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Abstract: This paper investigates the synthesis and the performance study of the
optimal state observer designed for nonlinear dynamical systems to reconstruct the
unmeasurable state variables and to stabilize rapidly the observation error system.
The proposed nonlinear optimal state observer is based on the determination of the
optimal observation gain matrix which is derived by minimizing a quadratic criterion
formulated as an output feedback control problem of the observation error system.
The gradient matrix operations is applied to the Lagrangian function in order to
obtain necessary and sufficient conditions, for minimizing the proposed criterion, to
perform the optimal gain matrix. The necessary and sufficient conditions are pre-
sented by coupled equations which resolution, by a numerical efficient algorithm,
allows the calculus of the optimal observation gain. The effectiveness and the avail-
ability of the observer design approach are illustrated through numerical simulation
to reconstruct the state variables of a robot with flexible link.
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1 Introduction

When the exact and complete knowledge on current states of a dynamic plant is impos-
sible by different reasons, the use of a state observer (estimator) is compulsory to realize
a successful closed-loop control [1–4].

Hence, the problem of state observation for nonlinear systems is of main importance in
automatic control. In recent years many contributions have been presented in literature
that investigate this problem for different classes of nonlinear systems. Generally, there
are two approaches dealing with the nonlinear observer design. The first one is based
on a nonlinear transformation by which the error dynamic is linear so that the design
of state observer can be performed using linear techniques [5]. Necessary and sufficient
conditions for the existence of the state transformation have been established in [5]. The
second approach does not need any transformation and the observer design is directly
based on the original system [2, 6].

For linear and nonlinear dynamical systems, a number of methods for observing the
state variables and especially for the determination of the observation gain matrix, such
that the asymptotic stability is ensured, have been proposed in the literature as the
linear matrix inequality (LMI) approach [7–10], the Lyapunov equation method [11–13],
the algebraic Riccati equation [5, 14, 15] and the min-max approach [16–19].

In synthesizing a control law and/or observation one two goals are focused: maximiz-
ing performances and minimizing costs of implementation. Hence, a simple control law,
which is less complicated and less costly to implement than a full state feedback controller
for example, may be preferred. Indeed, there is a number of structural alternatives such
as full output feedback or low order dynamic compensation [20, 21].

In this paper we have considered the optimal state observer design for nonlinear
dynamical systems which the non-linearity satisfy a globally Lipschitz condition. This
approach is based on the minimizing of a quadratic criterion formulated as a quadratic
output feedback control problem of the observation error in order to obtain an optimal
gain. This proposed quadratic criterion has a direct signification and interpretation
regarding to the desired observer. Thus, this optimal gain is calculated from the gradient
resolution of the designed Lagrangain function in order to obtain necessary and sufficient
conditions.

These necessary and sufficient conditions for the proposed nonlinear optimal state
observer are derived, using the gradient techniques, in the form of Lyapunov and Riccati
equations which resolution, by a proposed efficient iterative numerical algorithm, allows
the calculus of the optimal gain matrix.

This paper is organized as follows: the proposed nonlinear optimal state observer
is presented in Section 2. In Section 3, an illustrate example of a robot with flexible
link is presented to highlight the performance of the proposed nonlinear optimal state
observation approach.

2 Nonlinear Optimal State Observer

2.1 Problem formulation

We consider the class of nonlinear systems described by the following state equations

{

ẋ(t) = Ax(t) + f
(

t, x, u
)

,
y(t) = Cx(t),

(1)
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where x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the control vector, y(t) ∈ R
m is the

output vector, A and C are constant matrices of appropriate dimensions. The nonlinear
fonction f : R× R

n × R
p → R

n is Lipschitz with respect to the state x(t), uniformly in
the control u(t), that is, there exists a constant γ > 0 such that

∥

∥f
(

t, x1, u
)

− f
(

t, x2, u
)∥

∥ 6 γ ‖x1 − x2‖ (2)

for all x1(t), x2(t) ∈ R
n and u(t) ∈ R

p.
Systems with Lipschitz nonlinearity are common in many practical applications.

Many nonlinear systems satisfy the Lipschitz property at least locally by representing
them by a linear part plus a Lipschitz nonlinearity around their equilibrium points.

We assume that the pair (A,C) is observable. Then the state observer for the non-
linear system (1) may be written as follows

{

˙̂x(t) = Ax̂(t) + f
(

t, x̂, u
)

+ L
(

y(t)− ŷ(t)
)

,
ŷ(t) = Cx̂(t),

(3)

with x̂(t) ∈ R
n the state observer of x(t) and L ∈ R

n×m the observer gain matrix to be
determined.

The observation error between the real state and the observed one is defined by

e(t) = x(t) − x̂(t). (4)

Subtracting (1) from (3) gives the dynamical reconstruction error

ė(t) =
(

A− LC
)

e(t) + f
(

t, x, u
)

− f
(

t, x̂, u
)

. (5)

In literature, several methods can be used for the determination of the observer gain
matrix, such that the asymptotic stability of the observation error is ensured, as the Lya-
punov equation method, the algebraic Riccati equation approach and the linear matrix
inequality (LMI) technique. The drawback of these methods is that the observation gain
to determine can be practically not acceptable and where the minimization of a quadratic
criterion is used has no direct physical interpretation regarding to the observation error
dynamic.

In what follows we propose a new formulation of the dynamical observation error (5).
Thus, the dynamical observation error can be considered as the following system







ė(t) = Ae(t) + η(t) + f
(

t, x, u
)

− f
(

t, x̂, u
)

,
η(t) = −Lν(t),
ν(t) = Ce(t).

(6)

The system (6) expresses an output feedback control problem of the nonlinear system
of order n with n dimensional input vector η(t) and m dimensional output vector ν(t).

The proposed output feedback control problem scheme can be optimized by minimiz-
ing the following quadratic criterion defined by

J =

∞
∫

0

(

eT (t)Q0e(t) + ηT (t)R0η(t)

)

dt

=

∞
∫

0

eT (t)

(

Q0 + CTLTR0LC

)

e(t)dt (7)
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with Q0 = QT
0 ≥ 0 and R0 = RT

0 > 0.
Then, we have the following result.

Theorem 2.1 Consider the dynamical observation error (6). If there exists a matrix
P = PT solution of the following algebraic Riccati equation

(A− LC)
T
P + P (A− LC) + δ−1P 2 + δγ2I +Q0 + CTLTR0LC +Q = 0 (8)

with Q0 = QT
0 ≥ 0, Q = QT ≥ 0, R0 = RT

0 and δ a positive scalar.
Then the state observation error is globally asymptotically stable and the quadratic

criterion (7) satisfies
J ≤ eT0 Pe0, (9)

where e0 = e(0) is the initial state observation error vector.

Proof In order to prove the asymptotic stability of the observation error (4), we
consider the following quadratic Lyapunov function candidate

V (e(t)) = e(t)TPe(t). (10)

The observation error converges asymptotically towards zero if V (e(t)) > 0 and
V̇ (e(t)) < 0 for all e(t) 6= 0.

The time derivative of V (e(t)) along any trajectory of (5) is given by

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t)

= eT (t)

[

(A− LC)
T
P + P (A− LC)

]

e(t) + 2eT (t)P

[

f(t, x, u)− f(t, x̂, u)

]

≤ eT (t)

[

(A− LC)T P + P (A− LC) + δ−1P 2 + δγ2I

]

e(t). (11)

The inequality (11) is obtained by using the following relation

2eT (t)P

[

f(t, x, u)− f(t, x̂, u)

]

6 δ−1eT (t)PPe(t)

+ δ

[

f(t, x, u)− f(t, x̂, u)

]T[

f(t, x, u)− f(t, x̂, u)

]

6 eT (t)

[

δ−1PP + δγ2I

]

e(t).

The inequality (11) can be written as

V̇ (e(t)) ≤ −eT (t)Qe(t)− eT (t)

(

Q0 + CTLTR0LC

)

e(t)

≤ −eT (t)

(

Q0 + CTLTR0LC

)

e(t)

< 0, (12)

where (A− LC)
T
P + P (A− LC) + δ−1PP + δγ2I +Q0 + CTLTR0LC = −Q.
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Hence, V (e(t)) is a Lyapunov function for the system (5). Therefore, the observation
error (4) is asymptotically stable. Furthermore, by integrating both sides of the inequality
(12) from 0 to T and using the initial conditions, we have

V (e(T ))− V (e(0)) <−

∫ T

0

eT (t)

(

Q0 + CTLTR0LC

)

e(t)dt.

Since the system (4) is asymptotically stable, that is, e(T ) → 0, when T → ∞, we
obtain V (e(T )) → 0. Thus we get

J =

∫ T

0

eT (t)

(

Q0 + CTLTR0LC

)

e(t)dt

< V (e(0))

< eT0 Pe0.

The proof of Theorem 2.1 is completed. 2

At this stage, (6) and (9) form an optimization problem which, given an e0, can
be solved in order to obtain an optimal observation gain L for the nonlinear system.
Unfortunately, this optimal gain L will in general depend on e0. Thus, it would not really
be a feedback control. In order to find an optimal observation gain that is independent of
the initial observation error, it is necessary to overcome this problem. Then, we attempt
to determine the optimal gain L in an average sense, if we view the initial observation
error e0 as a random variable uniformly distributed over the surface of an n dimensional
unit sphere, it follows that

E
{

e0e
T
0

}

= I. (13)

Then, the expected value of the quadratic criterion J̄ of the cost function (9) is simply
evaluated as follows

J̄ = E
{

J
}

≤ E
{

eT0 Pe0
}

= trace
{

P
}

. (14)

Thus, that may have appeared to be a dynamical problem (5) is formulated as a static
quadratic criterion (14) which is minimized with respect to the observation gain matrix
L and the symmetric positive definite matrix P subject to the constraint (8).

2.2 Gain matrix optimization

The optimal observation gain matrix of the state observation (3), which ensures the
asymptotic convergence of the state observation error (4), is given by the following the-
orem

Theorem 2.2 We consider Theorem 2.1 and if there exists a matrix Γ = ΓT ≥ 0
solution of the Lyapunov equation

(A− LC) Γ + Γ (A− LC)T + 2δ−1P + I = 0. (15)

Then the optimal observation gain matrix of the system (3) is given by

L = R−1

0 PΓCT (CΓCT )−1. (16)
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Proof To obtain an optimality condition, define the corresponding Lagrange function
as

ℑ
(

L, P,Γ
)

= trace

{

P

}

+ trace

{

ΓT

[

(

A− LC
)T

P + P
(

A− LC
)

+ δ−1PP + δγ2I +Q0 + CTLTR0LC +Q

]}

, (17)

where Γ ∈ R
n×n is a matrix of Lagrangian multiplier may be selected symmetric positive

definite.
To continue the developments, the following lemma is used.

Lemma 2.1 For any matrices X,Y,A and B with appropriate dimensions, we have
[22,23]

∂

∂Y
trace

{

XTY
}

= X,
∂

∂Y
trace

{

XT (A+ Y B)
}

= XBT .

By using gradient matrix operations defined by Lemma 2.1 the necessary conditions
for L, P and Γ to be optimal are given by

∂ℑ

∂L
(L, P,Γ) = −2PΓCT + 2R0LCΓCT = 0, (18)

∂ℑ

∂P
(L, P,Γ) = (A− LC) Γ + Γ (A− LC)

T
+ 2δ−1P + I = 0, (19)

∂ℑ

∂Γ
(L, P,Γ) = (A− LC)

T
P + P (A− LC) + δ−1PP

+ δγ2I +Q0 + CTLTR0LC +Q = 0. (20)

From equation (18), we obtain the optimal observation gain matrix L given by equa-
tion (16). 2

In view of this, the last relations can be written to the following















F1 (L, P,Γ) : L = R−1

0 PΓCT
(

CΓCT
)

−1
,

F2 (L, P,Γ) : (A− LC) Γ + Γ (A− LC)T + 2δ−1P + I = 0,

F3 (L, P,Γ) : (A− LC)
T
P + P (A− LC) + δ−1PP + δγ2I

+Q0 + CTLTR0LC +Q = 0.

(21)

It is clear that the three equations of the system (21) are coupled. Then, to solve this
system, it is important to propose the following iterative algorithm.

Algorithm 2.1 1. Initialize : Set n = 1:

Select Q0 ≥ 0, Q ≥ 0, R0 > 0 and L1 such as A− L1C is stable.

2. nth iteration:

• Using this value of Ln and the resolution of the algebraic Riccati equation
F3(Ln, Pn) = 0, we obtain the value for Pn.

• With Ln, Pn and the resolution of the Lyapunov equation F2(Ln, Pn,Γn) = 0, we
get Γn.
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• Update Ln+1, for the obtained values Pn and Γn, with the relation
F1(Ln+1, Pn,Γn).

3. n = n+ 1 :

Repeat the step 2 for n = n+ 1 to obtain the optimal values.

4. Terminate :

Stop the algorithm if ‖Pn − Pn−1‖ ≤ ε (ε is a prescribed small number used to
check the convergence of the algorithm).

So, for n = 1, 2, ..., we have

Pn is found from the Riccati equation F3(Ln, Pn) = 0,

Γn is found from the Lyapunov equation F2(Ln, Pn,Γn) = 0,

Ln+1 is found from F1(Ln+1, Pn,Γn).

3 Numerical Example

To illustrate the availability and the efficiency of the proposed nonlinear optimal state
observer design, we consider the system of a single link robot with a revolute elastic joint
rotating in a vertical plane which is modelled by [8, 24]:



























θ̇m = ωm,

ω̇m = −
Fm

Jm
ωm +

K

Jm
(θl − θm) +

Kτ

Jm
u,

θ̇l = ωl,

ω̇l = −
Fl

Jl
ωl −

K

Jl
(θl − θm)−

Mgh

Jl
sin(θl),

(22)

where θm, ωm, θl and ωl are the motor angular displacement, the angular velocity of the
motor, the link angular displacement and the angular velocity of the link respectively.
Jm and Jl are the inertia of the motor and link respectively, 2h and M represent the
length and mass of the link, Fm and Fl are the viscous friction coefficients, K is the
elastic constant, g is the gravity constant and Kτ is the amplifier gain. The control u is
the torque delivered by the motor.

The system (22) can be rewritten under the form (1) in the following state represen-
tation


































































ẋ1

ẋ2

ẋ3

ẋ4









=















0 1 0 0

−
K

Jm
−
Fm

Jm

K

Jm
0

0 0 0 1
K

Jl
0 −

K

Jl
−
Fl

Jl























x1

x2

x3

x4









+











0
Kτ

Jm
0
0











u+











0
0
0

−
ghM

Jl











sin(x3),

y =

[

1 0 0 0
0 1 0 0

]









x1

x2

x3

x4









,

(23)

with
[

x1 x2 x3 x4

]T
=

[

θm ωm θl ωl

]T
.
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The performances of the proposed nonlinear optimal state observer with the optimal
gain obtained by the proposed iterative algorithm was investigated by simulation for the
flexible link robot (23) characterized by the following numerical parameters (table 1) [8]:

Parameter Numerical value
K 1.8Nm/rad
Kτ 0.8Nm/V
Jm 37.9× 10−3Kgm2

Jl 94.6× 10−3Kgm2

h 0.15m
M 0.21Kg
Fm 47.3× 10−3Nm/rad/s
Fl 0Nm/rad/s

Table 1: Numerical parameters of the flexible link robot.

In the following, the procedure for the nonlinear optimal state observer design is pre-
sented. For the computation of the observation gain matrix L, we select the parameters
Q0 = 0.75 · I4, Q = 0.75 · I4, R0 = I4 and δ = 0.25.

Using the proposed iterative algorithm described above for the given Q0, Q,R0 and δ
the observation gain matrix can be found using MATLAB. If the results are not satisfac-
tory, Q0 and R0 are modified and the procedure is repeated. After some design repetition
and with the selected parameters, the outcomes of the iterative algorithm resolution after
N = 27 iterations are the following:

• the optimal observation gain matrix:

Lopt =









−11.6291 10.1573
9.8738 −0.4123
39.1030 −11.1101
−5.3396 5.9703









,

• the symmetric positive definite matrix:

Popt =









4.8652 −0.2200 −1.4939 0.9748
−0.2200 0.9352 −0.0126 0.1866
−1.4939 −0.0126 14.8564 −4.2233
0.9748 0.1866 −4.2233 2.7364









,

• the matrix of Lagrangian multiplier:

Γopt =









7.9319 −4.2409 2.2174 −2.1123
−4.2409 6.2424 −2.3009 2.3777
2.2174 −2.3009 3.6516 −1.8314
−2.1123 2.3777 −1.8314 1.6209









.

The performances of the proposed nonlinear optimal state observer, tested by numer-
ical simulation, are shown in Figures 1 to 4 which depict the evolution of the actual and
the observed state variables of the studied flexible link robot: the motor angular position
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Nonlinear model for a flexible link Robot
Nonlinear optimal state observer

Figure 1: Actual and observed angular position θm of the motor.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

Time(s)

w
m

Nonlinear model for a flexible link Robot
Nonlinear optimal state observer

Figure 2: Actual and observed angular velocity ωm of the motor.

θm, the motor angular velocity ωm, the link angular position θl and the link angular
velocity ωl.

It appears, from these simulations, that the nonlinear optimal state observation ap-
proach allows a well reconstruction of the actual states. It can converge rapidly towards
the state variable of the flexible link robot. Indeed, the high performances of the proposed
nonlinear optimal state observer show the improvement led by the use of the proposed
iterative algorithm permitting the calculus of the optimal gain matrix.
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Figure 3: Actual and observed angular position θl of the link.
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Figure 4: Actual and observed angular velocity ωl of the link.

4 Conclusion

Nonlinear optimal state observer design for a class of continuous-time nonlinear systems,
where the nonlinearity satisfy the Lipschitz condition, has been studied in this paper. The
nonlinear optimal state observer is based on the determination of an optimal observing
gain matrix derived by minimizing a quadratic criterion characterized by a quadratic
output feedback control problem of the observation error system.
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It has been shown from the simulation results that the proposed nonlinear optimal
state observer allows the reconstruction of the unmeasurable state variables of the flexible
link robot. Indeed, the performance improvement of the nonlinear optimal state observer
is due to the design of a numerical efficient algorithm leading to the calculus of the optimal
gain matrix.
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