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Abstract: Continual model of a complex medium with oscillating inclusions is con-
sidered. Travelling wave (TW) solutions to the source system are shown to satisfy a
four-dimensional dynamical system. Qualitative study of the factorized system en-
ables to show the existence of homoclinic and heteroclinic contours in vicinities of
fixed points. Existence of the homoclinic loops results in the complex global be-
havior of phase trajectories, including the bifurcations of tori, that are investigated
numerically.
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1 Introduction

Experimental investigations of deformations of geomedia in the wide range of loading
velocities, carried out in the last decades, testify that geomedia possess two basic features,
namely, a discrete structure and oscillating motion of the discrete elements [1, 2].

Oscillating modes can be incorporated into the continual model by means of adding
extra volumetric forces, causing the movements of the elements of the structure. In the
papers [3, 4] a linear mathematical model for structured media taking into account the
oscillations of structural elements has been suggested. In the simplest form the equations
of motion can be written as follows:

ρ
∂2u

∂t2
=

∂σ

∂x
−mρ

∂2w

∂t2
,

∂2w

∂t2
+ ω2 (w − u) = 0, (1)
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where ρ is the density, σ is the stress, u (x, t), w (x, t) are the displacements of the bulk
medium and typical oscillator with natural frequency ω, mρ is the density of oscillating
inclusions.

But it is well known that the real geomaterials manifest a strong nonlinear effects
when being subjected to high-intense impulse loading. In the situation when the medium
is far from equilibrium, various relaxing processes within the elements of structure take
place and the linear model becomes completely incorrect.

Thus, generally speaking, one should take into account both physical nonlinearity
and nonlocal effects. This can be done by incorporating into the modelling system the
following equation of state [5, 6]:

σ = E1ε+ E3ε
3 + θ

(

σxx − σx

εx

ε+ 1
− η

[

εxx − (εx)
2

ε+ 1

])

. (2)

Equations (1), (2) form a closed system, which will be studied below. In our previous
work [7], preliminary investigations of the system with θ = 0 were carried out, revealing,
in particular, the existence of periodic and soliton-like (especially important in nonlinear
physics and engineering applications [8]) TW solutions.

The aim of the present paper is to study a set of TW solutions to (1)-(2) in the
general case and to investigate an influence of spatial nonlocality on the structure of
wave regimes.

2 Qualitative Analysis of the Dynamical System Describing Autowave

Solutions

We restrict our consideration to the set of TW solutions, having the form

u = U(s), w = W (s), s = x−Dt. (3)

Here the parameter D stands for the constant velocity of the wave front. Substituting
(3) into the equations (1), (2), we obtain the dynamical system

D2U ′′ = F ′ −mD2W ′′, (4)

W ′′ +Ω2 (W − U) = 0, (5)

F = e1U
′ + e3 (U

′)
3
+ θ

(

F ′′ − F ′
U ′′

U ′ + 1
− η

[

U ′′′ − (U ′′)
2

U ′ + 1

])

, (6)

where Ω = ωD−1.
Integrating once equation (4), we get

F = D2 (U ′ +mW ′) . (7)

Excluding the function F with the help of formula (7), we obtain the following system:

W ′′ +Ω2 (W − U) = 0,

D2 (U ′ +mW ′) = e1U
′ + e3 (U

′)
3
+ θ

(

F ′′ − F ′
U ′′

U ′ + 1
− η

[

U ′′′ − (U ′′)
2

U ′ + 1

])

.
(8)
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It is easily seen, that this system can be rewritten as four-dimensional dynamical system
(8):

Z ′ = Y, Y ′ = −Ω2 (Z −R) , R′ = X,

X ′ =
1

θ (D2 − η)

(

−e1R− e3R
3 +

X2
{

D2 − η
}

θ +D2θmXY

R+ 1
+

+θmD2Ω2 {Z −R}+D2 {R+mZ}
)

(9)

Analysis shows that system (9) has three fixed (or stationary) points: the point M1

coinciding with the origin, and the pair of the points M2, 3, given by the formulae

X = Y = 0, Z2 = R2 = ±
√

D2 (1 +m)− e1

e3
≡ ±G.

It is easy to get convinced, that the Jacobi matrix of the system has the form:

J =









0 1 0 0
−Ω2 0 Ω2 0
0 0 0 1
K1 0 K2 0









,

where K1 =
mD2

(

1 + Ω2θ
)

(D2 − η) θ
, and K2 =

D2 − e1 −mω2θ

(D2 − η) θ
at the point M1, and K2 =

2e1 −D2
(

2 + 3m+mΩ2θ
)

(D2 − η) θ
at the points M2, 3. The eigenvalues of the matrix J satisfy

the biquadratic equation

λ4 + λ2
(

Ω2 −K2

)

− (K1 +K2)Ω
2 = 0.

It is then obvious that λ2 = 1

2

(

K2 − Ω2 ±
√

(Ω2 +K2)
2
+ 4Ω2K1

)

. Depending on the

values of λ the fixed points of the dynamical system are centers, saddles, or degenerate
ones.

Some analytical results concerning the behavior of solutions in some vicinities of the
fixed points can be obtained on the basis of the local asymptotic analysis. Let us consider
the dynamical system (9) in the vicinity of the points M2, 3. For convenience, we replace
the origin at the point Mi, i = 1, 2, making the change of variables Z = x1+G, Y = y1,
R = x2 +G, X = y2:

x′

1 = y1, y′1 = −Ω2 (x1 − x2) , x′

2 = y2,

y′2 = K1x1 +K2x2 −
3Ge3

(D2 − η)θ
x2
2 −

e3

(D2 − η)θ
x3
2 +

y2
(

−ηy2 +D2my1 +D2y2
)

(D2 − η)(1 + x2 +G)
(10)

To analyze the dynamics in a vicinity of the critical point of system (10), we introduce
a formal parameter ε. Using the scaling transformation xi = εxi, yi = εyi and the

expansion in series
1

1 + εx2 +G
=
∑

j=0

(−1)jεjxj
2

(1 +G)j+1
we can rewrite our system up to

O(ε3) in the following form:
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x′

1 = y1, y′1 = −Ω2 (x1 − x2) , x′

2 = y2,

y′2 = K1x1 +K2x2 + ε
(

H1x
2
2 +H2y1y2 +H3y

2
2

)

+ ε2
(

L1x
3
2 + L2x2y1y2 + L3x2y

2
2

)

,

(11)

where H1 =
−3e3G

(D2 − η)θ
, H2 =

D2m

(1 +G)(D2 − η)
, H3 =

1

1 +G
, L1 =

−e3

(D2 − η)θ
, L2 =

− D2m

(1 +G)2(D2 − η)
, L3 = − 1

(1 +G)2
.

The expansion of the dynamical system (9) in vicinity of the stationary point M1 can
be written in the same form but with different coefficients Ki, i = 1, 2 and Hi, Li, i =
1, 2, 3.

Now let us remind, that any linear system of coupled oscillators can be presented
in an uncoupled form by means of passing to the normal modes (see e.g. [9]). This
procedure is connected with the separation of general system dynamics onto the simpler
motions described by systems with single degree of freedom, and expresses the principle
of superposition for linear systems. For nonlinear systems analogs of the superposition
principle can also be stated in many cases. For weakly non-linear systems like (11) the
superposition principle can be established on the basis of the method of nonlinear normal
modes [10,11]. In accordance with [12], we assume that it is possible to split the degrees
of freedoms into the ”master” coordinates x1 = u, y1 = v and the ”slave” coordinates
x2, y2 functionally, dependent on the ”master” ones: x2 = X2(u, v), y2 = Y2(u, v).
Such relations just express the nonlinear principle of superposition. On the other hand,
the nonlinear normal modes technique could be regarded as the next step of a local
asymptotic analysis, following the qualitative analysis of the linearized system.

If we assume that the master system has the form

x′

1 = y1, y′1 = f1(xi, yi),
x′

2 = y2, y′2 = f2(xi, yi),

then X2 and Y2 satisfy the equations

Y2 =
∂X2

∂u
v +

∂X2

∂v
f1(u, v,X2, Y2),

f2(u, v,X2, Y2) =
∂Y2

∂u
v +

∂Y2

∂v
f1(u, v,X2, Y2).

(12)

Now we are going to find the solution of (12) in the form of the following series expansions:

X2 = a1u+ a2v + a3u
2 + a4uv + a5v

2 + a6u
3 + a7u

2v + a8uv
2 + a9v

3 + ...,

Y2 = b1u+ b2v + b3u
2 + b4uv + b5v

2 + b6u
3 + b7u

2v + b8uv
2 + b9v

3 + ....
(13)

Inserting (13) into (12) and equating to zero the coefficients of the same monomials uivj ,
we get a set of algebraic equations with respect to the parameters ai, bi. The first four
coefficients obtained in this way are as follows:

for mode I

a1 =
1

2Ω2
(K2 +Ω2 −

√

(K2 +Ω2)2 + 4K1Ω2), a2 = 0,

b1 = 0, b2 =
1

2Ω2
(K2 +Ω2 −

√

(K2 +Ω2)2 + 4K1Ω2).
(14)

for mode II



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (4) (2012) 365–374 369

a1 =
1

2Ω2
(K2 +Ω2 +

√

(K2 +Ω2)2 + 4K1Ω2), a2 = 0,

b1 = 0, b2 =
1

2Ω2
(K2 +Ω2 +

√

(K2 +Ω2)2 + 4K1Ω2).
(15)

Note that the sets of the parameters (14) and (15) correspond to the case when the
linearly coupled system breaks up into a pair of uncoupled equations describing linear
oscillations.

Using (14), we can express the coefficients of the quadratic monomials in the following
form:

for mode I and II

a3 = −
a1

(

2H2Ω
4 (a1 − 1)

2
+
(

H1

(

K2 +Ω2 (2− 3 a1)
)

+ 2H3Ω
4 (a1 − 1)

2
)

a1

)

(K2 +Ω2 (4− 5 a1)) (K2 − Ω2 a1)
,

a4 = 0,

a5 = −a1
(

H2

(

K2 +Ω2 (2− 3 a1)
)

+
(

2H1 +H3

(

K2 +Ω2 (2− 3 a1)
))

a1
)

(K2 +Ω2 (4− 5 a1)) (K2 − Ω2 a1)
,

b3 = 0,

b4 =
−2 a1

(

H2 Ω
2 (a1 − 1) +

(

H1 +H3 Ω
2 (a1 − 1)

)

a1
)

K2 +Ω2 (4− 5 a1)
, b5 = 0.

(16)
Remark. One can easily see, that the coefficients defined by (16) become infinite,

when the corresponding denominators nullify. This occurs if K2 − Ω2a1 = 0, K2 −
Ω2 (5 a1 − 4) = 0, K2 − Ω2 (10 a1 − 9) = 0, and so on. In these cases the corresponding
resonances take place, namely 1 : 1, 1 : 2, 1 : 3, ..., and the coupled system cannot be
presented as a pair of uncoupled ones.

In the third order approximation we get:
for mode I and II

a7 = a9 = 0, b6 = b8 = 0, (17)

while the rest ones are nonzero. We don’t present them because they are very cumber-
some.

Since u′ = v, v′ = f1(u, v,X2, Y2), then taking into account the parameters values
corresponding to the first mode, we get the following planar system (instead of the fourth
order one):

u′ = v, v′ = µ1u+ µ2u
2 + µ3v

2 + µ4u
3 + µ5uv

2, (18)

where µ1 = Ω2(a1 − 1), µ2 = Ω2a3, µ3 = Ω2a5, µ4 = Ω2a6, µ5 = Ω2a8. Note that the
value

√
µ1 coincides with the pair of eigenvalues of the matrix J .

Nonlinear system (18) proves to be completely integrable. Indeed, dividing the second
equation by the first one, we obtain the following equation:

1

2

dρ

du
= µ1u+ µ2u

2 + µ3ρ+ µ4u
3 + µ5uρ, (19)

where ρ = v2. The general solution of (19) can be presented in the form

v2 = 2

∫ u

u0

(

µ1τ + µ2τ
2 + µ4τ

3
)

exp [(u − τ)(2µ3 + µ5(u+ τ))] dτ+

+v20 exp [(u− u0)(2µ3 + µ5(u+ u0))] ,
(20)
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a) µ1 > 0, ∆ > 0 b) µ1 < 0, ∆ < 0

c) µ1 < 0, ∆ > 0 d) µ1 < 0, ∆ > 0, µ2 = −1.3274589

Figure 1: The phase portraits of dynamical system (19) at the different values of the parameters
µi.

where (u0, v0) stand for the initial data. Hence, the general solution of system (18) has
the form s =

∫

v−1du. To analyze the behavior of the solution obtained, it is desired to
perform the qualitative integration [13] of the planar system (18).

The fixed points of system (18) have the coordinates

v = 0, u1 = 0, u2 =
−µ2 −

√

µ2
2 − 4µ1µ4

2µ4

, u3 =
−µ2 +

√

µ2
2 − 4µ1µ4

2µ4

.

The fixed points (u2,3; 0) exist if ∆ ≡ µ2
2 − 4µ1µ4 ≥ 0. The type of the fixed points is

defined by the eigenvalues λ of the linearized matrix

M =

(

0 1
µ1 + 2µ2ui + 3u2

i 0

)

.

For the fixed point (0; 0) λ2 = µ1 then if µ1 < 0 the fixed point is a center, if µ1 > 0
then it is a saddle. For another fixed points, if λ2 = µ1 + 2µ2ui +3u2

i < 0 then the fixed
points are centers otherwise they are saddles. Let us consider the typical phase portraits
of dynamical system (18).

We can distinguish the following cases
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• µ1 > 0. The phase plane has a saddle (0; 0) if ∆ < 0; the phase plane has a saddle
(0; 0) and a pair (u2,3; 0) of centers, if ∆ > 0 (Figure 1a).

• µ1 < 0. In the case when ∆ < 0, there is a center (0; 0) at the origin, Figure
1b. In the case ∆ > 0 the center is accompanied by the pair of saddles (u2,3; 0).
Separatrices of one of the saddles form a homoclinic loop, whereas the separatrices
of another one do not intersect, and surround the homoclinic loop (Figure 1c).

The last case is more complicated and interesting. Indeed, small changes of the
parameters (e.g. µ2) may cause a global qualitative changes of the phase portrait. The
saddle separatrices under certain conditions can interconnect, forming a heteroclinic loop.

Using the exact solution (20), one can estimate the conditions of the heteroclinic
loop creation. Suppose that a trajectory connecting the fixed points (u2, 0) and (u3, 0)
exists. Then the coordinates of the fixed points must satisfy relation (20), where u0 = u2,
v0 = 0, u = u3, v = 0. As a result, the following relation is derived

∫ u2

u3

(

µ1τ + µ2τ
2 + µ4τ

3
)

exp [(u2 − τ)(2µ3 + µ5(u2 + τ))] dτ = 0.

It poses certain restrictions on the parameters of the dynamical system, the value of some
parameter can be calculated precisely. Following this way, we succeeded in constructing
the figure 1d, corresponding to µ1 = −1, µ3 = 3, µ4 = 0.5, and µ5 = −2.

3 Application of Local Analysis to the Dynamical System

Let us apply the results presented above to the investigation of the local dynamics of the
system (9) in the vicinity of the fixed points. For the parameters values D = 0.9, ω = 1,
m = 0.8, e1 = 1, e3 = 0.7, η = 0.105, θ = 0.7 the linearization matrix J taken at the fixed
point (Z1; 0;R1; 0) has the eigenvalues (±1.767i;±0.606). At the fixed point (Z2; 0;R2; 0)
the eigenvalues of J are the following: (±2.256i;±0.671i). In the vicinity of each fixed
point the system (9) splits into a pair of separated planar dynamical systems,both written
in the form (18), but differing by the values of the parameters µi.

Thus, for fixed point (Z2; 0;R2; 0), the mode I is described by the dynamical system
(18) with µi = {−5.0882,−17.8235,−4.1475,−128.7057,−26.4049}. The corresponding
phase plane of the system is depicted in Figure 1b.

The parameters µi = {−0.4504,−0.4457, 0.3738, 0.4805,−2.4475} relate to the mode
II. Then dynamical system (18) has three fixed points (0; 0), (−0.6097; 0), (1.5373; 0) and
the phase plane is presented in Figure 2.

The analysis of the system (18) in the vicinity of the fixed point (Z1; 0;R1; 0) is carried
out in the same way. The parameter values µi = {−3.1214,−4.7475,−1.6104,
− 16.4902,−5.3289} correspond to the mode I. Corresponding phase portrait is shown in
Figure 1b.

For the mode II we have the following values of the parameters µi =
{0.367067,−0.06678, 0.9554,−0.8903, 0.0763}. The phase plane of the system (18) con-
tains the fixed points with the coordinates (0; 0), (0.6057; 0), (−0.6807; 0). Its phase
portrait is illustrated by Figure 1a.

It is well known, that the presence of the homoclinic loops in the phase space of
the multidimensional dynamical system can lead to the very complex dynamical be-
haviour [14]. In the case under consideration the homoclinic loops observed in the phase
portrait of system (18) can rupture in the next approximations, causing the presence of
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Figure 2: Phase plane of dynamical system (18).

complicated dynamics, coexisting with the homoclinic loops. In this case the complex
trajectories can be observed in the phase space of a dynamical system.

In order to check the existence of complicated regimes, we integrated the dynamical
system (9) numerically. In numerical experiments all the parameters but one were fixed.
The θ played the rule of the bifurcation parameter. We started from the value θ of the
order 0.01. Starting from the initial data

(

10−6; 0; 0; 0
)

, we obtained the trajectories
oscillating closely to the saddle separatices of the stationary point placed at the origin.
Note, that for small θ a qualitative behavior of separatrices can be obtained by means of
the asymptotic analysis.

a b

Figure 3: The Poincare sections of the tori existing in the phase space of dynamical system (9)
at a) θ = 0.7, b) θ = 0.72.

Now let us consider the case when θ ∼ O(1). It is evident that different initial data
for dynamical system (9) lead to surfaces with different structure. We considered the
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a b

Figure 4: The Poincare sections of the tori existing in the phase space of dynamical system (9)
at a) θ = 0.74, b) θ = 0.7517.

most interesting of them only. Integrating the dynamical system (9) with the initial data
(0.6; 0.3; 0.8; 0.4) and θ = 0.7, one can observe the torus. For its visualization, we used
the Poincare section technique. Let the surface Z = 0.8 be the target hyperplane. The
locus of the intersection of the trajectories with the hyperplane Z = 0.8 is a 3D set.
The part of this set is projected on the two-dimensional coordinate plane (Y ;R) and is
depicted in figure 3a. Analyzing the obtained Poincare section, we see that the torus
surface consists of four separated pipes.

Let us choose θ = 0.72 and integrate dynamical system (9) from the same initial
data. Using the same section plane, we get another Poincare diagram (fig.3b). The
main peculiarities of the diagram are the appearance of the pipe of large radius and the
presence of tightly enclosed pipes. The set of curves drown in the diagram looks like a
fractal structure, though this has not been studied in detail yet. If parameter θ increases
(Figure 4) the structure of the internal region changes most of all. Besides, one can select
the regions that the running point visits more frequently (see the pointers in Figure 4).

The analysis of the Poincare sections shows that the trajectories in the four dimen-
sional phase space of dynamical system (9) form a complex object which undergoes
bifurcations as the parameter θ increases.

Applying the results of the local asymptotic analysis of the dynamical system (9) we
can state, that the complex behavior of the phase space is connected with the reorgani-
zation of the homoclinic trajectories and their neighborhoods.

4 Conclusion

In summary, we would like to stress a key role of nonlocal effects, nonlinearity, and oscil-
lating degrees of freedom in the formation of complex wave regimes. When the load ap-
plied senses the internal structure of media (and this is the case when the spatio-temporal
characteristics of the load and the elements of the internal structure are comparable),
then we cannot neglect the dynamics of internal degrees of freedom. Let us stress, that
results obtained in this study essentially differ from those predicted by linear models
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(both local and nonlocal ones) [7].
From the mathematical point of view investigations of the modelling system (1)-

(2) are more difficult in comparison with their local analogs, nevertheless, under some
additional assumptions they can be treated within the traditional asymptotic techniques.
Besides, the variety of observed regimes indicate the existence of another important type
of solutions, inherent for essentially nonlocal models.
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