Representation of the Solution for Linear System of Delay Equations with Distributed Parameters

J. Diblik\(^1\), D. Khusainov\(^2\)\(^*\) and O. Kukharenko\(^2\)

\(^1\) Brno University of Technology Technicka 8, 616 00 Brno, Czech Republic
\(^2\) Taras Shevchenko National University of Kyiv, 01601, 64 Volodymyrska str, Kyiv, Ukraine

Received: September 12, 2011; Revised: June 17, 2012

Abstract: The first boundary value problem for an autonomous system of linear delay partial differential equations of the second order has been solved. The solution is presented in an analytical form of formal series for the case, when matrices of coefficients are commutative and their eigenvalues are real and different. The obtained solution is studied on convergence and differentiability.

Keywords: delay partial differential equation; first boundary value problem; time delay argument.

1 Introduction

Usually, when systems of differential equations are investigated, the main attention is paid to systems of ordinary differential equations (e.g., [1,2]) or systems of partial differential equations [3–7]. Aside remains the analysis of systems of partial differential equations with delay. Their investigation is extremely rare [8–10].

Autonomous second-order systems of linear differential equations of with constant delay are considered in this paper:

\[
\begin{aligned}
\frac{\partial u(x,t)}{\partial t} &= a_{11} \frac{\partial^2 u(x,t)}{\partial x^2} + a_{12} \frac{\partial^2 v(x,t)}{\partial x^2} + b_{11} u(x,t-\tau) + b_{12} v(x,t-\tau), \\
\frac{\partial v(x,t)}{\partial t} &= a_{21} \frac{\partial^2 u(x,t)}{\partial x^2} + a_{22} \frac{\partial^2 v(x,t)}{\partial x^2} + b_{21} u(x,t-\tau) + b_{22} v(x,t-\tau).
\end{aligned}
\]

(1)

We assume that matrices

\[A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \]

\(^*\) Corresponding author: mailto:dkh@unicyb.kiev.ua

© 2012 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua