Nonlinear Dynamics and Systems Theory, 12 (4) (2012)

ot
B/

ATH

Publishing
Group

A computational Method for Solving a System of
Volterra Integro-differential Equations

H. Jafari'* and A. Azad?

L Department of Mathematics, University of Mazandaran, Babolsar, Iran.
2 Young Research Club, Islamic Azad University-Ayatollah Amoli Branch, Amol, Iran

Received: December 6, 2011;  Revised: October 8, 2012

Abstract: In this paper we present a reliable algorithm for solving a system of
Volterra integro-differential equations using Taylor series expansion method and com-
puter algebra. This method converts a system of Volterra integro-differential equa-
tions to a system of linear algebraic equations. Some illustrative examples have
been presented to illustrate the implementation of the algorithm and efficiency of the
method.
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1 Introduction

A number of problems in chemistry, physics and engineering are modeled in terms of
system of Volterra integro-differential equations. Various methods have been developed
to prove existence and uniqueness of solutions to integro-differential equations [3].

In this paper, we use a modified Taylor-series expansion method for solving system of
Volterra integro-differential equations. This method was first presented by Kanwal and
Liu et. al. [I] for solving integral equations and in [2,[6] for solving Fredholm integral
equations of second kind. Daftardar-Gejji et. al. have used this method for solving
system of ordinary differential equations [4]. Maleknejad et. al. have applied this
method for solving Volterra integral equations and system of Volterra integral equations
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of second kind [5l[7]. Yalcinbas and Sezer [8] have studied the following type of nonlinear
Fredholm-Volterra integral equations

y() = f(@) + M /I F(a, D)y ()]F di + o / ko (x; t)y(t) dt, (1)

and the high-order linear and nonlinear Volterra-Fredholm integro-differential equations
have been considered in [9}10]

m

) x b
S P(@)y (@) = f(2) + M / o () () dt + Do / ka(z,Oy(t)dt,  (2)
=0 a a
m ) x b
S P(@)y (@) = f(2) + M / (2, Oy (D)7 dt + Ao / ka(m, Oy(B)7dt. (3)
=0 a a

In this paper, the basic ideas of the previous work [6] are developed and applied to the
high-order system of Volterra integro-differential equation of the form

Zzazjs( ) (J) fs +Z/ zsztyz dt 5:1725"'5’”7 (4)
i=1 j=0
where a;;s(z) , fso(x) (s = 1,2,---,n) and k;s(z,t) are known functions which are Ith

derivatable on interval a < x,t < b.
We assume that (@) has a unique solution. Suppose the solution of {]), can be
expressed in the form:

N

b)) =3 O - a<rE<h, (5)

r=0
which is a Taylor polynomial of degree N, where N > {ngs, ns}, and y®) (&) (s =
0,1,---,N) are the coefficients to be determined.

2 Analysis of Method

First, we rewrite (@) in the following form

where D(x) = [D1(x), D2(2), ..., Dp(2)]T, I(x) = [l1(2), I2(2), ..., I, (2)]7,

=3 Y @y (@), L) = fo@) + Y Vil@),  s=1,2,-.n, (7)

i=1 j=0 i=1
with .
m@:/kmmm@m (8)

Then D(z) is called the differential part and I(x) the integral part of (). Differentiating
Eq. (@ N times with respect to x, we get

Di(z)=I'(x), 1=0,1,---,N,s=1,2,---,n. (9)
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In the following part, we will analyse the expressions D! (x) and I'(x). It is easy to see
that

O]

DI (z) = Z}:%s v (@
z 15=0
@ @
= Zaljs (]) Zan_]s (J) ) )
1=0,1,---,N,s=1,2,---,n (10)

Using Leibnitz’s rule (dealing with differentiation of products of functions), simplifying
and then substituting x = £ into the resulting relation, we can get

D(l) ZZZ() z]s y(p+j)(‘r)’ l:1a2a"'aNaS:031;"';n- (11)
1=1 j=0 p=0

The system () can be written in the matrix form as:

D =WY, (12)
where Y = [yio), yil), . ,ygN),yéo), e ,yéN), - y,(zo), . ,y,(zN)} Note that

W= [Wi] di,s=12--,n, (13)

is a matrix, where each W, is again a matrix:

m l B B
lp _ (l p+m—q) I.p=0.1.--- N. 14
o q:zo <P - m+ q> Gm=gs (&) Lp=01,--, (14)

Note: For r < 0, a'”) = 0 and for j < 0andj> i, <Z> = 0, where 4,5 and r are
J

(L]

integers. On the other hand, for the integral part I(z), it is easy to know that

Is(l)( (l) ZV(Z) 0717"' 7N7 (15)
where
al x
Vi(z) = ] Kis(z,t)y:(t)dt
=y il T O (s )
=>. [his(x)%(x)} +/ e A QL (16)

—1l-r—1 . .
l—5—-1 : (I=r=j-1) |, T kg, t
E §:( ! )@mm) @%m+L——£r%mMu
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with k(1)

; kio (2, t

K e .
zs() o1l |t

By Using Leibnitz’s rule and substituting (&) in (I6]), we can get

wo =0+x 3 (71 (o) e

r=0 j=0 r
€ Olkis(, t) i )
*/a Pt o 2 |yz()(§)(t—§)]dt (17)

+ li HI + Tyl (¢ Z Ty (¢

For the case of computing in practice, the approximate form of system (IT) can be
put in as follows:

Is(z)( (l) Z le Tlr (r) ZTlr (r) (18)

where for [=1,2,--- N; r=0,1,---,1—1 (I>7r)

)

o0

and for [ <r, HI =0.and

1 [ Oks(a,t .
T};:E/ %@gt—g) dt, l,r=0,1,---,N. (20)

This system can be put in the matrix form as

I=F+TY. (21)
@I) combined with (I3))
WY =F+TY or (W-T)Y =F, (22)
where
[ wi?  wii wiy wly  wiy, wiy |
wif  wiy wii’ wly  wiy wiy
w0 N1 wN i w0 1 whN
W = [w]] :
wpy Wy wpt Wy Wi, Wy
Wl wp wy wph W won
L wp wl whi wpy W wh ]
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T
N N)
F= |:f1(0)a 1(1)a"'af( ) f f( - f(o) af'r(LN) ) (23)
Aii Az - A
T  — (4= | A2 Az o A
Anl An2 et Ann
T0 TO! T02 ... TON
HlO + TlO Tll TlZlSQ . thlsN
A = H20 4 720 HZ + T2 T2 . TEN
Hgo.;Tizsvo Hf;” _i_T;J;fl HN2'+TN2 leSVN
T
N N
Y = [ @ V0,687 V©, D ©, )
= [Y10, Yi1s YIS Y200 > YONs 3 Yn0y s YnN] s (24)

which is to be solved.

Substituting ([23) in ([22]), we can convert (22)) into an algebraic equations with vari-
ables Y10, Y11, ,Y1N, Y205 " »Y2N, " »Yn0s " > YnN, We can determine the variables
vir (1=1,2,...n; r=0,1,....N), i.e., the unknown Taylor coefficients y(T)(g) (i=1,2,...,n;
r =0,1,...,N), thus we can get the Taylor polynomial solution of the system (4 as follows:

yila) =3 29O ()" (25)

Example 2.1 Consider the following Volterra system of integro-differential equa-
tions:

1= Y1+ 200 — Ay — Bus + fun — 2y — gy = Fi(@) + [y () Jyi(t)dt
+ Jo Sua(t dt+f0 (5z + 1) ys(t)dt,

Lyl st yn =2y + Lys = (@) + [ (@ + D)y (t)dt + [ t2y2 (t)dt (26)
+f0 yg t)dt,
’ " " T
%yl + %yl - %yg + Yo + 4y3 + fO 3z *t y2 )dt + fO Z'yg(t)dt,
where fi(z) = —2% — 527 — $a' = 323+ $22, fo(x) = —fa® — ', f3(x) = —2ab — 27+
1—721133 — % and the matrix form of the above system for N = 4 and £ =0 is as follows

WY — KY =F,
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where
(1 -1 2 0o 0 -4 -2 2 0 0 0 -2 % 0 0]
o1 -1.2 0 0 -4 -3 2 0 0 0 -2 = 0
o0 1 -1 2 0 0 -4 -2 2 0 0 0 -2 F
o0 0o 1 -1 0 0 0 -4 -290 0 0 0 -2
oo 0o o0 1 0 0 0 0 —-40 0 0 0 0
o0 -y 0 0 1 1 -2 0 0 0 0 £ 0 O
oo o -y 0 o0 1 1 -2 0 0 0 0 & O
W=l0 0 0 0 -3 0 0 1 1 -220 0 0 0 % [,
oo 0o o0 0O 0O 0 0 1 1 0 0 0 0 0
o0 0o 0 0 0O 0 0 0 1 0 0 0 0 0
0%%00—%0100%0000
005500—501002000
000§§00750100§00
oo 0o 0 5 0 0 0 -3 0 0 0 0 2 0
00 o o 0 O O O O -3 0 0 0 0 3 |
[0 ] [0 0 0 000O0O0DO0OOTO0O 0 0 0 0]
0 00 0 0050000 3 0 0 00
1 -1 0 0 000500010 3 0 00
~18 0 -1 0 0000500 0 15 3 00
-3 0 0 -1 0000O0S50 0 0 20 % 0
0 00 0 000O0OO0DO0ODODTO 0 0 00
0 1 0 0 0000DO0ODDO0ODOT1 0 0 00
F=| 0 |[,K=[2 1 0 000000O0O0TUO0O 1 0 000
0 0 3 1 0020000 O0 O 1 00
—24 0 0 4 10060000 0 0 10
-2 00 0 000O0OO0DO0ODOT O 0 0 00
0 00 0 000O0OO0DO0ODOT O 0 0 00
0 00 0 00500002 0 0 00
z 00 0 00070000 3 0 00
| 0 | | 0 0 0 0000900 O0 0 4 0 0 |

Then we can get the following algebraic equations:

—2Y12 + Y20 + Y21 — 2y22 + 1y32 =0,

—1Y14 + Y22 + Y23 — 2y24 + FY34 — 210 — Y11 — Y31 =0,

2y12 + $Y13 — 3Y21 + Y23 + Fy31 =0,

— 13 + Y21 + Y22 — 223 + Y33 — Y10 — Y30 = 0,

—5Y24 + 2ysa — 2o — 4ysz =0,

Y23 + Y2a — 3y11 — Y12 — 2Y20 — Y32 = 0,

Y13 — Y14 — 4y23 — Sy24 — 2y34 + Y11 — Syaz — 15y31 — Fy32 = —18,
2y13 + Y14 — Y22 + Y24 + Sy32 — Sy2o — 2y30 = 0,

Y24 — 4y12 — y13 — 6y21 — Y33 = —24,

Y10 — Y11 + 2512 — 4y20 — Sy21 + Jy22 — 2y31 — 3y32 = 0,

%yu + Y12 — 3Y20 + Y22 + Fyz0 = — &,

2y14 — 3Y23 + Y33 — Tya1 — 3ys1 = I,

Y14 — 4y24 + Y12 — By2s — 20y32 — 1y33 = =3,

Y11 — Y12 + 2513 — 4y21 — Sy + Y23 — 2y32 — 3¥33 — By20 — 5y30 = 0,

Y12 — Y13 + 2y14 — 4y22 — SY23 + 3y24 — 2y33 — 3Y34 + Y10 — Hy21 — 10ys0 — 3ys1 = L.
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The solution of this system of algebraic equations is as follows:

Y = {y12=0,923 =0,y30 = 4,922 = 2,y11 = —2,%20 = 3,¥31 = —2, Y10 = 5,
y3a =24, y14 = 0,933 = 6,y21 = 1,y30 = 0,913 = 12, y24 = 0}.

Then in view of (28] we can obtain the solution of (28] as

yi(r) = 22° — 2245,
yo(z) = 2?2 +2+3,
ys(xr) = o' 23— 22— 4.

which is exact solution.

Example 2.2 Consider the following Volterra system of integro-differential equa-
tions:

{ v +y1 = fi(@) + [ (sin(z —t) — 1) ya(t)dt + [ (1 — teos(z)) y2(t)dt,
—y1 + Yy = fo(x) + [y ya(t)dt + [§ (x —t) y2(t)dt,

where f1(x) and f(z) are chosen such that the exact solution is fi(z) = cos(x) and
f2(x) = sin(x). Numerical results for N=12 and £ = 0 are given in Table 1.

. yi(x) y2(x)
Exact Approximate Exact Approximate

0.0 1.0 1.002264127 0.0 -0.002264127328
0.1  0.9950041653  0.9970320650 0.09983341665  0.09759183946
0.2 0.9800665778  0.9818454811 0.1986693308 0.1965212957
0.3  0.9553364891  0.9568714640 0.2955202067 0.2936886078
0.4  0.9210609940  0.9224004551 0.3894183423 0.3885026325
0.5 0.8775825619  0.8788683493 0.4794255386 0.4806769283
0.6 0.8253356149  0.8268785893 0.5646424734 0.5702225351
0.7 0.7648421873  0.7672136234 0.6442176872 0.6572875444
0.8 0.6967067093  0.7008073298 0.7173560909 0.7415468153
0.9 0.6216099683  0.6285990889 0.7833269096 0.8203856200
1.0 0.5403023059  0.5510745228 0.8414709848 0.8842821006

Table 1: Numerical results for N=12 and £ = 0.

3 Conclusion

In this paper, we use modified Taylor-series expansion method for solving a system of
Volterra integro-differential equations. By using the theories and methods of mathemati-
cal analysis and computer algebra, we convert the system of integro-differential equations
into a system of linear algebraic equations and then we obtain the solution of the system
of integro-differential equations. The Taylor polynomial method proposed in this inves-
tigation is simple and effective for solving various system of integro-differential equations
and can provide an accuracy approximate solution or exact solution.

Maple has been used for computations in this paper.



396 H. JAFARI AND A. AZAD
References
[1] Kanwal, R.P. and Liu, K.C. A Taylor expansion approach for solving integral equations.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Int. J. Math. Educ. Sci. Technol. 20 (3) (1989) 411-414.

Ren, Y. Zhang and Bo. Qiao, Hong. A simple Taylor-series expansion method for a class
of second kind integral equations. J. Comput. Appl. Math 110 (1999) 15-24.

Dabas, J. Existence and Uniqueness of Solutions to Quasilinear Integro-differential Equa-
tions by the Method of Lines. Nonlinear Dynamics and Systems Theory 11 (4) (2011)
397-410.

Daftardar-Gejji, V. Dehghan and M. Jafari, H. An algorithm for solving a System of linear
ordinary differential Equations. Far East Journal of Applied Mathematics 29 (3) (2007)
445-453.

Maleknejad and K. Aghazadeh, N. Numerical solution of Volterra integral equations of the
second kind with convolution kernel by using Taylor-series expansion method. Appl. Math.
Comput. 161 (2005) 915-922.

Jafari, H. Hoseinzadeh, H. and Azad, A. A computational method for solving a System
of Fredholm integro-differential Equations. Icfai Journal of Computational Mathematics
(IJCM) 2 (2009) 35-44.

Rabbani, M. Maleknejad and K. Aghazadeh, N. Numerical computational solution of the
Volterra integral equations system of the second kind by using an expantion method. Appl.
Math. Comput. 187 (2007) 1143-1146.

Yalcinbas, S. and Sezer, M. The approximate solution of high-order linear Volterra—
Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Com-
put. 112 (2000) 291-308.

Wang, W. An algorithm for solving the high-order nonlinear Volterra—Fredholm integro-
differential equation with mechanization. Appl. Math. Comput. 172 (1) (2006) 1-23.

Yalcinbas, S. Taylor polynomial solutions of nonlinear Volterra—Fredholm integral equa-
tions. Appl. Math. Comput. 127 (2002) 195-206.



	Introduction
	Analysis of Method
	Conclusion

