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1 Introduction

We study the third-order m-point boundary value problems (MPBVP) on time scales
with p-Laplacian,

(Φp(u
△∇))∇(t) + p(t)f(t, u(t)) = 0, t ∈ [0, T ]Tk∩Tk2 , (1)

u△∇(ρ(0)) = 0, u△(T ) = 0, u(ρ(0)) = B(

m−2
∑

1

αiu
△(ξi)), (2)

where Φp is p-Laplacian operator, i.e. Φp(s) = |s|p−2s, p > 1 and (Φp)
−1 = Φq with

1
p
+ 1

q
= 1. Here ρ(0) < ξ1 < ξ2 < ... < ξm−2 < σ(T ).

(H1) αi ∈ [0,∞), i = 1, 2, 3... and f : [0, T ]× [0,∞) → [0,∞) is left-dense continuous
function,
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(H2) p : [0, T ] → [0,∞) is left-dense continuous function,

(H3) B : R → R is continuous and satisfies the existence of B0 ≥ B1 > 0 such that
B0s ≤ B(s) ≤ B1s, for s ∈ [0,∞).

A time scale T is a nonempty closed subset of R. We make the blanket assumption
0, T are points in T. By an interval [0, T ], we always mean the intersection of the real
interval [0, T ] with the given time scale; that is [0, T ] ∩T. For t < supT and r > inf T,
define the forward jump operator σ and the backward jump operator ρ, respectively,
σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} for all t, r ∈ T. If σ(t) > t, t is
said to be right scattered, and if ρ(r) < r, r is said to be left scattered. If σ(t) = t, t is
said to be right dense, and if ρ(r) = r, r is said to be left dense. If T has a right scat-
tered minimum m, define Tk = T−{m}; otherwise set Tk = T. If T has a left scattered
maximum M , define Tk = T−{M}; otherwise set Tk = T. Some basic definitions and
theorems on time scales can be found in the books [4, 5].

p-Laplacian problems with two point, three point and multi point boundary condi-
tions for ordinary differential equations and difference equations have been studied by
several authors (see [6, 10, 16] and the references therein). Recently, there has been much
attention paid to the existence of positive solution for second-order and third-order non-
linear boundary value problems on time scales [1, 2, 9, 11, 12, 15, 17, 18]. However, to the
best of our knowledge, there are not many results concerning third-order p-Laplacian
dynamic equations on time scales.

In [8], Yanging Guo, Changlang Yu, Jufang Wang considered the existence of three
positive solutions for the following m-point boundary value problems on infinite intervals

(ϕp(x
′(t)))′ + φ(t)f(t, x(t), x′(t)) = 0, 0 < t <∞, (3)

x(0) =

m−2
∑

1

aix
′(ηi), lim

t→∞
x′(t) = 0. (4)

They used Avery–Henderson fixed-point theorem on a cone to prove the existence of
three positive solutions to the (3)− (4) nonlinear problems.

In [15], Sihua Liang, Jihui Zhang, Zhiyong Wang prove the existence of three positive
solutions for the following second order m-point boundary value problems

(Φ(p(t)u△(t)))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]Tk∩Tk
, (5)

u(0)−B0

(

m−2
∑

1

aiu
△(ξi)

)

= 0, u△(T ) = 0. (6)

for some dynamic equations on time scales using Legget–Williams fixed-point theorem.
In [11], Zhimin He obtained the existence of at least double positive solutions of the

following three-point boundary value problems

(Φp(u
△∇))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ], (7)

u(0)−B0(u
△(η)) = 0, u△(T ) = 0, (8)

or

u△(0) = 0, u(T ) + B1(u
△(η) = 0, (9)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 311–323 313

by using double fixed-point theorem.
In [9], Wei Hang, Maoxing Liu considered the third-order nonlinear problem such

that

(Φp(u
△∇))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ], (10)

αu(0)− βu△(0) = 0, u(T ) =

m−2
∑

1

aiu(ξi), u
△∇(0) = 0. (11)

They used the fixed-point theorem which is given by V.Lakshmikantham in [7] to
prove the existence of at least one nontrivial solution to the nonlinear problem (10)−(11).

Motivated by the results [15], in this paper, we will study the existence of multiple
positive solutions of third-order p-Laplacian MPBVP (1)− (2).

The aim of this paper is to establish some simple criteria for the existence of positive
solutions of the p-Laplacian MPBVP (1) − (2). This paper is organized as follows:
In Section 2 we first present some properties of the solution of the linear p-Laplacian
MPBVP corresponding to (1) − (2). In Section 3, we state the fixed-point theorems
in order to prove main results and we get the existence of at least one, two and three
positive solutions for nonlinear p-Laplacian MPBVP (1)− (2).

2 Preliminaries and Lemmas

To prove main results, we will give several lemmas and the following lemmas are
based on the linear p-Laplacian MPBVP

(Φp(u
△∇)∇(t) + h(t) = 0, t ∈ [0, T ]Tk∩Tk2 , (12)

u△∇(ρ(0)) = 0, u(ρ(0)) = B(

m−2
∑

1

aiu
△(ξi)), u

△(T ) = 0. (13)

Lemma 2.1 For h ∈ Cld([0, T ] × R), the problems (12) and (13) have the unique

solution

u(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s) +

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r. (14)

Proof. From the equation (12) we can easily obtain

u△∇(s) = −Φq(

∫ s

ρ(0)

h(τ)∇τ), u△(t) =

∫ T

t

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s

Therefore, we have

u(t) = u(ρ(0)) +

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r.

Applying the boundary conditions (2.13) we have

u(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s) +

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

h(τ)∇τ)∇s)△r.
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It is easy to see that the p-Laplacian MPBVP (Φp(u
△∇(t))∇ = 0, u△∇(ρ(0)) = 0,

u(ρ(0)) = B(

m−2
∑

1

aiu
△(ξi)) = 0, u△(T ) = 0 has only the trival solution. Thus u is the

unique solution of (12) and (13). The proof is complete. 2

Let X denote Banach space Cld([ρ(0), T ], [0,∞)) with the norm ‖u‖ = sup |u(t)|,
t ∈ [ρ(0), T ]. Define the cone P ⊂ X by

P = {u ∈ X : u(t) > 0, u△(t) > 0, t ∈ [ρ(0), T ], u is concave}. (15)

For u ∈ P define the operator L by

Lu(t) = B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ t

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r. (16)

Obviously, from the definition of L we have Lu(t) ≥ 0 and for t ∈ [ρ(0), T ] we get

(Lu)△(t) =

∫ T

t

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s ≥ 0.

As

(Lu)△∇(t) = −Φq(

∫ t

ρ(0)

p(τ)f(τ, u(τ))∇τ) ≤ 0,

then Lu is concave. Therefore L : P → P and ‖Lu‖ = sup |Lu(t)| = Lu(T ) for
t ∈ [ρ(0), T ].

Also it is easy to check that L is a completely continuous operator by a standard
application of the Arzela-Ascoli theorem.

Lemma 2.2 If u ∈ P and ‖u‖ = sup |u(t)|, t ∈ [ρ(0), T ], then

u(t) ≥
t− ρ(0)

T − ρ(0)
‖u‖. (17)

Proof. It can be easily shown by the similar way as in Lemma 3.1 in the reference
[14].

3 Existence of Positive Solutions

In this section we will prove the existence of multiple positive solutions of our problem.
We will need also the following Krasnoselkii’s fixed-point theorem to prove the existence
of at least one positive solution of p-Laplacian MPBVP (1)–(2).

Theorem 3.1 [13] Let X be a Banach space and P ⊂ X be a cone. Assume Ω1

and Ω2 are open bounded subsets of P with 0 ∈ P, Ω1 ⊂ Ω2, and let

L : P ∩ (Ω2\Ω1) → P be a completely continuous operator such that either

(i) ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2;

or

(ii) ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Lu‖ ≤ ‖u‖ for P ∩ ∂Ω2 hold.

Then L has a fixed point in P ∩ (Ω2\Ω1).
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Theorem 3.2 Assume conditions (H1) − (H3) are satisfied. In addition, suppose

there exist numbers 0 < r < R <∞ such that

(i) f(τ, u(τ)) ≤ Φp(
u

k1
), if 0 ≤ u ≤ r,

and

(ii) f(τ, u(τ)) ≥ Φp(
u

k2
), if R ≤ u ≤ ∞,

where

k1 = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s +

∫ T

ρ(0

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s)△r,

k2 =

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T
)∇τ)∇s)△r.

Then the p-Laplacian MPBVP (1)− (2) has at least one positive solution.

Proof. Define the cone P as in (15). It is also easy to check that L : P → P is
completely continuous and LP ⊂ P . If u ∈ P with ‖u‖ = r then we get

‖Lu‖ ≤ B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)△r

≤ B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k1
)∇τ)∇s

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k1
)∇τ)∇s)△r

=
u

k1
[B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)∇τ)∇s)△r]

= ‖u‖.

So if we set

Ω1 = {u ∈ Cld([ρ(0), T ], [0,∞)) : ‖u‖ < r},

then ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.
Let us now set

Ω2 = {u ∈ Cld([ρ(0), T ], [0,∞)) : ‖u‖ < R},
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then for u ∈ P with ‖u‖ = R, we have

‖Lu‖ = |B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r|

≥

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)|f(τ, u(τ))|∇τ)∇s)△r

≥

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
u

k2
)∇τ)∇s)△r

≥

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T

‖u‖

k2
)∇τ)∇s)△r

=
‖u‖

k2
[

∫ T

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)Φp(
τ

T
)∇τ)∇s)△r

= ‖u‖.

Hence ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. Thus by the first part of Theorem 3.1, L has a
fixed point u ∈ P ∩ (Ω2\Ω1).

Therefore the p-Laplacian MPBVP (1) − (2) has at least one positive solution. 2

Applying the following Avery–Henderson fixed point theorem, we will prove the ex-
istence of at least two positive solutions to the p-Laplacian MPBVP (1)− (2).

Theorem 3.3 [3] Let P be a cone in a real Banach space X. Set

P (ψ, z) = {u ∈ P : ψ(u) < z}
If η and ψ are increasing, nonnegative continuous functionals on P, let θ be a nonnegative

continuous functional on P with θ(0) = 0 such that, for some positive constants z and γ

ψ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤ γψ(u)
for all u ∈ P (ψ, z). Suppose that there exist positive numbers x < y < z such that

θ(λu) ≤ λθ(u) for all 0 < λ < 1 and u ∈ ∂P (θ, y).
If L : P (ψ, z) → P is completely continuous operator satisfying

(i) ψ(Lu) > z for all u ∈ ∂P (ψ, z)
(ii) θ(Lu) < y for all u ∈ ∂P (θ, y)
(iii) P (η, x) 6= ∅ and η(Lu) > x for all u ∈ ∂P (η, x). Then L has at least two fixed

points u1 and u2 such that

x < η(u1) with θ(u1) < y and y < θ(u2) with ψ(u2) < z.

Theorem 3.4 Assume (H1)− (H3) hold. Suppose there exist positive numbers x <
F
E
y <

(ξ1−ρ(0))F
(T−ρ(0))E z such that the function f satisfies the following conditions:

(i) f(s, u) > Φp(
z
D
) for s ∈ [ξ1, T ] and u ∈ [z, T−ρ(0)

ξ1−ρ(0)z],

(ii) f(s, u) < Φp(
y
E
) for s ∈ [ρ(0), T ] and u ∈ [0, T−ρ(0)

ξ1−ρ(0)y],

(iii) f(s, u) > Φp(
x
F
) for s ∈ [ρ(0), ξm−2] and u ∈ [0, T−ρ(0)

ξm−2−ρ(0)x].

for some positive constants D, E and F. Then p-Laplacian MPBVP (1)− (2) has at least
two positive solutions u1 and u2 such that

u1(ξ1) < y and u1(ξm−2) > x, u2(ξ1) > y and u2(ξ1) < z.
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Let us define the positive constants D, E and F such that

D = B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s +

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r,

E = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s +

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r,

F = B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s +

∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s)△r.

Proof. Define the cone P as in (15). We know L is completely continuous and
LP ⊂ P . Let the nonnegative increasing continuous functionals ψ, θ and η be defined on
the cone by
ψ(u) = minu(t) = u(ξ1), t ∈ [ξ1, ξm−2],
θ(u) = maxu(t) = u(ξ1), t ∈ [ρ(0), ξ1],
η(u) = maxu(t) = u(ξm−2), t ∈ [ρ(0), ξm−2].

For each u ∈ P , ψ(u) = θ(u) ≤ η(u). In addition for each u ∈ P

ψ(u) = u(ξ1) ≥
ξ1 − ρ(0)

T − ρ(0)
‖u‖. (18)

Also θ(0) = 0 and we have θ(λu) = λθ(u) and for u ∈ P and λ ∈ [0, 1] .
We now verify that all conditions of Theorem 3.3 are satisfied.

If u ∈ ∂P (ψ, z) then ψ(u) = mint∈[ξ1,ξm−2]u(t) = u(ξ1) = z. So we have u(t) ≥ z, for

t ∈ [ξ1, T ], and from (18) z ≤ u(t) ≤ ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)z for t ∈ [ξ1, T ]. Then assumption (i)

implies f(s, u) > Φp(
z
D
) for s ∈ [ξ1, T ].

Since Lu ∈ P we get

ψ(Lu) = Lu(ξ1)

= B(
m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r
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>
z

D
{B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r}

= z.

Hence condition (i) of Theorem 3.3 is satisfied.
Secondly, we show that (ii) of Theorem 3.3 is fulfilled. For this, we select u ∈ ∂P (θ, y).

Then
θ(u) = max

t∈[ρ(0),ξ1]
u(t) = u(ξ1) = y.

We know from (2.17)

0 ≤ u(t) ≤
T − ρ(0)

ξ1 − ρ(0)
y,

for t ∈ [ρ(0), T ]. Then assumption (ii) implies

f(s, u) < Φp(
y

E
),

for s ∈ [ρ(0), T ]. Therefore

θ(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
y

E
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= y.

Then condition (ii) of Theorem 3.3 holds.
Finally, we verify that (iii) of Theorem 3.3 is also satisfied.

Since 0 ∈ P and x > 0, P (η, x) 6= ∅, that η(0) = 0 < x. Now let u ∈ ∂P (η, x). Then

η(u) = max
t∈[ρ(0),ξm−2]

u(t) = u(ξm−2) = x.

We know from (2.17)

0 ≤ u(t) ≤
T − ρ(0)

ξm−2 − ρ(0)
x,
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for t ∈ [ρ(0), ξm−2]. Then assumption (iii) implies f(s, u) > Φp(
x
F
) for s ∈ [ρ(0), ξm−2].

As before, we get

η(Lu) = Lu(ξm−2)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξm−2

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

>
x

F
{B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ξm−2

Φq(

∫ ξm−2

ρ(0)

p(τ)∇τ)∇s)△r}

= x.

Since all conditions of Theorem 3.3 are satisfied, the p-Laplacian MPBVP (1)− (2) has
at least two positive solutions u1 and u2 such that

x < η(u1), θ(u1) < y and y < θ(u2), ψ(u2) < z. 2

We will use the following Legget-Williams fixed point theorem to prove the existence
of at least three positive solutions to the p-Laplacian MPBVP (1)− (2).

Theorem 3.5 [14]Let P be a cone in a Banach space X. Set

P (γ, c) = {u ∈ P : γ(u) < c}.
Let α, β and γ be three increasing nonnegative and continuous functionals on P, satis-

fying for some c > 0 and A > 0 such that

γ(u) ≤ β(u) ≤ α(u), ‖u‖ ≤ Aγ(u),
for all u ∈ P (γ, c). Suppose there exist a completely continuous operator L : P (γ, c) → P

and 0 < a < b < c such that

(i) γ(Lu) < c for all u ∈ ∂P (γ, c);
(ii) β(Lu) > b for all u ∈ ∂P (β, b) ;
(iii) P (α, a) 6= ∅ and α(Lu) < a for all u ∈ ∂P (α, a).

Then L has at least three fixed points u1, u2, u3 ∈ P (γ, c) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

Theorem 3.6 Assume that conditions (H1) − (H3) are satisfied. Suppose there

exist positive numbers a < b < c such that function f satisfies the following conditions:

(i) f(s, u) < Φp(
c
E
) for all u ∈ [0, T−ρ(0)

ξ1−ρ(0)c],
(ii) f(s, u) > Φp(

fracbD) for all u ∈ [0, T−ρ(0)
ξ1−ρ(0)b],
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(iii) f(s, u) < Φp(
a
G
) for all u ∈ [0, T−ρ(0)

ξm−2−ρ(0)a].

Then there exist at least three positive solutions u1, u2, u3 of p-Laplacian MPBVP

(1.1)− (1.2) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

For notational convenience, we denote G by

G = B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s +

∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r

and also we will take the constants D and E as in Theorem 3.4.

Proof. We define completely continuous operator L by (2.16). Let u ∈ ∂P (γ, c) then
Lu(t) ≥ 0 for t ∈ [0, T ]. We know that L : P (γ, c) → P . Let the nonnegative increasing
continuous functionals γ, β and α be defined on the cone by

γ(u) = maxu(t) = u(ξ1), t ∈ [ρ(0), ξ1],
β(u) = minu(t) = u(ξ1), t ∈ [ξ1, ξm−2],
α(u) = maxu(t) = u(ξm−2), t ∈ [ρ(0), ξm−2].

For each u ∈ P we have

γ(u) = β(u) ≤ α(u), γ(u) = u(ξ1) ≥
ξ1 − ρ(0)

T − ρ(0)
‖u‖.

We now show that all the conditions of Theorem 3.5 are satisfied. To make use of
property (i) of Theorem 3.5, we choose u ∈ ∂P (γ, c). Then γ(u) = maxt∈[ρ(0),ξ1] u(t) =

u(ξ1) = c. If we recall that ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)γ(u) =

T−ρ(0)
ξ1−ρ(0)c, we have for all t ∈ [ρ(0), T ]

0 ≤ u(t) ≤
T − ρ(0)

ξ1 − ρ(0)
c.

Then assumption (i) of Theorem 3.6 implies f(s, u) < Φp(
c
E
) for all s ∈ [ρ(0), T ],

γ(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
c

E
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= c.
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Hence condition (i) of Theorem 3.5 is satisfied.
Secondly we show that (ii) of Theorem 3.5 is fulfilled. For this, we select u ∈ ∂P (β, b).

Then β(u) = mint∈[ξ1,ξm−2] u(t) = u(ξ1) = b. This means u(t) > b t ∈ [ξ1, T ] and since

u ∈ P , we have b ≤ u(t) ≤ ‖u‖ ≤ T−ρ(0)
ξ1−ρ(0)b for all u ∈ P . So we have

b ≤ u(t) ≤
T − ρ(0)

ξ1 − ρ(0)
b,

for all t ∈ [ξ1, T ]. Then assumption (ii) of Theorem 3.6 implies f(s, u) > Φp(
b
D
) for all

s ∈ [ξ1, T ],

β(Lu) = Lu(ξ1)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξ1

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

> B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

>
b

D
[B0

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s +

∫ ξ1

ρ(0)

(

∫ T

ξ1

Φq(

∫ ξ1

ρ(0)

p(τ)∇τ)∇s)△r]

= b.

Then condition (ii) of Theorem 3.5 holds.

Finally we verify that (iii) of Theorem 3.5 is also satisfied. We note that u(t) ≡ a
2

is a member of P (α, a) and α(u) = a
2 < a for t ∈ [ρ(0), T ]. So P (α, a) 6= ∅. Now let

u ∈ ∂P (α, a), then α(u) = a. This implies that 0 ≤ u(t) ≤ a for t ∈ [ρ(0), ξm−2]. Note

that ‖u‖ ≤ T−ρ(0)
ξm−2−ρ(0)α(u) =

T−ρ(0)
ξm−2−ρ(0)a for all t ∈ [ρ(0), ξm−2 ]. So

0 ≤ u(t) ≤
T − ρ(0)

ξ1 − ρ(0)
a,

for all s ∈ [ρ(0), ξm−2]. As before, we get
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α(Lu) = Lu(ξm−2)

= B(

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)

+

∫ ξm−2

ρ(0)

(

∫ T

r

Φq(

∫ s

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

< B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)f(τ, u(τ))∇τ)∇s)△r

<
a

G
{B1

m−2
∑

1

ai

∫ T

ξi

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s

+

∫ ξm−2

ρ(0)

(

∫ T

ρ(0)

Φq(

∫ T

ρ(0)

p(τ)∇τ)∇s)△r}

= a.

The condition (iii) of Theorem 3.5 is satisfied. Therefore Theorem 3.5 implies that L has
at least three fixed points which are positive solutions u1, u2, u3 ∈ P (γ, c) such that

0 ≤ α(u1) < a < α(u2), β(u2) < b < β(u3), γ(u3) < c.

The proof of Theorem 3.6 is complete. 2

We can illustrate our result which is given in Theorem 3.4 in the following example.

Example 3.1 Let T= [0, 1] ∪ [2, 3]. We consider the following p-Laplacian dynamic
equation:

(Φp(u
△∇))∇(t) + p(t)f(t, u(t)) = 0, t ∈ [0, 3]

Tk∩Tk2 (19)

satisfying the boundary conditions

u△∇(0) = 0, u△(3) = 0, u(0) =

2
∑

1

αiu
△(ξi), (20)

where p = q = 2, α1 = α2 = 1
2 , m = 4, p(t) ≡ 1, B0 = B1 = 1 and

f(t, u) = f(u) =







u
2

104 + 6
10 , 0 ≤ u ≤ 103,

100.6 + 2(u− 103) , u > 103.

Taking x = 1, y = 10, z = 104, ξ1 = 1
2 , ξ2 = 5

2 ; it is easy to see that

D = 15
8 , E = 12, F = 10, x < F

E
y < F

6E z and then f(u) satisfies

f(u) > Φ2(
z

D
) = 5334 u ∈ [104, 6× 104],

f(u) < Φ2(
y

E
) = 0.84 u ∈ [0, 60],

f(u) > Φ2(
x

F
) = 0.1 u ∈ [0,

6

5
].
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The use of Theorem 3.4 implies four point BVP (19)− (20) has at least two positive
solutions u1, u2 satisfying

u1(
1
2 ) < 10 and u1(

5
2 ) > 1, u2(

1
2 ) > 10 and u2(

5
2 ) < 104. 2
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