure 7b respectively.

The average total number concentration exhibits a variability of about ±100 cc−1

around a mean value of about 200 cc−1 except for the first three flights which show
larger variability (Figure 6b). The total volume is one order of magnitude larger for flight
numbers 10 onwards compared to earlier flights (Figure 6c) consistent with larger median
volume radii for flight numbers 10 onwards (Figure 6d) and exhibit large variability,
particularly for size ranges more than 1 µm (Figure 6d).

For particle diameter range less than 1 µm (bins 2 to 20) the computed dispersion
(%) for particle number concentration is within 100% for bins 2 to 14 size range and
thereafter increases rapidly to a maximum of 500%. The computed dispersion (%) for
particle number concentration for bins 21 to 30 (1 to 3 µm diameter) increases steeply
from 500% to nearly 5000% with increase in particle size.

The mid-point diameter of the class interval was used to compute the corresponding
value of d(lnran). The average aerosol size spectra for each of the 17 data sets are plotted
on the left hand side and the total average spectrum for the 17 data sets is plotted on
the right and side in Figure 8 along with the model predicted scale independent aerosol
size spectrum. The corresponding standard deviations for the average spectra are shown
as error bars in Figure 8.

The total average aerosol size spectrum (right hand side of Figure 8a) for size (ra-
dius) range less than about 0.5µm (accumulation mode) is closer to the model predicted
spectrum while for particle size range greater than 0.5µm (coarse) the spectrum shows
appreciable departure from model predicted size spectrum possibly attributed to differ-
ent aerosol substance densities in the accumulation and coarse modes. The aerosol size
spectra for the two different homogeneous aerosol substance densities corresponding to
the two size (radius) ranges, namely (i) 0.1 to about 0.5 µm (accumulation mode) and
(ii) 0.5 to 1.5µm (coarse mode) were computed separately and shown in Figures 9 and
10 respectively. The observed aerosol size distribution for the two size categories now
follow closely the model predicted universal size spectrum for homogeneous atmospheric
suspended particulates. Earlier studies [38] have shown that the source for submicron
(diameter) size accumulation mode aerosols is different from the larger (greater than
1 µm diameter) coarse mode particles in the atmosphere and therefore may form two
different homogeneous aerosol size groups.
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The amount and longitudinal gradient of aerosol sulfate, and a consideration of the
locations of Cu smelters and power plants in Chile, strongly suggest that the sub micron
aerosol is dominated by anthropogenic emissions [48].
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Figure 6: (a): lower and upper radius size limits for bin numbers 2 to 30 (b) average and
standard deviation for total particle number concentration per cc for the 17 flights (c) average
and standard deviation for total volume (cc) for the 17 flights (bins 2 to 30) (d) average and
standard deviation for mean volume radius (µm) for the 17 flights.

9 Conclusions

The apparently irregular (turbulent) atmospheric flows exhibit selfsimilar fractal fluctu-
ations associated with inverse power law distribution for power spectra of meteorological
parameters on all time scales signifying an eddy continuum underlying the fluctuations.
A general systems theory [78] visualizes each large eddy as the envelope (average) of
enclosed smaller-scale eddies, thereby generating the eddy continuum, a concept anal-
ogous to Kinetic Theory of Gases in Classical Statistical Physics. It is shown that the
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ordered growth of atmospheric eddy continuum in dynamical equilibrium is associated
with Maximum Entropy Production.

Two important model predictions of the general systems theory for turbulent atmo-
spheric flows and their applications are given in the following:
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Figure 7: Computed dispersion (%) values for size range (a) less than 1 µm diameter (bins 2
to 20) (b) 1 to 3 µm diameter (bins 21 to 30).

• The probability distributions of amplitude and variance (square of amplitude) of
fractal fluctuations are quantified by the same universal inverse power law incor-
porating the golden mean. Universal inverse power law for power spectra of fractal
fluctuations rules out linear secular trends in meteorological parameters. Global
warming related climate change, if any, will be seen as intensification of fluctuations
of all scales manifested immediately in high frequency fluctuations [79, 87].

• The mass or radius (size) distribution for homogeneous suspended atmospheric
particulates is expressed as a universal scale-independent function of the golden
mean τ , the total number concentration and the mean volume radius. Model pre-
dicted aerosol size spectrum is in agreement (within two standard deviations on
either side of the mean) with total averaged radius size spectra for the VOCALS
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Figure 8: The average aerosol size spectra (bins 2 to 30) for each of the 17 data sets are
plotted on the left hand side and the total average spectrum for the 17 data sets is plotted on
the right along with the model predicted scale independent aerosol size spectrum.



426 A.M.SELVAM

1

1E-3

0.01

0.1

1

1E-3

0.01

0.1

1

1

1E-3

0.01

0.1

1

 individual flight average spectra n
o

rm
al

is
ed

 c
o

n
ce

n
tr

at
io

n
 (

d
N

/d
ln

R
)*

(1
/t

o
t 

n
o

)

 model predicted spectrum     
     error bars indicate one standard deviation on either side of mean

 

 

n
o

rm
al

is
ed

 c
o

n
ce

n
tr

at
io

n
 (

d
N

/d
ln

R
)*

(1
/t

o
t 

n
o

)

normalised radius (radius/mean volume radius)

normalised aerosol size spectrum (october, november 2008, bins 2 to 20)
Passive Cavity Aerosol Spectrometer Probe VOCALS 2008 (radius .0525 to  .45 um)

 

 total average spectrum

 

 

Figure 9: The aerosol size spectra for homogeneous aerosol substance density in the accumu-
lation mode corresponding to the size (radius) range 0.1 to about 0.5 µm (bins 2 to 20). The
average aerosol size spectra for each of the 17 data sets are plotted on the left hand side and
the total average spectrum for the 17 data sets is plotted on the right along with the model
predicted scale independent aerosol size spectrum
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Figure 10: The aerosol size spectra for homogeneous aerosol substance density in the coarse
mode corresponding to the size (radius) range 0.5 to 1.5 µm (bins 21 to 30). The average
aerosol size spectra for each of the 17 data sets are plotted on the left hand side and the total
average spectrum for the 17 data sets is plotted on the right along with the model predicted
scale independent aerosol size spectrum
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2008 PCASP-B data sets. SAFARI 2000 aerosol size distributions reported by
Haywood et al. [36] also show similar shape for the distributions. Specification of
cloud droplet size distributions is essential for the calculation of radiation transfer
in clouds and cloud-climate interactions, and for remote sensing of cloud properties.
The general systems theory model for aerosol size distribution is scale free and is
derived directly from atmospheric eddy dynamical concepts. At present empirical
models such as the log normal distribution with arbitrary constants for the size dis-
tribution of atmospheric suspended particulates is used for quantitative estimation
of earth-atmosphere radiation budget related to climate warming/cooling trends
(Section 2.1). The universal aerosol size spectrum presented in this paper may be
computed for any location with two measured parameters, namely, the mean vol-
ume radius and the total number concentration and may be incorporated in climate
models for computation of radiation budget of earth-atmosphere system.
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Appendix I: List of frequently used Symbols:

ν: frequency,

d: aerosol diameter,

N: aerosol number concentration,

N∗: surface (or initial level) aerosol number concentration,

ra: aerosol radius,

α: exponent of inverse power law,

W: circulation speed (root mean square) of large eddy,

w: circulation speed (root mean square) of turbulent eddy,

R: radius of the large eddy,

r: radius of the turbulent eddy,

w∗: primary (initial stage) turbulent eddy circulation speed,

r∗: primary (initial stage) turbulent eddy radius,

T: time period of large eddy circulation,

t: time period of turbulent eddy circulation,

k: fractional volume dilution rate of large eddy by turbulent eddy fluctuations,

z: eddy length scale ratio equal to it R/ r,

f: steady state fractional upward mass flux of surface (or initial level) air,
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q: moisture content at height z,

q∗: moisture content at primary (initial stage) level,

m: suspended aerosol mass concentration at any level z,

m∗: suspended aerosol mass concentration at primary (initial stage) level,

ra: mean volume radius of aerosols at level z,

ras: mean volume radius of aerosols at primary (initial stage) level,

ran: normalized mean volume radius equal to ra/ras,

P: probability density distribution of fractal fluctuations,

σ: normalized deviation.
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