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1 Introduction

Usually, when systems of differential equations are investigated, the main attention is paid
to systems of ordinary differential equations (e.g., [Il[2]) or systems of partial differential
equations [3]- [7]. Aside remains the analysis of systems of partial differential equations
with delay. Their investigation is extremely rare [8]— [10].

Autonomous second-order systems of linear differential equations of with constant

delay are considered in this paper:
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are normal, i.e. AA* = A*A, BB* = B*B, where A* is the conjugate transpose of A,
B* is the conjugate transpose of B; and they satisfy the commutativity condition, i.e.,

AB = BA.

Functions u (z,t), v (z,t) are defined in a semistrip ¢ > —7, 0 < z < [, where [ is a
positive constant, and the initial and boundary conditions are

w(0,t) = pa (t),u(l,t) = po (t),v(0,t) =01 (t),v(1,t) =02 (1), t > —,

u(x,t) =p(x,t),v(z,t) =9 (2,t),0< <], -7 <t <0. 2)

Compatibility conditions are fulfilled:

p () = @(0,8),pa (t) = 9 (1,1) 01 () = 9 (0,4) ,02 (1) = (I,1), =7 <1 < 0.

A solution of the first boundary value problem has been obtained for the case, when
eigenvalues of the matrices A and B are real and different.

2 Representation of Solution for Delay System

If the matrices A and B are normal and satisfy the commutativity condition, then,
according to [11]- [I3], there always exists a nonsingular matrix S, which simultaneously
reduces matrices A and B to the Jordan forms A; and As:

S7YAS = Ay, ST!BS = A,

s s B 1 s —S (3)
S’z[ 11 12},5’1:Z[ 22 12],A=S11822—S12822-
—S821 S11

system () can be reduced to a form

Octe) \ o2 f@g :1) §(a,t—1)
E) ()

Z

where Aq is the Jordan form of the matrix A and A, is the Jordan form of the matrix
B. The initial and boundary conditions will be

£(0,1) =1 () €(, ) () 1 (0, ):5(t),n(l,t):t%(t),tz—ﬂ
t

where
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We will consider the representation of solution of the first boundary value problem for
the system (), ([2)), when roots of the characteristic equations A1, Az, <1, ¢2 of the both
matrices A and B are real and different, i.e. A\; # A2, ¢1 # 2. In this case, after the
transformation the system () decouples into two independent equations:

oe(r.t) _ | OP6(x.)
ot "' ox2

on(z,t 0? t
+§1§ (:L'at_T)a n(x, ) = )\2 77(1" )

w Pl v an(et—1). ()

We will consider the first equation of system (@)

af(l',ﬁ) — )\ a2€($at)
ot "t ox2

+§1§ (:Cat_T) (7)
with initial and boundary conditions
5(07t> :ﬁl (t)ag(lat) :ﬁZ (t)vt Z 7775(1'515) :¢(z,t),0 S x S lafT S t S 0.

A solution will be in the form

5 (:L', t) = 50 (SC,t) + 51 (SC,t) + 1y (t) + 7 [ﬁ? (t) — (t)] ) (8)
where
- & (z,t) is a solution of homogeneous equation
2
LD N TEED | et ©)

with zero boundary £ (0,¢t) = 0, £(I,t) = 0 and nonzero initial conditions & (z,t) =
(I)(xat)a (b(xat) = @('Tvt) — i (t) - % [ﬂQ (t) — i (t)]a —7<t<0,0<z<L
- &1 (z,1t) is a solution of inhomogeneous equation

0w, t) _ | 0%, 1)
ot ' a2

+ € (x,t —7) + F (z,1), (10)

Fat) = {f(t=m)+ 7 [t =) =T (t =)}~ (1) = T [fin (6) = 71 (2]

with zero boundary £ (0,¢) = 0, £ (I,t) = 0, t > —7 and zero initial conditions £ (x,t) = 0,
—7<t<0,0<z <.
2.1 Homogeneous equation

For finding the solution &y (z,t) we will use the method of separation of variables. Ac-
cording to this method, the solution will be in a form of product of two functions
&o (x,t) = X (x) T (t). After substitution in the equation (7)) we obtain

X(@)T't)=MX" (@) Tt)+aX @) T ({t—71).
Separating variables, we have

(@) —aT(t-7) X'(x)

N (1) T X (2) =K,
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where k is an arbitrary constant. We will divide the obtained expression into two equa-
tions

T'(t) + ME*T (t) —aT(t—7)=0, X" (2)+k*X (z) =0. (11)

Solutions of the second equation from ([II]), which is not identically zero and satisfies zero
boundary conditions X (0) =0, X (I) =0, are

™ ™\ 2
X, (x) = Apsin 7 | (T) ,n=1,2,..
where A,, are arbitrary constants.
Now we will consider the first of equations from ([T

™ 2
T (1) = — A (T) To(t) +aTu(t—7), n=1,2,.... (12)
To obtain initial conditions for each of the equations ([I2) we will expand the correspond-
ing initial condition ® (x,t) into series under solutions of the second equation
™
—
l

O (x,t) =Y Oy (t)sin—u, (13)

! ™m
D, (t) = —/0 D (s,t)sin TSdS + % [(=1)" 2 (t) — 1 (H)],n=1,2,...

Preliminary we should consider some results on linear homogeneous equations with
constant delay

z(t)=bx(t—rT) (14)

with an initial condition = (t) = 8 (t), —7 <t <0, b e R.

Definition 2.1 [I4] A delay exponential function exp, {b,t} is a function which can
be written as

0, if —oco<t< -1,
1, if —7<t<0,
exp, {b,t} = L+bg, if 0<t<rT,

1+ bd + 020 gDt e (1) e <t < kr,
(15
a k-degree polynomial on intervals (k — 1)7 < t < k7 “merged” in points t = k7, k =

0,1,2,..., b = const.

~

Lemma 2.1 A rule of differentiation for the delay exponential function can be for-
mulated in the following way:

% exp, {b,t} = bexp, {b,t —7}. (16)

Le., the delay exponential function is a solution of the equation (I4) with unitary initial
conditions z (t) =1, —7 <t < 0.
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Proof. Within an interval (k — 1)7 < t < k7 the delay exponential function is
represented as follows

_ t at—=7)°  a(t—27)° plt—(k—1)7)"
eXpT{b,t}flerﬂwLb 51 +b 3 +"'+bT'
Differentiating this function we will obtain
d t—1 4 (t—27) (t —37)° [t—(k—1)7)""
— bt} =b+4b? b bt b =
g P 0 = b A e e &= 1)
t—7 (t —27)> (t —37)° L= k—1) !
=bQ1+b b? b3 bR =
{ LTI TR A TR k1)

=bexp, {b,t — 7},
QE.D. O

Theorem 2.1 A solution of the equation (I]), which satisfies the initial condition
x(t)=pB(t), —7 <t <0, can be presented as follows

0
2(0) = exp, (bt} 5 (-7)+ [ exp (bt =7 - 5} (s)ds. (17)

-7
Proof. As the expression (7)) is a linear functional of the delay exponential function
exp, {b,t} which, as it was shown in Lemma [ZT] is the solution of the equation (I4)),
then the functional (7)) is a solution of the homogeneous equation (I4]) for any function
B (t). We will show that initial conditions are satisfied, i.e. for —7 < ¢ < 0 the following

identity is correct:

0

B(t) =exp, {b,t} B (—7) + / exp, {b,t — 7 — s} ' (s)ds.

—T
Then we will divide an integral from the expression (7)) into two integrals:

t

x (t) =exp, {b,t} 8 (-7)+ / exp, {b,t — 7 — s} (s)ds+

-7

0
+/ exp, {b,t — 7 — s} B’ (s)ds.
¢

Using the definition of the delay exponential function, we can obtain that
-exp, {b,t} =1 at —7 <t <0;
mexp, {bt—T—st=lat —7 < s<t;
-exp, {bt—T—st=0att<s<0.
Therefore,

t

z(t)=B(=7)+ [ B (s)ds=B(-7)+B(t)—B(-7)=B(1),

-7

Q.E.D. O
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Remark 2.1 Under the hypothesis of the theorem, continuous differentiability of the
initial function S(¢) is required. Computing the integral in (7)) by parts we obtain
0
x (t) =exp, {b,t — 7} 5(0) + b/ exp, {b,t — 27 — s} B (s)ds. (18)

-7

The equality ([I8)) is an integral representation of the solution under the assumption of
only continuity of the function 3(t).

Further we will consider the differential equation
() =azx(t)+bx(t—r1) (19)
with an initial condition z (t) = 8 (t), —7 <t <0, a,b € R.
Theorem 2.2 A solution of the equation (I9), which satisfies initial condition x (t) =

B(t), =7 <t <0, can be presented as

0
@ (t) = exp, {by, 1} "B (1) + /_ exp, {by,t — 7 — s} eV [5 (s) — aB (s)] ds,
(20)

bl = beia‘r.

Proof. We will make a substitution z (t) = ey (t), where y (¢) is a new unknown
function
aey (t) + ey (t) = aey (t) + be®™ "y (t — 1),

yt)=bry(t—7), by =be . (21)
Correspondingly, the initial condition for the equation (2I]) is

y(t)=e "B(t).

As follows from (I7)) a solution of the corresponding Cauchy problem for the equation
1) will be
0
y(t) = exp, {b1,t} e B (—7) + / exp, {b1,t — 7 — s} [e_“sﬁ’ (s) —ae™*p (s)} ds.
Again, using a substitution z (t) = ey (¢), we obtain
0
x (t) = exp, {b1,t} e“(HT)ﬁ (—7)+ / exp, {b1,t — 7 — s} et=9) (B (s) —aB(s)]ds,
i.e. the statement of Theorem 221 O
Using the results obtained above, we will solve each of the equations (I2)). According
to the equality (20), solutions of ([I2]) will be
T, (t) =exp, {r1,t} et g (—7)+

0
b [ exp, it =7 5} en 0 (8], (5) - o (5)] d,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 257

n \2 2
r=aeM ()T g = - (7rl_n) :

Thus, the solution &y (x,t) of the homogeneous equation (@), which satisfies zero
boundary & (0,t) = 0, £ (I,t) = 0 and nonzero initial conditions £ (z,t) = @ (z,t), —7 <
£<0,0<xz<l,is

So (x,t) = i {expT {§1€A1(7rl_n)27,f} e M) g (Zr) 1

n=1
O mn mn - 2
+/ exp, {§1€’\1(T)2T,t - T — s} e~ () (k=) [flﬁl () + M (?) ¢n (3)] ds} x
. ™
X sln —x,

l

2 [ 2
P, (t) = —/ B (s,0)sin sds + — [(~1)" iz (8) — fir ()] .0 = 1,2, ..
U Jo l ™

2.2 Inhomogeneous equation

Further we will consider the inhomogeneous equation (0

af(l',ﬁ) — )\ 62€($at)
ot "t ox2

+§1§($at_7-)+F($at)’

x €T

Flat) =@ =)+ T -~ ¢ =0}~ 0= 7 [0 - ()]

with zero boundary £ (0,t) =0, £ (I,t) =0, t > —7 and zero initial conditions & (z,t) = 0,
—7<t<0,0<z<I. Wewil try to find a solution in the form of series expansion in
terms of the functions from the previous problem, i.e. in the form

& () = ; T, (t) sin 7Tl—nx

After substituting the series in the equation (I]) and having equated coefficients of the
same terms, we obtain a system of the equations

ﬂﬂw=—h(%gam@H«J%U—ﬂ+ﬁxo,n:Lzm, (22)
where z
fn(t) = %/0 F (s,t)sin 7Tl—nsds =

= (C0 T m - s =) - (U i 0+ 0)] =12,

™m
Preliminary we will consider a linear inhomogeneous equation with a constant delay:

() =az(t)+bx(t—7)+ F (). (23)

We will solve the Cauchy problem for ([22]) with a zero initial condition z (¢t) =0, —7 <
t <0, where a,b € R, f:[0,00) = R.



258 J. DIBLIK, D. KHUSAINOV AND O. KUKHARENKO

Theorem 2.3 A solution of the inhomogeneous equation (23), which satisfies zero
ingtial conditions x (t) =0, —1 <t < 0, will be

¢
z(t) = / exp, {b1,t — 7 — s} e f (s)ds, by = be 7. (24)
0

Proof. As in the previous case, we apply the substitution z (t) = e*'y (¢) and obtain
a differential equation

ae™y (t) + ™y (t) = ae™y (t) + be* "y (t —7) + f (1)
It will be adduced to
gt)=bry(t—7)+e *f(t), by =be . (25)

We will show that the solution of the inhomogeneous equation (2H), which satisfies zero
initial condition, is

y(t) = /0 exp, {b1,t — 7 —s}e*f(s)ds. (26)

Substituting (28] in the equation (25)

t
exp, {b1,t —7—s}te*f (S)‘s:t + bl/ exp, {b1,t — 27 —s}te " f(s)ds =
0

t—7
= bl/ exp, {b1,t — 27 —s}e “*f(s)ds+e " f(t),
0
considering that

exp, {b1,t —7—s}te ¥f (s)}s:t =exp{by, —T}e f(t)=e""f (1),

and dividing the second integral into two, we obtain

t—T1
e f () + by (/ exp, {b1,t — 27 —s}e " **f (s) ds) +
0

+b; (/t exp, {b1,t — 27 — s}e ™ f (s) ds) =

t—1
=b; (/ exp, {b1,t — 27 —s}e [ (s) ds) Jre_“tf(t).
0

Hence

e f (t) + by (/t exp, {b1,t — 27 — s}e”*f(s) ds) =e Mf(t).
t

-7
After substitution

t—21—s=w,s=t—T=>w=-T,s=t=>w=—2T
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we obtain

be T </ exp, {by,w} e @It — 27 — ) dw) =0

—27

and identity
e f(t)=e""f (1),

which proves correctness of the equality (26]). Hence

z(t)=e"y(t) = /t exp, {b1,t — 7 — s} et~ f (s) ds,
0
QED. O

Corollary 2.1 A solution of the inhomogeneous equation (23) with initial condition
x(t)=p{), —7<t<0is

0
x (t) =exp, {b1,t} ea(HT)ﬂ (—7)+ / exp, {b1,t —7 — s} e(t=5) (6" (s) — aB(s)] ds+
. —T
+ / exp, {bi,t —7 — s} e ) f (s)ds, by = be .
0
(27)

Proof. Proof is based on statements of the previous Theorems and ]

Using the results obtained above, a solution of each of the equations ([22])

7,0 = X () T 40Tt =)+ fu(0),m =12, .

can be written as

2 ™\ 2
= ()

t
T" (t) = /O eXpP, {Tlat - T S} eql(t_s)fn (S) dS, r = glekl(%) l

(28)
Hence, a solution of the inhomogeneous equation (0] with zero boundary £ (0,t) = 0,
& (l,t) =0, t > —7 and zero initial conditions & (x,t) =0, -7 <¢ < 0,0 <z <, is

oo t
_ A (=) r o —(En 2(tfs) . ﬂ
€1 (z,t) = 7;:1 {/0 exp,, {§1e () Jt—T s}e (1) fn (s)ds}sm R

Fut) = = [or (0™ oo (= 1) 470 (=) = (-0 7y (1) 70 ()]

n=12....
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2.3 General solution

Using all previous results, the solution of the first boundary value problem for the equa-
tion (7)) can be written in the form of sum:

§(z,t) = i {GXPT {Cleh(%)zT, t} e () g (—1) 4

n=1

0 mn mn 2
+ [ exp {aen (BT r s} e (3 [‘% (5)+ 2 () (sﬂ dst

—T

t
Jr/ br {qul(%)QTvt* T— S} e~ (F) =0 p, (s)dS} sin ?H
0

2 [ 2 N
3, (t) = 7/ B(s,1) sm”l—”sds () A () - ()], n=1,2,
0 ™

2 n — — n —= =
oW = = [a (U™ =)+ (=) = (D" i 0+ )] -
Similarly, the second equation from (@) has a solution:

oo

1) =35 o {0, )

n=1

0 . o 2
+/ exp, {cae® ()7 p o s} e (1) [‘I’% ()42 () (sﬂ ds+

' mn ) wn )2
+/ br {§26/\2(T) Tt-T - S} e () (=g, (s) dS}Sin 7Tl_nx+
0

10, (t) + % (02 (t) — 61 (1)] ,

(30)
l
U, (t) = %/O 1) (s,t) sin ?sds + % [(=1)"02(t) — 61 (t)] ,n=1,2,...
gn () = % 2 ()" Bt =)+ Bt =7) = (1" 00 + 01 (1) ]

Then solutions of the boundary value problem of the initial system () with the
conditions (2)) finally are

u (:Ea t) = 8116 (:L'at) + s12m (:L'at) , U (:L'at) = 8216 (:L'at) + s227 (:L'at) ) (31)

where the solutions & (z,1), 7 (x,t) of the reduced system (B) are defined in 29), (30),
8ij, t,j = 1,2 are the coefficients of the matrix of transformation S.
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3 Existence Conditions for Solutions

The solution of the first boundary value problem of the equations (6] is presented in the
form of formal series ([29), (30). We will show that when certain conditions are satisfied
the series converge and the representations are really the solutions of system of delay
partial differential equations.

We will consider the first equations ().

Theorem 3.1 Let the functions ®,, (t), —7 <t < 0 and f,(t), t > 0, defined in
(I3), (22), satisfy the conditions

lim max | fn(t)] e~ () (T —(h-1)7) _ 0,

n—+oo0 —7<t<T—71

lim e 22() T=(=Dn) oy |, (t)] =0
n—-+00 —7<t<0

(32)

on an interval (k — 1) 7 < T < kr. Then the expression (29) is a solution of the equation
(@) fort: 0 <t <T. And the function {(x,t) has a continuous first-order derivative with
respect to t and a second-order derivative with respect to x.

Proof. We will write the representation (29) as a sum of three terms:

T

§(z,8) = 51 (x,1) + 52 (w,8) + 53 (2, 1) + 11 () + 7 [ (2) — 111 (1)), (33)

where

ZA sm x Sa(x,t) = ZB sm x Sz(x,t) = ZC sm
An (1) = exp, {ar e (BT g M () 0, ()

0
Bul0)= / exp, {are (F)7 47— s} e () 1m0

-7

™n

<2 +n () o)

/texpT {§1€)‘1(”’J>277t*7*5}6 (Tn) (t= S)fn( )
0

1. Firstly we will consider coefficients A, (t), n = 1,2, ... of the first series S; (z, ).
As follows from the definition of delay exponential function, formulated in (I3]), for any
moment of time T': (k—1)7 <T < kr, k=0,1,2, ... the following equality holds

Cy (1)

)

A, (T) = exp, {gle/\l(%f"— T} ef)‘l(%f(TJ”)(I)n (—7) = eiAl(%)z(TJ”)(I)n (—7) x

2 2 — n )2 — 3
traen (P D gen(eyr LTl gy L2
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e e L 1L 1”1'“] |

Hence

n=1
> mn 2 mn 2 T mn T_
— Ze‘AI(T) T+, (—71) [1 +gem () " +2e2m(e) wl 5 T]—i—
n=1 ’ ’
wn )2, [T — 27]° )2 [T — (k= 1) 7]*
+§f’63(7) | 7] + +§fek(7) | ( ) 7] sin ﬂx =
3! k! l
oo 2 T o0 2
= Z e~ () T+, (—7) sin —z + ¢ — Z e () T, (—7)sin a2+
n=1 ! 1t n=1
T — 7] & wn)?
+§12[ 5 7] Z e () (T-Ng (—7)sin 7Tl—n:c +...F
’ n=1

T—(k—1)71" & o
+§f—[ ( o )7] Z e_)‘l(T)2(T_(k_1)T)(I)n (—7) sin .
n=1
And if coefficients ®,, (—7) are such that the following condition is satisfied
lim e~ () T=(:=07) g, (—7)| =0,

n—oo

then the series S7 (z,t) converges absolutely and uniformly.

2. We will consider coefficients By, (t), n = 1,2, 3, ... of the second series S (z,1).

will divide the integral into two and calculate the second integral by parts:

2 0 o\ 2 an )2
B, (t) =M (7rl_n) / exp, {§16)‘1(T) Tt—T— s} e () (=99, (s) ds+

0 2 n \2
+/ exp, {§16A1(%) T,thfs}ef)‘l(T) (tfs)@% (s)ds =

—T

2 0 o \2 an )2
=\ (7rl_n) / exp, {§16A1(T) Tt—T— s} e~ () (=99, (s) ds+

R

+exp., {gl e)‘1 (

— exp, {qeh(%)%’ t} ef,\l(%)z(tw)@n (—7)+

wn )2 0 n )2 an\2
+§1e/\1(7) T/ exp, {qe}‘l(T) Tt—21 — s} e () =), (s)ds—

-7

9 0 )2 mn )2
-\ (ﬂ) / exp, {§16A1(T) Tt—T— 5}67)\1(T) =g, (s)ds =

—T

= exp, {gle)‘l("Tn)zT, t— T} ef/\l(%)th)n (0)—
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—exp, {ae (P ) e (w0, (o) 4

5 0 )\ 2 7
) T/ exp, {gle’\l(T) T,t—QT—s}e 1) = VD, (s)ds =

—T

+§1€A1(
= Bu1 (t) = Bpa () + B3 (1)

Now we will consider the first series
By (t) = exp, {gle/\l(%)%,tf 7'} e M)’ ', (0).

By analogy with the previous case, for any moment of time T': (k—2)7 <T < (k—1)7

the following holds:

}6_)\1(%) ', (0) = e_’\l(ﬂl_n)%(l)n (0) x

Bp1 (T) = exp, {§1€)\1(ﬂl_n)27aT

2 — 7-3
)Tu_;’_

1 n 2 T 1 n 27’ [T_T] 1 n
1+§1€)\(l) 1'+22/\(l) T+§1363)‘(l i
— wn \2 T — k — 2 T (k_l)
oo D et () <(k 2|
Hence
> ) (e T
B (T sm—x—Ze l ®,, (0) |14 e\ F—i—
n=1 ’
3
+§1262’\1(’3*")27[T7T] +§f’e”1(%)27L7 2",
2! 3!
_ ez [T — (k — 2)7]*~D ™
+...+§1(k D (b=1)x (52) g ((kz—l))'] sinTz:

)
Z % =
l !
n=1

n=1

(k—1) [T— (k‘—Q T

=1 (22)(T—(k=1)7) in
+¢ = 1) Z I ®,, (0) sin R

And if coefficients ®,, (0) are such that the following condition is satisfied

lim e~ (7) (T=(=D7) g, (0)] =0,

n—oo

then the series Y° " | By1 (T)sin T2z converges absolutely and uniformly.
We will consider the second series

Bn2 (t) = €XpP, {gle/\l(%)%—’ t} e7/\1(%)2()5+T)q)n (*T) = An (t) .
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For any moment of time 7' : (k—1)7 < T < k7 the series )" | By (T)sin Sz con-
verges absolutely and uniformly if, as follows from the previous case, coefficients ®,, (—7)

are such that the following condition is satisfied

lim e () T g, (—7)| =0,

n—oo

Finally, for coefficients

n \2 0 xn \2 n\2
Bps (t) = §1€/\1(T) T/ exp, {§16A1(T) Tt—271 — s} e () (=99, (s)ds

—T

at the moment of time T : (k — 1) 7 < T < k7, we make a substitution T — 27 — s = w
and obtain:

Bys (T') = M (1) /

T-21

T—1 5 2
exp, {gleh(%) T w} e~ () @2 $ (T — 27 — w) dw.

3

Dividing the integral into two we have:
(k—2)T

By (T) = gleAl(%)Zf/

exp, {gleAl(%)Zr,w}e—Al(%)Z(wHT)X
T—2T1

X®, (T — 27 — w) dw+
T—1

e ()T / exp, {glekl(%)zﬂw} M) @G (T — 27 — W) dw.
(k—2)T

Therefore, owing to the mean value theorem, there exist values wy : T — 27 < wy <
(k—2)7,wa: (k—2)7 <we <T — 7 for which the following holds:

Bus (T) =< (kr =T) e (%) (wit) exp, {Cle’\l(ﬂl_n) T,wl} O, (T — 27 —wq) +

+a (T—(k—1)7) ef/\l(%)z(‘“*'r) exp,. {gle)‘l(%)%,wg} D, (T — 217 — wa).

Hence B3 (T) = (k= T) e M () i g (T — 27 —wn) %
x 1+ §1€/\1(%)27% + §1262)‘1(”Tn)27 [w12? 7l + g1363>‘1(’71)27[wl;7!27-]3
ot E 2 M () [« —((:—5))'T]k_2 N
(T — (k= 1)) e (B @40 (T — 27 — wy) x
x |1+ gleh(%)%% + §1262’\1(”T”)27 [WQQT 7] + §1363’\1(’TL)27[“237!27]3

+..+¢

bt gk ()7 122 ((/f - 12>)'T]k_1] .
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And
B3 (T) sin = 1 Z {(kT -T) e’Al(ﬁ_nf(“’l*T)(I)n (T —217 —wy) +
n=1 ! n=1
F(T— (k=17 e M) g (7 _ 97 - w2>} sin ”—l"z+

> mn 2
+2 Y {% (kr —T)e () e, (T — 27 —w)) +
n=1 ’

w2

BT

(T — (k—1)r) e M) w2g (7 — 27 — WQ)} sin ?H

+3 3 { [‘”27 ™ (kr — Ty e MR @0, (T — 27 — o) +
n=1 '

[wa — 7]
21

(T—(k—=1)7) e_/\l(%)Z(“’Z_T)@n (T —27 — wg)} sin 7Tl—nx +...+

o1 [ w1 = (k= 3)7)*? (%) (wi— (k—3)7)
+¢p Z = (ktr —T)e l D, (T — 27 —wy) +
n=1 :

[wa — (k —3)7]*
(k- 2)]

(T — (k —1)7) e () (@-t=3)Dg (7 _or _ m)} sin ﬂl—"ﬁ

wp —(k—2 P e
gl

(T — (k—1)7) x

X Z e’Al(%)z(‘*’r(k*Q)T)@n (T — 27 — w9) sin ULLN
n=1 !
If coefficients ®,, () are such that the following condition is satisfied

lim e M) T=k=D7) pay (8,(1)] =0,
n—-+o00 S0

the series > " | By (T') sin Zta converges.
From the convergence of series > ", Bpni (T)sinTtxz, > 07, By (T)sin T,

> nei B (T') sin Ttz follows the convergence of series S (x,t).

3. Now we will consider coefficients C, (), n = 1,2,... of the third series Sz (x,t).
For the fixed moment of time T: (k — 1)7 < T < k7 we will make a substitution and
write:

T 2 an \2
Cn(T) = / exp, {(16)‘1(73_”) T —71— s} e~ (o) T £, (s) ds =
0

T—1 5 2
:/ exp, {gle/\l(%) T,w}ef)‘l(T) (W) £ T—-7-—w)dw=

-7

0
:/ exp, {gle)‘l("TnfT,w} ef/\l(ﬂTnf(“’JrT)fn (T —7—w)dwt

-7
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+/ expT qet Trl*n)%,w}e*Al(ﬂlJf(“’*T)fn(T—wa)dwwL
0

27 2 2
+/ expT q e () T,w}e*Al(T) WD) £ (T — 7 — w) dw+

T—1 2 2
+/ exp, {gle () T,w}e*)‘l(T) (“’+T)fn (T—-—7—-w)dw.
(k—2)T

As follows from the mean value theorem, for each of integrals there are time moments
—T7<w <0,0<ws <7y ... (k=2)7T<wp <T-—r,

for which the following holds:

n
2

Cn(T) = re () @A) £ (T — 7 — wy) +

2w2

T [1 + §1e>‘1(”7n) i T ef)‘l(%)Z(werT)fn (T —7—wo)+

+7

3
(z2)*r W3 e 2,\1(%)27[003—7] _i_giv,es,\l(%)%[ws—?ﬂ

A1
Lae ki 2 30

e~ (=)’ st f (T —7 —wg) 4.+ 7 {1 + §1€/\1(%)2TW§|_1

+ ..+

k—2 (k72))\1(ﬂ)27 [wg—1 — (k —3) T]k72 7A1(M)2(wk71+7-)
e D fu (T =7 =) +

+[T—(k—1)7] [1 +<le“("l_”) T% + ..+

mn - _2 k71 mn
kgl () ((:_1;!71 ]w(ﬂaww T —w).

Hence, we obtain that

:iCn(T)sinZ—nx:i{TZe M () (w”T)fH(T—T—wi)—i—
n=1 =1

n=1

F(T=(k=1)r)e () @ty (77— wk)} x

i S S S

(T — (k—1)7) %e*h(%)%kfn (T—7— wk)} sin %H

fT]Q

e_)‘l(ﬂTn)Z(w"_T)fn (T—-—71- wk)} sin Wl—nx—



k—2
STl Gk i SR C S R L R A wk)} sin “at
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b2 [wi—1— (k= 3) T]k72 A (72) (wi—(k=3)7)
+o..+¢q Z T = e 1 fo (T =T —wi—1)+
n=1

(k—2)! I

wp — (k —2) 7"

+of T = (k1) 7] T

X Z e_)‘l(%n)Z(wk_(k_mT)fn (T — 7 — wy) sin %x
n=1

And, if coefficients f,, (t) satisfy the following condition

lim max  |fn(t)] e () (T (k=1)7) _ 0,
n—+oo —7<t<T—71

then the series Ss(x,t) converges absolutely and uniformly.

Thus it was shown that for absolute and uniform convergence of the series Si(z,t),

Sa(x,t), S3(x,t) “fast reduction” on an index n of coefficients ®,, (¢), —7 < ¢ < 0 and
fn (t), 0 <t < T is required.

Convergence of derivatives & and &7, follows from the differentiability property of

delay exponential function (Lemma 21)). O

Proof of convergence of the series which represents the solution 7 (x,t) is similar.

Corollary 3.1 As the solutions u (x,t), v (x,t) are linear combinations of the func-

tions & (x,t), n(x,t), they converge absolutely and uniformly, and their representations
(31) are the solution of the boundary value problem of the initial system (), (D).
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