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1 Introduction

In this paper, we are concerned with the following quasilinear elliptic problem

—Apu+ |ulP~2u = f(z,u), in Q,
{ (1)

|Vu|p’2% = g(z,u), on 0,

where Q C RNV (N > 3) is a bounded domain with smooth boundary 952,
Apu = div(|Vu[P~2Vu) is the p-Laplacian with p > 1 and % is the out normal deriva-
tive.

Recently, Afrouzi and Alizadeh [I] considered p-Laplacian equations with a nonlinear
boundary condition, they developed a quasilinearization method in order to construct
an iterative scheme that converges to a solution. They extended the results of [2] with
p # 2. When p = 2, Song, Wang and Zhao [3] considered problem (I). By the sub-
supersolution method, the existence of a positive solution was established. In [4], they
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presented necessary and sufficient conditions of existence for positive solutions of the sys-
tem with p-Laplacian. For other nonlinear boundary conditions problems, we cite [5H7].
In [RHIT], they offered some applications in physics and engineering.

In this paper, we consider a class of nonlinear elliptic problems with nonlinear bound-
ary condition (). The existence of positive solutions are established by sub-supersolution
method and the Mountain Pass Lemma.

The precise assumptions on the source terms f and g are as follows:

(C1) For all s > 0, there exist some nonnegative constants A1, As, By and Bs such that
0< f(z,8) <As? 1+ Ay, ae inQ,
0<g(z,s) < B1s2 '+ By, ae. ondf,

where 2<p<q <2*:= 25 and 2 <p < g2 < 2% =

2(N-1),
N-2 >

(C2) The function x — f(x,0) + g(z,0) is not identically zero;
(C3) For all s € R, the functions f(-,s),9g(-,s) : Q — R are continuous and for every
x € €, the functions f(z,),g(x,-) : R = R are local Lipschitz continuous.

2 Preliminary Lemmas

Let W1P(Q) := {u € LP(Q) : Vu € LP(Q)} with the norm

1
Hunl,p(Q) = </Q |Vu|p + |u|pd1'>

then WHP(Q) is a Banach space.
Now, we definite the concepts of sub-solution and super-solution. We say that u €
WhP(Q) is a weak sub-solution (weak super-solution) of problem () if it satisfies

/ |VulP~2VuVo + |ulP ~?uvde < (2)/ f(z, u)vde,
Q Q

/{m |Vu|p72%v < (Z)/ g(z,u)vdo,

o

for all v € WP(Q) with v > 0.
We give the following lemmas which are similar to [I], so we omit the proof here.

Lemma 2.1 Assume that A > 0, > 0 and u € W2P(Q) satisfies
—Apu+ AMuP~2u > 0, in £,
|Vu|p’2% + plulP~2u >0, on ON.

Then u > 0.

Lemma 2.2 Assume that & € LP(Q) and ¢ € LP(0RQ). Then, for any A\, u > 0 the
Robin problem:

—Apu+ AMuP~2u = ¢, in £,
|VulP=29% + plulP~2u=(, on 0Q

admits a unique solution uw € WP(Q).
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Lemma 2.3 Let A\, ;> 0, £ € LP(Q) and ¢ € LP(00Q). Then, there exists a constant
C such that if u is a weak solution of

—Apu+ AulP72u = ¢, in Q,
|Vu|p72% + plulP~2u = ¢, on ON.

Then
ullwrr @) < C [[€llLr) + [<ILea0)] -

Remark 2.1 By the compactness of the imbedding W2?(Q2) — W1?(Q) and the
result of Lemma 2.3, we know that the operator T : LP(Q) x LP(9Q) — WP(Q) given
by F(&,¢) = u is compact.

In order to obtain the super-solution of problem (II), we use the following Mountain Pass
Lemma.

Lemma 2.4 [12] Let X be a Banach space and let I € C1(X,R) satisfy the Palais-
Smale condition. If the following conditions hold:

(I) 1(0) =0;

(IT) there exist constants r,a > 0 such that I(u) > a, if ||ul| = r;
(III) there exists an element € X with ||0|| > r, I(6) < 0.
Define T’ :={g € C([0,1],X);9(0) =0,9(1) =0}. Then

= inf 1
©= gk )

is a critical value of I.

3 Main Results
Our main results are as follows:

Theorem 3.1 Let conditions (C1)-(C3) be satisfied. Then problem (l) has one pos-
itive solution u for Ay and Bs small enough.

Proof Firstly, from condition (C1), we know that 0 is a subsolution of problem (),
and 0 is not a solution of problem (IJ) by condition (C2). In order to use sub-supersolution
method, we need a positive supersolution which comes from the Mountain Pass Lemma.
Now, we consider the following problem:

{ —Apu + |U|p_2u = Alu‘h_l + AQ, in Q, ( )
2

|Vu|p*2% = Biu®~! + By, on 052,

the functional associated with the problem (@) is

1 A B
J(u) = - / (IVul? + [uP)dz — = | u®dx — Ag/ ude — == u®do — Bg/ udo.
pJa a1 Jo Q 2 Joa o0
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We claim that J satisfies the (PS). condition. In fact, let {u,} be a Palais-Smale
sequence in W1P(Q), that is J(u,) — ¢ and J'(u,) — 0, then we have

J(un) -~ gu’(un),um

1 1 1 1
= - — = Unp 1,p —_— = = A/U%ldiﬂ—(l__)A/undw
(G=3) Nnllvoner = (5= 3) o [ ),
1 1
—(———)Bl/ ufﬁda—(l——)BQ/ undo
qz q o0 q o0

= c+oll),

where ¢ := min{qi, g2}, A1, A2, B1,Bs > 0. By the Sobolev embedding theorem and
Sobolev trace embedding theorem, we can choose a constant 7 > 0 such that

1

1 P
ctltrlunllwie@ 2 {2 = o s

Hence {u,} is bounded in W!P(Q). So {u,} admits a weakly convergent subsequence.
Since all the growths in problem (2)) are subcritical, by the standard argument we deduce
that {u,} admits a strongly convergence subsequence.

Next, we verify the conditions of Mountain Pass Lemma. By the Holder’s inequality,
the Sobolev embedding theorem and Sobolev trace embedding theorem, we have

[t =l ey < OBy, [ %o = Fellingony < Collulfasa
/ |u|d:c < CBHUHWLP(Q), / |u|d0 < C4||U||W1,p(Q).
Q a0
Therefore, we have
1 1 2
J(u) = ];HUH%/LP(Q) - Cl”“”?/vl,p(g) - 02”“”(114/1,;)(9)

— CgAQ”U”Wl,p(Q) - C4B2||u||Wl’p(Q)'

Assume that |luy1r) <1, then we have
1
Ju) = Z;IIUIIWl vie) — Osllulliyrnq) — CaAallullwrr) — CaBallullwre o).

Consider the function g(s) := 1—1751’ — C587 — Cgps, if we take s = s¢ = (2pC’6p)ﬁ such
that g(so) =a = Crp7 T — CgpoT > 0, since ﬁ > ﬁ > 1, p is small enough. This
fact implies that J(u) > a > 0 for all [u(|y1.rQ) = s0 and Az, By small enough.

Let ¢ € C§° () with ¢ > 0 on Q. Then for any ¢ > 0, we have

tP Alt!h
Hew) = = [0l oP)de - 2= [y - Ast [ s
P Ja q1 Q Q
_ Blt(h
q2

/ Y®do — Bot Ydo — —oo  as t — +00,
o o

since p < p1, p2. Then we take 1o = kv, with k large enough, we have |4 |lw1.»(q) > 50
and J(1) < a. Thus we have a solution S(x) of the problem (I by the Mountain Pass
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Lemma. It is easy to see by using standard elliptic regularity that 3(x) € C2(Q2)NC(),
and S(z) is a positive supersolution of problem () by condition (C1).

Denote N := max_ g f(x), by condition (C3), there exists a constant A > 0 such
that |f(z,s1) — f(z,52)] < Alsy — s, for all (x, 1), (x,52) € Q x [0, N]. So f(x,s)+ As
is increasing on s € [0, N]. We choose u in the same way, and define the function
Q:QxR—=Rby

if u <0,

0,
Q(z,u) =< u, if 0 <u < pB(x),
B(x), if u > p(x).

Consider the compact operator T : C(2) — C(Q) given by Tv = u, where u is the unique
solution of the Robin problem

—Apu+ |ulP2u+ Nu|P~2u = f(z, Q(z,v)) + AQ(z, v), in €,
[VulP=28% + pifulP~?u = g(z, Q(z,v)) + pQ(z,v), on ON).
Let v < u, since f(x,s) + As is increasing on s € [0, N], so we have

— A, (Tu) + |TuP~(Tu) + A TuP~2(Tu)

= flz,Q(z,u)) + A\Q(z,u) > f(z,Q(x,v)) + \Q(z,v)
= —A,(Tv) +|Tv[P~(Tv) + N|Tv[P~*(Tv), in Q.

On the other hand, by nonlinear boundary condition, we have

w22 p2(ra)
= g(z, Qx,u)) + pQ(z,u) = g(z, Q(z,v)) + pQ(z,v)
= |V(Tv)|p_2% + p|(Tw)[P~2(Tw), on O9.

From the maximum principle, it follows that Tw > Tw. This fact implies that 7" is in-
creasing.

We claim that 7" : (0, B(x)) — (0, 3(z)), where (0,3(z)) = {u € C(Q) : 0 < u(z) <
B(x)}, B(x) is the supersolution of problem (). In fact, from the definition of superso-
lution, we have

—ApB+[BIPT2B+ NBIPT2B
[, 8) + AQ(x, B) = f(x,Q(x, B)) + AQ(x, B)
= —Ap(TP) +[TulP~>(T) + NTAP~*(TB), in .

Y

In a similar way, we have

5,08 _ _,0(Tp _
war22 i apr2p = vrs 200 | gp-ars), o o0
From the maximum principle, we have T8 < 3. So T": (0, B(x)) — (0, B(z)). Notice that
the positive cone K of C(Q) is regular and the interior of K is not empty, therefore T'

has a fixed point u satisfying 0 < v < B(z) and hence v is a positive solution of problem

@.
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_ Theorem 3.2 Assume that f(x,s),g(x,s) are nonnegative continuous functions in
Q x R. Let condition (C2) hold and problem ([dl) have a continuous weak supersolution.
Then problem () has a positive solution.

Proof Firstly, we know that 0 is a subsolution of problem (II), let 5(x) be a superso-
lution of problem (). For a variational approach, the functional associated with problem

@ is
J(u) = ]—1) / (IVulP + |ulP)dz — /QF(x,u)dz - /aQ G(z,u)do,

where F(x,u) fo (z,2)dz, G(z,u) fo x,2)do and do is the surface measure.
Let w € WP(Q) and define the function Q : Q@ x R — R by

0, if w <0,
Q(z,w) =1 w, if 0 <w < B(a), (3)
B(x), if w > B(x).

Now we consider
I(w) = % / (IVwl? + [w]P)dz — / F(z, Q(a, w(z)))dz — /6 Gl Qlaw(@)))do

1
= Ll — ([ Fle. Qo wenas+ [
== Il(w) —IQ(U}).

We note that I1 (w) is weakly lower semi-continuous In the following we prove that I»(w)
is weakly continuous. Let H(w) := [, F(z,Q(x,w(z)))dz and w,, — w in WP (Q), then
we have w, — w a.e. in and Q(z wp (z )) — Q(z,w(z)). Since

G(x,Q(x,w(z)))dJ)

|F (2, Q(z,wn ()] < sup  |F(z,w(z))] = N.
0<w(z)<p(x)

So, by the Dominated Convergence Theorem, we get

lim H(w,)= lim [ F(z,Q(z,w,(x)))dz = / lim F(z,Q(z,w,(x)))dr = H(w),
so Iz(w) is weakly continuous. Thus I(w) is weakly lower semi-continuous. Since
f(z,s),g(x,s) are continuous and B(z) is bounded in Q, we know that H (w) is bounded
and we have that I(w) — +00 as ||w|[w1.») —+ oo, this implies that I(w) is a coercive
functional, therefore there exists wy € W1P() such that I'(wg) = 0. By (@), we have
0 < wp < B(x). Thus I'(wg) = 0. Notice that 0 is not a solution of problem (), so wy
is a positive solutions of problem ().
For the special case of problem ():

—Apu + |U|p_2u = Alu‘h_l + AQ, in Q, ( )
4
|VulP~28% =0, on 99,

we can also obtain the nonexistence results.

Theorem 3.3 There exists a positive constant D = D(A1, Aa, q1) such that the prob-
lem ) has no positive solution for all As > D.
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Proof Let A := {As > 0 : the problem (@) has a positive solution}. Theorem B.]
implies that A # 0. So we can define D := supA. We claim that 0 < D < +oo.
Obviously D > 0. Let

A* = m>a,())({8p_1 — Ayt < 40 (5)

If A; € A, then we have

/upfldz:Al/u’J171d:c+A2|Q|.
Q Q

From (), we have Ay < A*. So 0 < D < A* < +c0.
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