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1 Introduction

In this paper, we are concerned with the following quasilinear elliptic problem

{

−∆pu+ |u|p−2u = f(x, u), in Ω,

|∇u|p−2 ∂u
∂ν

= g(x, u), on ∂Ω,
(1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω,

∆pu := div(|∇u|p−2∇u) is the p-Laplacian with p > 1 and ∂
∂ν

is the out normal deriva-
tive.

Recently, Afrouzi and Alizadeh [1] considered p-Laplacian equations with a nonlinear
boundary condition, they developed a quasilinearization method in order to construct
an iterative scheme that converges to a solution. They extended the results of [2] with
p 6= 2. When p = 2, Song, Wang and Zhao [3] considered problem (1). By the sub-
supersolution method, the existence of a positive solution was established. In [4], they
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presented necessary and sufficient conditions of existence for positive solutions of the sys-
tem with p-Laplacian. For other nonlinear boundary conditions problems, we cite [5–7].
In [8–11], they offered some applications in physics and engineering.

In this paper, we consider a class of nonlinear elliptic problems with nonlinear bound-
ary condition (1). The existence of positive solutions are established by sub-supersolution
method and the Mountain Pass Lemma.

The precise assumptions on the source terms f and g are as follows:

(C1) For all s ≥ 0, there exist some nonnegative constants A1, A2, B1 and B2 such that

0 ≤ f(x, s) ≤ A1s
q1−1 +A2, a.e. inΩ,

0 ≤ g(x, s) ≤ B1s
q2−1 +B2, a.e. on ∂Ω,

where 2 < p < q1 < 2∗ := 2N
N−2 and 2 < p < q2 < 2∗ = 2(N−1)

N−2 ;

(C2) The function x 7→ f(x, 0) + g(x, 0) is not identically zero;

(C3) For all s ∈ R, the functions f(·, s), g(·, s) : Ω → R are continuous and for every
x ∈ Ω, the functions f(x, ·), g(x, ·) : R → R are local Lipschitz continuous.

2 Preliminary Lemmas

Let W 1,p(Ω) := {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω)} with the norm

‖u‖W 1,p(Ω) :=

(
∫

Ω

|∇u|p + |u|pdx

)
1

p

,

then W 1,p(Ω) is a Banach space.
Now, we definite the concepts of sub-solution and super-solution. We say that u ∈

W 1,p(Ω) is a weak sub-solution (weak super-solution) of problem (1) if it satisfies














∫

Ω

|∇u|p−2∇u∇v + |u|p−2uvdx ≤ (≥)

∫

Ω

f(x, u)vdx,

∫

∂Ω

|∇u|p−2 ∂u

∂ν
v ≤ (≥)

∫

∂Ω

g(x, u)vdσ,

for all v ∈W 1,p(Ω) with v ≥ 0.
We give the following lemmas which are similar to [1], so we omit the proof here.

Lemma 2.1 Assume that λ > 0, µ > 0 and u ∈W 2,p(Ω) satisfies
{

−∆pu+ λ|u|p−2u ≥ 0, in Ω,

|∇u|p−2 ∂u
∂ν

+ µ|u|p−2u ≥ 0, on ∂Ω.

Then u ≥ 0.

Lemma 2.2 Assume that ξ ∈ Lp(Ω) and ζ ∈ Lp(∂Ω). Then, for any λ, µ > 0 the

Robin problem:
{

−∆pu+ λ|u|p−2u = ξ, in Ω,

|∇u|p−2 ∂u
∂ν

+ µ|u|p−2u = ζ, on ∂Ω

admits a unique solution u ∈W 2,p(Ω).
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Lemma 2.3 Let λ, µ > 0, ξ ∈ Lp(Ω) and ζ ∈ Lp(∂Ω). Then, there exists a constant

C such that if u is a weak solution of

{

−∆pu+ λ|u|p−2u = ξ, in Ω,

|∇u|p−2 ∂u
∂ν

+ µ|u|p−2u = ζ, on ∂Ω.

Then

‖u‖W 1,p(Ω) ≤ C
[

‖ξ‖Lp(Ω) + ‖ζ‖Lp(∂Ω)

]

.

Remark 2.1 By the compactness of the imbedding W 2,p(Ω) →֒ W 1,p(Ω) and the
result of Lemma 2.3, we know that the operator T : Lp(Ω) × Lp(∂Ω) → W 1,p(Ω) given
by F (ξ, ζ) = u is compact.

In order to obtain the super-solution of problem (1), we use the following Mountain Pass
Lemma.

Lemma 2.4 [12] Let X be a Banach space and let I ∈ C1(X,R) satisfy the Palais-

Smale condition. If the following conditions hold:

(I) I(0) = 0;

(II) there exist constants r, a > 0 such that I(u) ≥ a, if ‖u‖ = r;

(III) there exists an element θ ∈ X with ‖θ‖ > r, I(θ) ≤ 0.

Define Γ := {g ∈ C ([0, 1], X) ; g(0) = 0, g(1) = θ}. Then

c := inf
g∈Γ

max
0≤t≤1

I[g(t)]

is a critical value of I.

3 Main Results

Our main results are as follows:

Theorem 3.1 Let conditions (C1)-(C3) be satisfied. Then problem (1) has one pos-

itive solution u for A2 and B2 small enough.

Proof Firstly, from condition (C1), we know that 0 is a subsolution of problem (1),
and 0 is not a solution of problem (1) by condition (C2). In order to use sub-supersolution
method, we need a positive supersolution which comes from the Mountain Pass Lemma.
Now, we consider the following problem:

{

−∆pu+ |u|p−2u = A1u
q1−1 +A2, in Ω,

|∇u|p−2 ∂u
∂ν

= B1u
q2−1 +B2, on ∂Ω,

(2)

the functional associated with the problem (2) is

J(u) =
1

p

∫

Ω

(|∇u|p + |u|p)dx−
A1

q1

∫

Ω

uq1dx −A2

∫

Ω

udx−
B1

q2

∫

∂Ω

uq2dσ −B2

∫

∂Ω

udσ.
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We claim that J satisfies the (PS)c condition. In fact, let {un} be a Palais-Smale
sequence in W 1,p(Ω), that is J(un) → c and J ′(un) → 0, then we have

J(un) −
1

q
〈J ′(un), un〉

=

(

1

p
−

1

q

)

‖un‖
p

W 1,p(Ω) −

(

1

q1
−

1

q

)

A1

∫

Ω

uq1n dx−

(

1−
1

q

)

A2

∫

Ω

undx

−

(

1

q2
−

1

q

)

B1

∫

∂Ω

uq2n dσ −

(

1−
1

q

)

B2

∫

∂Ω

undσ

= c+ o(1),

where q := min{q1, q2}, A1, A2, B1, B2 > 0. By the Sobolev embedding theorem and
Sobolev trace embedding theorem, we can choose a constant τ > 0 such that

c+ 1 + τ‖un‖W 1,p(Ω) ≥

(

1

p
−

1

q

)

‖un‖
p

W 1,p(Ω).

Hence {un} is bounded in W 1.p(Ω). So {un} admits a weakly convergent subsequence.
Since all the growths in problem (2) are subcritical, by the standard argument we deduce
that {un} admits a strongly convergence subsequence.

Next, we verify the conditions of Mountain Pass Lemma. By the Hölder’s inequality,
the Sobolev embedding theorem and Sobolev trace embedding theorem, we have

∫

Ω

|u|q1dx = ‖u‖q1
Lq1(Ω) ≤ C1‖u‖

q1
W 1,p(Ω),

∫

∂Ω

|u|q2dσ = ‖u‖q2
Lq2(∂Ω) ≤ C2‖u‖

q2
W 1,p(Ω),

∫

Ω

|u|dx ≤ C3‖u‖W 1,p(Ω),

∫

∂Ω

|u|dσ ≤ C4‖u‖W 1,p(Ω).

Therefore, we have

J(u) ≥
1

p
‖u‖p

W 1,p(Ω) − C1‖u‖
q1
W 1,p(Ω) − C2‖u‖

q2
W 1,p(Ω)

− C3A2‖u‖W 1,p(Ω) − C4B2‖u‖W 1,p(Ω).

Assume that ‖u‖W 1,p(Ω) < 1, then we have

J(u) ≥
1

p
‖u‖p

W 1,p(Ω) − C5‖u‖
q

W 1,p(Ω) − C3A2‖u‖W 1,p(Ω) − C4B2‖u‖W 1,p(Ω).

Consider the function g(s) := 1
p
sp − C5s

q − C6ρs, if we take s = s0 = (2pC6ρ)
1

p−1 such

that g(s0) = a = C7ρ
p

p−1 − C8ρ
q

p−1 > 0, since q
p−1 >

p
p−1 > 1, ρ is small enough. This

fact implies that J(u) ≥ a > 0 for all ‖u‖W 1,p(Ω) = s0 and A2, B2 small enough.
Let ψ ∈ C∞

0 (Ω) with ψ > 0 on Ω. Then for any t ≥ 0, we have

J(tψ) =
tp

p

∫

Ω

(|∇ψ|p + |ψ|p)dx −
A1t

q1

q1

∫

Ω

ψq1dx −A2t

∫

Ω

ψdx

−
B1t

q2

q2

∫

∂Ω

ψq2dσ −B2t

∫

∂Ω

ψdσ → −∞ as t→ +∞,

since p < p1, p2. Then we take ψ0 = kψ, with k large enough, we have ‖ψ0‖W 1,p(Ω) > s0
and J(ψ0) < a. Thus we have a solution β(x) of the problem (1) by the Mountain Pass
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Lemma. It is easy to see by using standard elliptic regularity that β(x) ∈ C2(Ω)∩C(Ω),
and β(x) is a positive supersolution of problem (1) by condition (C1).

Denote N := maxx∈Ω β(x), by condition (C3), there exists a constant λ > 0 such

that |f(x, s1)− f(x, s2)| ≤ λ|s1 − s2|, for all (x, s1), (x, s2) ∈ Ω× [0, N ]. So f(x, s) + λs

is increasing on s ∈ [0, N ]. We choose µ in the same way, and define the function
Q : Ω× R → R by

Q(x, u) =











0, if u < 0,

u, if 0 ≤ u ≤ β(x),

β(x), if u > β(x).

Consider the compact operator T : C(Ω) → C(Ω) given by Tv = u, where u is the unique
solution of the Robin problem

{

−∆pu+ |u|p−2u+ λ|u|p−2u = f(x,Q(x, v)) + λQ(x, v), in Ω,

|∇u|p−2 ∂u
∂ν

+ µ|u|p−2u = g(x,Q(x, v)) + µQ(x, v), on ∂Ω.

Let v ≤ u, since f(x, s) + λs is increasing on s ∈ [0, N ], so we have

−∆p(Tu) + |Tu|p−2(Tu) + λ|Tu|p−2(Tu)

= f(x,Q(x, u)) + λQ(x, u) ≥ f(x,Q(x, v)) + λQ(x, v)

= −∆p(Tv) + |Tv|p−2(Tv) + λ|Tv|p−2(Tv), in Ω.

On the other hand, by nonlinear boundary condition, we have

|∇(Tu)|p−2∂(Tu)

∂ν
+ µ|(Tu)|p−2(Tu)

= g(x,Q(x, u)) + µQ(x, u) ≥ g(x,Q(x, v)) + µQ(x, v)

= |∇(Tv)|p−2 ∂(Tv)

∂ν
+ µ|(Tv)|p−2(Tv), on ∂Ω.

From the maximum principle, it follows that Tu ≥ Tv. This fact implies that T is in-
creasing.

We claim that T : 〈0, β(x)〉 → 〈0, β(x)〉, where 〈0, β(x)〉 = {u ∈ C(Ω) : 0 ≤ u(x) ≤
β(x)}, β(x) is the supersolution of problem (1). In fact, from the definition of superso-
lution, we have

−∆pβ + |β|p−2β + λ|β|p−2β

≥ f(x, β) + λQ(x, β) ≥ f(x,Q(x, β)) + λQ(x, β)

= −∆p(Tβ) + |Tv|p−2(Tβ) + λ|Tβ|p−2(Tβ), in Ω.

In a similar way, we have

|∇β|p−2 ∂β

∂ν
+ µ|β|p−2β ≥ |∇(Tβ)|p−2 ∂(Tβ)

∂ν
+ µ|(Tβ)|p−2(Tβ), on ∂Ω.

From the maximum principle, we have Tβ ≤ β. So T : 〈0, β(x)〉 → 〈0, β(x)〉. Notice that
the positive cone K of C(Ω) is regular and the interior of K is not empty, therefore T
has a fixed point u satisfying 0 ≤ u ≤ β(x) and hence u is a positive solution of problem
(1).
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Theorem 3.2 Assume that f(x, s), g(x, s) are nonnegative continuous functions in

Ω × R. Let condition (C2) hold and problem (1) have a continuous weak supersolution.

Then problem (1) has a positive solution.

Proof Firstly, we know that 0 is a subsolution of problem (1), let β(x) be a superso-
lution of problem (1). For a variational approach, the functional associated with problem
(1) is

J(u) =
1

p

∫

Ω

(|∇u|p + |u|p)dx −

∫

Ω

F (x, u)dx −

∫

∂Ω

G(x, u)dσ,

where F (x, u) =
∫ u

0
f(x, z)dz, G(x, u) =

∫ u

0
g(x, z)dσ and dσ is the surface measure.

Let w ∈ W 1,p(Ω) and define the function Q : Ω× R → R by

Q(x,w) =











0, if w < 0,

w, if 0 ≤ w ≤ β(x),

β(x), if w > β(x).

(3)

Now we consider

I(w) =
1

p

∫

Ω

(|∇w|p + |w|p)dx −

∫

Ω

F (x,Q(x,w(x)))dx −

∫

∂Ω

G(x,Q(x,w(x)))dσ

=
1

p
‖w‖W 1,p(Ω) −

(
∫

Ω

F (x,Q(x,w(x)))dx +

∫

∂Ω

G(x,Q(x,w(x)))dσ

)

= I1(w)− I2(w).

We note that I1(w) is weakly lower semi-continuous. In the following we prove that I2(w)
is weakly continuous. Let H(w) :=

∫

Ω
F (x,Q(x,w(x)))dx and wn ⇀ w in W 1,p(Ω), then

we have wn → w a.e. in Ω and Q(x,wn(x)) → Q(x,w(x)). Since

|F (x,Q(x,wn(x)))| ≤ sup
0≤w(x)≤β(x)

|F (x,w(x))| = N.

So, by the Dominated Convergence Theorem, we get

lim
n→∞

H(wn) = lim
n→∞

∫

Ω

F (x,Q(x,wn(x)))dx =

∫

Ω

lim
n→∞

F (x,Q(x,wn(x)))dx = H(w),

so I2(w) is weakly continuous. Thus I(w) is weakly lower semi-continuous. Since
f(x, s), g(x, s) are continuous and β(x) is bounded in Ω, we know that H(w) is bounded
and we have that I(w) → +∞ as ‖w‖W 1,p(Ω) → ∞, this implies that I(w) is a coercive
functional, therefore there exists w0 ∈ W 1,p(Ω) such that I ′(w0) = 0. By (3), we have
0 ≤ w0 ≤ β(x). Thus I ′(w0) = 0. Notice that 0 is not a solution of problem (1), so w0

is a positive solutions of problem (1).
For the special case of problem (1):

{

−∆pu+ |u|p−2u = A1u
q1−1 +A2, in Ω,

|∇u|p−2 ∂u
∂ν

= 0, on ∂Ω,
(4)

we can also obtain the nonexistence results.

Theorem 3.3 There exists a positive constant D = D(A1, A2, q1) such that the prob-

lem (4) has no positive solution for all A2 > D.
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Proof Let A := {A2 > 0 : the problem (4) has a positive solution}. Theorem 3.1
implies that A 6= ∅. So we can define D := supA. We claim that 0 < D < +∞.
Obviously D > 0. Let

A∗ = max
s>0

{sp−1 −A1s
q1−1} < +∞. (5)

If A2 ∈ A, then we have
∫

Ω

up−1dx = A1

∫

Ω

uq1−1dx+A2|Ω|.

From (5), we have A2 ≤ A∗. So 0 < D ≤ A∗ < +∞.

Acknowledgment

The authors are supported by Research Fundation during the 12th Five-Year Plan Period
of Department of Education of Jilin Province, China (Grant [2011] No. 196), Natural
Science Foundation of Changchun Normal University.

References

[1] Afrouzi, G.A. and Alizadeh, M. A quasilinearization method for p-Laplacian equations with
a nonlinear boundary condition. Nonlinear Anal. 71 (2009) 2829–2833.

[2] Amster, P. and Denapoli, P. A quasilinearization method for elliptic problems with a non-
linear boundary condition. Nonlinear Anal. 66 (2007) 2255–2263.

[3] Song, X.C., Wang, W.H. and Zhao, P.H. Positive solutions of elliptic equations with non-
linear boundary conditions. Nonlinear Anal. 70 (2009) 328–334.
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