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Abstract: In this paper, we consider the H∞ filtering problem for discrete-time
singularly-perturbed (two time-scale) nonlinear systems. Two types of filters, namely,
(i) decomposition; and (ii) aggregate, are discussed, and sufficient conditions for the
approximate solvability of the problem in terms of discrete-time Hamilton–Jacobi–
Isaacs equations (DHJIEs) are presented. In addition, for each type of filter above,
reduced-order filters are also derived in each case. The results are also specialized
to linear systems, in which case the HJIEs reduce to a system of linear-matrix-
inequalities (LMIs) which are computationally efficient. An example is also given
to demonstrate the approach.
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1 Introduction

The optimal control problem for linear and nonlinear discrete-time singularly-perturbed
systems has been considered by several authors [8–10], [16, 18]. On the other hand,
the filtering problem for linear singularly-perturbed systems has received little attention
[5,18,22]. Kalman filtering techniques have generally been considered, and various types
of filters have been proposed, including composite and reduced-order filters. However, to
the best of our knowledge, the nonlinear filtering problem and in particular the problem
for affine nonlinear singularly-perturbed systems has not been considered by any authors.
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Moreover, recently the authors have discussed the Kalman filtering problem for this class
of systems and it is therefore our aim in this paper to discuss the nonlinear H∞ filtering
problem for discrete-time singularly-perturbed systems.

Singularly-perturbed systems are those class of systems that are characterized by a
discontinuous dependence of the system properties on a small perturbation parameter
ǫ. They arise in many physical systems such as electrical power systems and electrical
machines (eg. an asynchronous generator, a dc motor, electrical converters), electronic
systems (e.g. oscillators) mechanical systems (eg. fighter aircrafts), biological systems
(eg. bacterial-yeast-virus cultures, heart) and also economic systems with various com-
peting sectors. This class of systems has two time-scales, namely, a “fast” and a “slow”
dynamics. This makes their analysis and control more complicated than regular systems.
Nevertheless, they have been studied extensively [15, 17].

Furthermore, statistical discrete-time nonlinear filtering techniques developed using
minimum-variance, Bayesian and maximum-likelihood criteria [6, 19, 21] are too com-
plicated, and approximations [14, 20] are still computationally intensive to implement.
On the other hand, the nonlinear H∞ filter is easy to derive using a deterministic ap-
proach and relies on finding a smooth solution to a discrete-time Hamilton–Jacobi–Isaac’s
(DHJI) partial-differential-equation (PDE) or DHJIE in short, which can be found us-
ing polynomial approximations or other methods. Therefore, H∞ filtering techniques
for nonlinear discrete-time systems have been considered by several authors [24–26] in-
cluding the authors [2, 3]. As is well-known, the H∞ filter has several advantages over
the extended-Kalman filter [4], among which are robustness towards L2-bounded dis-
turbances and uncertainties, as well as the fact that it is derived from a completely
deterministic setting.

A solution to the discrete-time (sub-optimal) nonlinear H∞ filtering problem is given
in [24] under the simplifying assumption that the solution to the DHJIE is quadratic
in the estimation error. This approach is very useful for practical applications, but a
complete solution to the problem is also desirable in its own right. Hence recently, the
authors have presented exact and approximate solutions to the problem [2,3]. Moreover,
the authors have proposed two-degree-of-freedom (2-DOF) proportional-derivative (PD)
and proportional-integral (PI)-filters, and the advantages of these approaches over the
1-DOF filters have also been demonstrated. Thus, in this paper, we extend some of these
results to discrete-time singularly-perturbed nonlinear systems which hitherto have not
been considered by any authors.

In this paper, we propose to discuss the H∞ filtering problem for discrete-time affine
nonlinear singularly-perturbed systems. Two types of filters, namely, (i) decomposition,
and (ii) aggregate filters will be considered, and sufficient conditions for the solvability
of the problem in terms of Hamilton–Jacobi–Isaacs equations (HJIEs) will be presented.
The paper is organized as follows. In the remainder of this section, we introduce nota-
tions. Then in Section 2, we define the problem and give also some other preliminary
definitions. In Section 3, we present a solution to the filtering problem using decomposi-
tion filters. This is followed in Section 4 by an alternative solution using aggregate filters.
An example is then presented in Section 5, and finally in Section 6, we give conclusions.

The notation is standard, except where otherwise stated. Moreover, ‖(.)‖ will denote
the standard Euclidean vector norm on ℜn, the spaces ℓ2([k0,∞),ℜn) ℓ∞([k0,∞),ℜn) are
the time-domain standard Lebesgue spaces of square-summable and essentially bounded
vector-valued sequences. While H∞(jℜ) is the corresponding frequency-domain subspace
of the counterpart frenquency-domain space of ℓ∞([k0,∞),ℜn) of vector functions that
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are analytic on the open right-hand complex plane C+. We shall only use this notation to
refer to stable input-output maps and when there is no confusion. The norm on the above

ℓ2, and ℓ∞-spaces are defined accordingly as ‖(.)‖22
∆
=

∑∞
k0

‖(.)‖2, ‖(.)‖∞
∆
= supk ‖(.)‖.

Other notations will be defined accordingly.

2 Problem Definition and Preliminaries

The general set-up for studying H∞ filtering problems is shown in Figure 1, where Pk

is the plant, while Fk is the filter. The noise signal w ∈ P ′ is in general a bounded
power signal (e.g. a Gaussian white-noise signal) which belongs to the set P ′ of bounded
spectral signals, and similarly z̃ ∈ P ′, is also a bounded power signal or ℓ2 signal. Thus,
the induced norm from w to z̃ (the penalty variable to be defined later) is the ℓ∞-norm
of the interconnected system Fk ◦Pk, i.e.

‖Fk ◦Pk‖ℓ∞
∆
= sup

06=w∈S
′

‖z̃‖P′

‖w‖P′

, (1)

where

P ′ ∆
= {w : w ∈ ℓ∞, Rww(k), Sww(jω) exist for all k and all ω resp., ‖w‖P′ < ∞},

‖z‖2
P

′

∆
= lim

K→∞

1

2K

K∑

k=−K

‖zk‖
2

and Rww, Sww(jω) are the autocorrelation and power spectral density matrices of w.
Notice also that, ‖(.)‖P′ is a seminorm. In addition, if the plant is stable, we replace the
induced ℓ∞-norm above by the equivalent H∞ subspace norms.

At the outset, we consider the following singularly-perturbed affine nonlinear causal
discrete-time state-space model of the plant which is defined on X ⊆ ℜn1+n2 with zero
control input:

Pda
sp :





x1,k+1 = f1(x1,k, x2,k) + g11(x1,k, x2,k)wk; x1(k0, ε) = x10,
εx2,k+1 = f2(x1,k, x2,k, , ε) + g21(x1,k, x2,k)wk; x2(k0, ε) = x20,

yk = h21(x1,k) + h22(x2,k) + k21(x1,k, x2,k)wk,
(2)

where x =

(
x1

x2

)
∈ X is the state vector with x1 the slow state which is n1-dimensional

and x2 the fast, which is n2-dimensional; w ∈ W ⊆ ℜr is an unknown disturbance (or
noise) signal, which belongs to the set W ⊂ ℓ2[k0,∞) ⊂ P ′ of admissible exogenous
inputs; y ∈ Y ⊂ ℜm is the measured output (or observation) of the system, and belongs
to Y, the set of admissible measured-outputs; while ε is a small perturbation parameter.

The functions f1 : X → ℜn1 , X ⊂ ℜn1+n2 , f2 : X × ℜ → ℜn2 , g11 : X → Mn1×r(X ),
g21 : X → Mn2×r(X ), where Mi×j is the ring of i× j smooth matrices over X , h21, h22 :
X → ℜm, and k21 : X → Mm×r(X ) are real C∞ functions of x. More specifically, f2 is of
the form f2(x1,k, x2,k, ε) = (εx2,k+ f̄2(x1,k, x2.k) for some smooth function f̄2 : X → ℜn2 .
Furthermore, we assume without any loss of generality that the system (2) has an isolated
equilibrium-point at (xT

1 , x
T
2 ) = (0, 0) such that f1(0, 0) = 0, f2(0, 0) = 0, h21(0, 0) =

h22(0, 0) = 0. We also assume that there exists a unique solution x(k, k0, x0, w, ε) ∀k ∈ Z

for the system, for all initial conditions x(k0)
∆
= x0 = (x10

T

, x20
T

)T , for all w ∈ W , and
all ε ∈ ℜ.

The suboptimal H∞ local filtering/state estimation problem is defined as follows.
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Figure 1: Set-up for discrete-time H∞ filtering.

Definition 2.1 (Sub-optimalH∞ Local State Estimation (Filtering) Problem). Find
a filter, Fk, for estimating the state xk or a function of it, zk = h1(xk), from observations

Yk
∆
= {yi : i ≤ k} of yi up to time k, to obtain the estimate

x̂k = Fk(Yk),

such that, the H∞-norm from the input w ∈ W to some suitable penalty function z is
locally rendered less than or equal to a given number γ for all initial conditions x0 ∈
O ⊂ X , for all w ∈ W . Moreover, if the filter solves the problem for all x0 ∈ X , we say
the problem is solved globally.

In the above definition, the condition that the H∞-norm is less than or equal to γ, is
more correctly referred to as the ℓ2-gain condition

∞∑

k0

‖zk‖
2 ≤ γ2

∞∑

k0

‖wk‖
2, x0 ∈ O ⊂ X , ∀w ∈ W . (3)

We shall adopt the following definition of observability.

Definition 2.2 For the nonlinear system Pa
sp, we say that, it is locally zero-input

observable, if for all states x1, x2 ∈ U ⊂ X and input w(.) = 0,

y(k;x1, w) ≡ y(k;x2, w) =⇒ x1 = x2,

where y(., xi, w), i = 1, 2 is the output of the system with the initial condition xk0
= xi.

Moreover, the system is said to be zero-input observable, if it is locally observable at
each x0 ∈ X or U = X .

3 Solution to the H∞ Filtering Problem Using Decomposition Filters

In this section, we present a decomposition approach to the H∞ estimation problem de-
fined in the previous section, while in the next section, we present an aggregate approach.

We construct two time-scale filters corresponding to the decomposition of the system
into a “fast” and “slow” subsystems. As in the linear case [5,12,16,18,22], we first assume
that there exists locally a smooth invertible coordinate transformation (a diffeomorphism)
ϕ : x 7→ ξ, i.e.

ξ1 = ϕ1(x), ϕ1(0) = 0, ξ2 = ϕ2(x), ϕ2(0) = 0, ξ1 ∈ ℜn1 , ξ2 ∈ ℜn2 , (4)

such that the system (2) is locally decomposed into the form

P̃da
sp :





ξ1,k+1 = f̃1(ξ1,k, ε) + g̃11(ξk, ε)wk, ξ1(k0) = ϕ1(x
0, ε),

εξ2,k+1 = f̃2(ξ2,k, ε) + g̃21(ξk, ε)wk; ξ2(k0) = ϕ2(x
0, ε),

yk = h̃21(ξ1,k, ξ2,k, ε) + h̃22(ξ1,k, ξ2,k, ε) + k̃21(ξk, ε)w.

(5)
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Remark 3.1 It is virtually impossible to find a coordinate transformation such that
h̃2j = h̃2j(ξj), j = 1, 2. Thus, we have made the more practical assumption that h̃2j =

h̃2j(ξ1, ξ2), j = 1, 2.

Necessary conditions that such a transformation must satisfy are given in [1]. The
filter is then designed based on this transformed model as follows

Fda
1c :





ξ̂1,k+1 = f̃1(ξ̂1,k, ε) + g̃11(ξ̂k, ε)w
⋆
k + L1(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)−

h̃22(ξ̂k, ε)];

ξ̂1(k0, ε) = 0,

εξ̂2,k+1 = f̃2(ξ̂2,k, ε) + g̃21(ξ̂k, ε)w
⋆
k + L2(ξ̂k, yk, ε)[yk − h̃21(ξ̂k, ε)−

h̃22(ξ̂k, ε)];

ξ̂2(k0, ε) = 0,

(6)

where ξ̂ ∈ X is the filter state, L1 ∈ ℜn1×m, L2 ∈ ℜn2×m are the filter gains, and w⋆

is the worst-case noise, while all the other variables have their corresponding previous
meanings and dimensions. We can then define the penalty variable or estimation error
at each instant k as

zk = yk − h̃21(ξ̂k)− h̃22(ξ̂k). (7)

The problem can then be formulated as a dynamic optimization problem with the
following cost functional

{
minL1,L2∈ℜn×m supw∈W J1(L1, L2, w) =

1

2

∑∞
k=k0

{
‖zk‖

2 − γ2‖wk‖
2
}
,

s.t. (6) and with w = 0 limk→∞{ξ̂k − ξk} = 0.
(8)

To solve the problem, we form the Hamiltonian function H : X ×W ×Y ×ℜn1×m ×
ℜn2×m ×ℜ → ℜ:

H(ξ̂, w, y, L1, L2, V, ε) = V
(
f̃1(ξ̂1, ε) + g̃11(ξ̂, ε)w + L1(ξ̂, y, ε)(y − h̃21(ξ̂1, ε)−

h22(ξ̂2ε)),
1

ε
f̃2(ξ̂2, ε) + g̃21(ξ̂, ε)w +

1

ε
L2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h̃22(ξ̂, ε)), y

)
−

V (ξ̂, yk−1) +
1

2
(‖z̃‖2 − γ2‖w‖2) (9)

for some C1 positive-definite function V : X × Y → ℜ+ and where ξ̂1 = ξ̂1,k, ξ̂2 = ξ̂2,k
y = yk, z = {zk}, w = {wk}. We then determine the worst-case noise w⋆ and the
optimal gains L̂⋆

1 and L̂⋆
2 by maximizing and minimizing H with respect to w and L1,

L2 respectively in the above expression (9), as

w⋆ = arg sup
w

H(ξ̂, w, y, L1, L2, V, ε), (10)

[L⋆
1, L

⋆
2] = arg min

L1,L2

H(ξ̂, w⋆, y, L1, L2, V, ε). (11)

However, because the Hamiltonian function (9) is not a linear or quadratic function
of w and L1, L2, only implicit solutions may be obtained [1]. Thus, the only way to
obtain an explicit solution is to use an approximate scheme. In [1] we have used a

second-order Taylor series approximationn of the Hamiltonian about (f̃1(ξ̂1),
1

ε
f̃2(ξ̂2), y)

in the direction of the state vectors (ξ̂1, ξ̂2). It is believed that, this would capture most,
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if not all, of the system dynamics. However, for the H∞ problem at hand, such an
approximation becomes too messy and the solution becomes more involved. Therefore,
instead we would rather use a first-order Taylor approximation which is given by

Ĥ(ξ̂, ŵ, y, L̂1, L̂2, V̂ , ε) = V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)[g̃11(ξ̂, ε)ŵ +

L̂1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

ε
V̂
ξ̂2,ε

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)[g̃21(ξ̂, ε)ŵ +

L̂2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)] +

1

2
(‖z̃‖2 − γ2‖ŵ‖2) +O(‖ξ̂‖2), (12)

where V̂ , ŵ, L̂1, L̂2 are the corresponding approximate functions, and V̂
ξ̂1
, V̂

ξ̂2
are the

row vectors of first-partial derivatives of V̂ with respect to ξ̂1, ξ̂2 respectively. We can
now obtain w⋆ as

ŵ⋆ =
1

γ2
[g̃T11(ξ̂, ε)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε
g̃T21(ξ̂, ε)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)).

(13)
Then substituting ŵ = ŵ⋆ in (12), we have

Ĥ(ξ̂, ŵ⋆, y, L̂1, L̂2, V̂ , ε) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

1

2γ2

[
V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε
V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)V̂

T

ξ̂2,ε
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
+

V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) +

1

2γ2

[1
ε
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2), y)g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) +

1

ε2
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃21(ξ̂)g̃

T
21(ξ̂)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
+

1

ε
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) +

1

2
‖z̃‖2. (14)

Completing the squares now for L̂1(ξ̂, y) and L̂2(ξ̂, y) in (14), we get

Ĥ(ξ̂, ŵ⋆, y, L̂1, L̂2, V̂ , ε) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

1

2γ2

[
V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

ε
V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]

+
1

2

∥∥∥∥L̂
T
1 (ξ̂, y)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥
2

+
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1

2γ2

[1
ε
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)V̂

T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

ε2
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2), y)g̃21(ξ̂)g̃

T
21(ξ̂)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
−

1

2
V̂
ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2), y)L̂1(ξ̂, y, ε)L̂

T
1 (ξ̂, y, ε)V̂ξ̂1

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)−

1

2ε2
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂2(ξ̂, y, ε)L̂

T
2 (ξ̂, y, ε)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

+
1

2

∥∥∥∥
1

ε
L̂T
2 (ξ̂, y, ε)V̂

T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) + (y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

∥∥∥∥
2

−

1

2
‖z‖2.

Hence, setting the optimal gains as

V̂
ξ̂1,ε

(f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)L̂

⋆
1(ξ̂, y, ε) = −(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T , (15)

V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)L̂

⋆
2(ξ̂, y, ε) = −ε(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T , (16)

minimizes the Hamiltonian Ĥ(., ., L̂1, L̂2, ., .) and guarantees that the saddle-point con-
dition [7]

Ĥ(., ŵ⋆, L̂⋆
1, L̂

⋆
2, ., .) ≤ Ĥ(., ŵ⋆, L̂1, L̂2, ., .) ∀L̂1 ∈ ℜn1×m, L̂2 ∈ ℜn2×m (17)

is satisfied. Finally, substituting the above optimal gains in (12) and setting

Ĥ(ξ̂, w⋆, y, L̂⋆
1, L̂

⋆
2, V̂ , ε) = 0,

results in the following discrete Hamilton-Jacobi-Isaacs equation (DHJIE)

V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y)− V̂ (ξ̂, yk−1) +

1

2γ2
[ V̂

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) V̂

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y) ]×

[
g̃11(ξ̂)g̃

T
11(ξ̂, ε)

1

ε
g̃11(ξ̂, ε)g̃

T
21(ξ̂, ε)

1

ε
g̃21(ξ̂, ε)g̃

T
11(ξ̂, ε)

1

ε2
g̃21(ξ̂, ε)g̃

T
21(ξ̂, ε)

] [
V̂ T

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

V̂ T

ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

]
−

3

2
(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))

T (y − h̃21(ξ̂, ε)− h22(ξ̂, ε)) = 0 V̂ (0, 0, 0) = 0.(18)

We then have the following result.

Proposition 3.1 Consider the nonlinear discrete system (2) and the H∞-filtering
problem for this system. Suppose the plant Pda

sp is locally asymptotically stable about the
equilibrium-point x = 0 and zero-input observable. Further, suppose there exist a local
diffeomorphism ϕ that transforms the system to the partially decoupled form (5), a C1

positive-semidefinite function V̂ : N̂×Υ̂ → ℜ+ locally defined in a neighborhood N̂×Υ̂ ⊂
X × Y of the origin (ξ̂, y) = (0, 0), and matrix functions L̂i : N̂ × Υ̂ → ℜni×m, i = 1, 2,
satisfying the DHJIE (18) together with the side-conditions (15), (16) for some γ > 0.
Then, the filter Fda

1c solves the H∞ filtering problem for the system locally in N̂ .
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Proof The optimality of the filter gains L̂⋆
1, L̂

⋆
2 has already been shown above. It

remains to show that the sadle-point conditions [7]

Ĥ(., ŵ, L̂⋆
1, L̂

⋆
2, ., .) ≤ Ĥ(., ŵ⋆, L̂⋆

1, L̂
⋆
2, ., .) ≤ Ĥ(., ŵ⋆, L̂1, L̂2, ., .),

∀L̂1 ∈ ℜn1×m, L̂2 ∈ ℜn2×m, ∀w ∈ ℓ2[k0,∞). (19)

and the ℓ2-gain condition (3) hold for all w ∈ W . Moreover, that there is asymptotic
convergence of the estimation error vector.

Now, the right-hand-side of the above inequality (19) has already been shown. It
remains to show that the left hand side also holds. Accordingly, it can be shown from
(12), (18) that

Ĥ(ξ̂, ŵ, L̂⋆
1, L̂

⋆
2, V̂ , ε) = Ĥ(ξ̂, ŵ⋆, L̂⋆

1, L̂
⋆
2, V̂ , ε)−

1

2
γ2‖ŵ − ŵ⋆‖2.

Therefore, we also have the left-hand side of (19) satisfied, and the pair (ŵ⋆, [L̂⋆
1, L

⋆
2])

constitute a saddle-point solution to the dynamic game (8), (6).
Next, let V̂ ≥ 0 be a C1 solution of the DHJIE (18). Then, consider the time-variation

of V̂ along a trajectory of (6), with L̂1 = L̂⋆
1, L2 = L̂⋆

2, and w ∈ W , to get

V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≈ V̂ (f̃1(ξ̂1, ε),
1

ε
f̃2(ξ̂2, ε), y) + V̂

ξ̂1
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)

.[g̃11(ξ̂, ε)ŵ + L̂⋆
1(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))]

+
1

ε
V̂
ξ̂2
(f̃1(ξ̂1, ε),

1

ε
f̃2(ξ̂2, ε), y)[g̃21(ξ̂, ε)w + L̂⋆

2(ξ̂, y, ε)(y − h̃21(ξ̂, ε)− h22(ξ̂, ε))]

= V̂ (ξ̂, yk−1)−
γ2

2
‖ŵ − ŵ⋆‖2 +

1

2
(γ2‖ŵ‖2 − ‖z̃‖2)

≤ V̂ (ξ̂, yk−1) +
1

2
(γ2‖ŵ‖2 − ‖z̃‖2) ∀ŵ ∈ W , (20)

where we have used the first-order Taylor approximation in the above, and the last in-
equality follows from using the DHJIE (18). Moreover, the last inequality is the discrete-
time dissipation-inequality [?] which also implies that the ℓ2-gain inequality (3) is satis-
fied.

In addition, setting w = 0 in (20) implies that

V̂ (ξ̂1,k+1, ξ̂2,k+1, y)− V̂ (ξ̂1,k, ξ̂2,k, yk−1) = −
1

2
‖zk‖

2.

Therefore, the filter dynamics is stable, and V (ξ̂, y) is non-increasing along a trajectory of

(6). Further, the condition that V̂ (ξ̂1,k+1, ξ̂2,k+1, y) ≡ V̂ (ξ̂1,k, ξ̂2,k, yk−1) ∀k ≥ ks (say!)

implies that z̃k ≡ 0, which further implies that yk = h̃21(ξ̂k) + h̃22(ξ̂k) ∀k ≥ ks. By

the zero-input observability of the system, this implies that ξ̂ = ξ. Finally, since ϕ is
invertible and ϕ(0) = 0, ξ̂ = ξ implies x̂ = ϕ−1(ξ̂) = ϕ−1(ξ) = x. 2

Next, we consider the limiting behavior of the filter (6) and the corresponding DHJIE
(18). Letting ε ↓ 0, we obtain from (6)

0 = f̃2(ξ̂2,k) + L2(ξ̂k, yk)(yk − h̃21(ξ̂k)− h̃22(ξ̂k)) ∀k,
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and since f̃2(.) is asymptotically stable, we have ξ̂2 → 0. Therefore H(., ., ., ., .) in (9)
becomes

H0(ξ̂, w, y, L1, L2, V, 0) = V
(
f̃1(ξ̂1) + g̃11(ξ̂)w + L1(ξ̂, y)(y − h̃21(ξ̂1)− h22(ξ̂2)), 0, y

)

−V (ξ̂, yk−1) +
1

2
(‖z‖2 − γ2‖w‖2). (21)

A first-order Taylor approximation of this Hamiltonian about (f̃1(ξ̂1), 0, y) similarly yields

Ĥ0(ξ̂, ŵ, y, L̂10, V̄ , 0) = V̄ (f̃1(ξ̂1), 0, y) + V̄
ξ̂1
(f̃1(ξ̂1), 0, y)L̂

T
10(ξ̂, y)(y − h̃21(ξ̂)− h22(ξ̂))

+V̄
ξ̂1
(f̃1(ξ̂1), 0, y)g̃11(ξ̂)w − V̄ (ξ̂, yk−1) +

1

2
(‖z‖2 − γ2‖ŵ‖2) +

O(‖ξ̂‖2) (22)

for some corresponding positive-semidefinite function V̄ : X × Y → ℜ, and gain L̂10.
Minimizing again this Hamiltonian, we obtain the worst-case noise w⋆

10 and optimal gain
L̂⋆
10 given by

ŵ⋆
10 = −g̃T11(ξ̂)V̄

T

ξ̂1
(f̃1(ξ̂1), 0, y), (23)

V̄
ξ̂1
(f̃1(ξ̂1), 0, y)L̂

⋆
10(ξ̂, y), = −(y − h̃21(ξ̂)− h22(ξ̂))

T (24)

where V̄ satisfies the reduced-order DHJIE

V̄ (f̃1(ξ̂1), 0, y) +
1

2γ2
V̄
ξ̂1
(f̃1(ξ̂1), 0, y)g̃11(ξ̂)g̃

T
11(ξ̂)V̄

T

ξ̂1
(f̃1(ξ̂1), 0, y)− V̄ (ξ̂1, 0, yk−1)−

3

2
(y − h̃21(ξ̂)− h22(ξ̂))

T )(y − h̃21(ξ̂)− h22(ξ̂)) = 0, V̄ (0, 0, 0) = 0. (25)

The corresponding reduced-order filter is given by

F̄da
1r :

{
˙̂
ξ1 = f̃1(ξ̂1) + L̂⋆

10(ξ̂1, y)(y − h̃21(ξ̂)− h̃22(ξ̂)) +O(ε). (26)

Moreover, since the gain L̂⋆
10 is such that the estimation error ek = yk − h̃21(ξ̂k) −

h̃22(ξ̂k) → 0, and the vector-field f̃2(ξ̂2) is locally asymptotically stable, we have

L̂⋆
2(ξ̂k, yk) → 0 as ε ↓ 0. Correspondingly, the solution V̄ of the DHJIE (25) can be

represented as the asymptotic limit of the solution of the DHJIE (18) as ε ↓ 0, i.e.,

V̂ (ξ̂, y) = V̄ (ξ̂1, y) +O(ε).

We can specialize the result of Proposition 3.1 to the following discrete-time linear
singularly-perturbed system (DLSPS) [5, 16, 18, 22] in the slow coordinate:

Pl
dsp :





x1,k+1 = A1x1,k +A12x2,k +B11wk; x1(k0) = x10,
εx2,k+1 = A21x1,k + (εIn2

+A2)x2,k +B21wk; x2(k0) = x20,
yk = C21x1,k + C22x2,k + wk,

(27)

where A1 ∈ ℜn1×n1 , A12 ∈ ℜn1×n2 , A21 ∈ ℜn2×n1 , A2 ∈ ℜn2×n2 , B11 ∈ ℜn1×s, and
B21 ∈ ℜn2×s, while the other matrices have compatible dimensions. Then, an explicit
form of the required transformation ϕ above is given by the Chang transformation [12]:

[
ξ1
ξ2

]
=

[
In1

− εHL −εH
L In2

] [
x1

x2

]
, (28)
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where the matrices L and H satisfy the equations

0 = (εIn2
+A2)L−A21 − εL(A1 −A12L),

0 = −H[(εIn2
+A2) + εLA12] +A12 + ε(A1 −A12L)H.

The system is then represented in the new coordinates by

P̃l
dsp :





ξ1,k+1 = Ã1ξ1,k + B̃11wk; ξ1(k0) = ξ10,

εξ2,k+1 = Ã2ξ2,k + B̃21wk; ξ2(k0) = ξ20,

yk = C̃21ξ1,k + C̃22ξ2,k + wk,

(29)

where

Ã1 = A1 −A12L = A1 −A12(εIn2
+A2)

−1A21 +O(ε),

B̃11 = B11 − εHLB11 − HB21 = B11 −A12A
−1
2 B21 +O(ε),

Ã2 = (εIn2
+A2) + εLA12 = A2 +O(ε),

B̃21 = B21 + εLB11 = B21 +O(ε),

C̃21 = C21 − C22L = C21 − C22(εIn2
+A2)

−1A21 +O(ε),

C̃22 = C22 + ε(C21 − C22)H = C22 +O(ε).

Adapting the filter (6) to the system (29) yields the following filter

Fdl
1c :

{
ξ̂1,k+1 = Ã1ξ̂1,k + B̃11w

⋆
k + L̂1(yk − C̃21ξ̂1,k − C̃22ξ̂2,k),

εξ̂2,k+1 = Ã2ξ̂2,k + B̃21w
⋆
k + L̂2(yk − C̃21ξ̂1,k − C̃22ξ̂2,k).

(30)

Taking

V̂ (ξ̂, y) =
1

2
(ξ̂T1 P̂1ξ̂1 + ξ̂T2 P̂2ξ̂2 + yT Q̂y),

for some symmetric positive-definite matrices P̂1, P̂2, Q̂, the DHJIE (18) reduces to the
following algebraic equation

(ξ̂T1 Ã
T
1 P̂1Ã1ξ̂1 +

1

ε2
ξ̂T2 Ã

T
2 P̂2Ã

T
2 ξ̂2 + yT Q̂y)− (ξ̂T1 P̂1ξ̂1 + ξ̂T2 P̂2ξ̂2 + yTk−1Q̂yk−1) +

1

γ2

[
ξ̂T1 Ã

T
1 P̂1B̃11B̃

T
11P̂1Ã1ξ̂1 +

1

ε2
ξ̂T2 Ã

T
2 P̂2B̃21B̃

T
11P̂1Ã1ξ̂1 +

1

ε2
ξ̂T1 Ã

T
1 P̂1B̃11B̃

T
21P̂2Ã2ξ̂2

+
1

ε4
ξ̂T2 Ã

T
2 P̂2B̃21B̃

T
21P̂2Ã2ξ̂2

]
− 3(yT y − ξ̂T1 C̃

T
21y − yT C̃T

21ξ̂1 − yT C̃T
22ξ̂1 − yT C̃T

22ξ̂2 −

ξ̂T2 C̃
T
22y + ξ̂T1 C̃

T
21C̃21ξ̂1 + ξ̂T1 C̃

T
21C̃22ξ̂2 + ξ̂T2 C̃

T
22C̃21ξ̂1 + ξ̂T2 C̃

T
22C̃22ξ̂2) = 0. (31)

Subtracting now 1

2
yT R̂y for some symmetric matrix R̂ > 0 from the left-hand side of the

above equation (and abosorbing R̂ in Q̂), we have the following matrix-inequality










ÃT
1 P̂1A1 − P̂1 +

1

γ2 Ã
T
1 P̂1B̃11B̃

T
11P̂1Ã1 − 3C̃T

21C̃21

1

γ2ε2
ÃT

2 P̂2B̃21B̃
T
11P̂1Ã1 + 3C̃T

22C̃21

3C̃21

0

1

γ2ε2
ÃT

1 P̂1B̃11B̃
T
21P̂2Ã2 + 3C̃T

21C̃22 3C̃T
21 0

1

ε2
ÃT

2 P̂2Ã2 − P̂2 +
1

γ2ε4
ÃT

2 P̂2B̃21B̃
T
21P̂2Ã2 − 3C̃T

22C̃22 3C̃T
22 0

3C̃22 Q̂− 3I 0

0 0 −Q̂











≤ 0. (32)
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While the side conditions (15), (16) reduce to the following LMIs




0 0 1

2
(ÃT

1 P̂1L̂1 − C̃T
21)

0 0 − 1

2
C̃T

22
1

2
(ÃT

1 P̂1L̂1 − C̃T
21)

T − 1

2
C̃T

22 (1− δ1)I


 ≤ 0, (33)




0 0 − 1

2
C̃T

21

0 0 1

2ε2
(ÃT

2 P̂2L̂2 − C̃T
22)

− 1

2
C̃21

1

2ε2
(ÃT

2 P̂2L̂2 − C̃T
22)

T (1− δ2)I


 ≤ 0 (34)

for some numbers δ1, δ2 ≥ 1. The above matrix inequality (32) can be further simplified
using Schur’s complements, but cannot be made linear because of the off-diagonal and
coupling terms. This is primarily because the assumed transformation ϕ can only achieve
a partial decoupling of the original system, and a complete decoupling of the states will
require more stringent assumptions and conditions.

Consequently, we have the following corollary to Proposition 3.1.

Corollary 3.1 Consider the DLSPS (27) and the H∞ filtering problem for this sys-
tem. Suppose the plant Pl

sp is locally asymptotically stable about the equilibrium-point
x = 0 and observable. Suppose further, it is transformable to the form (29), and there
exist symmetric positive-definite matrices P̂1 ∈ ℜn1×n1 , P̂2 ∈ ℜn2×n2 , Q̂ ∈ ℜm×m, and
matrices L̂1 ∈ ℜn1×m, L̂2 ∈ ℜn2×m, satisfying the matrix inequalities (32), (33), (34)
for some numbers δ1, δ2 ≥ 1 and γ > 0. Then, the filter Fdl

1c solves the H∞ filtering
problem for the system.

Similarly, for the reduced-order filter (26) and the DHJIE (25), we have respectively

Fdl
1r : ξ̂1,k+1 = Ã1ξ̂1,k + L̂⋆

10(yk − C̃21ξ̂1,k − C̃22ξ̂2,k) , (35)




ÃT
1 P̂10Ã1 − P̂10 − 3C̃T

21C̃21 ÃT
1 P̂10B̃11 3C̃21 0

B̃T
11P̂10Ã1 −γ−2I 0 0

3C̃T
21 0 Q̂− 3I 0

0 0 0 Q̂


 ≤ 0, (36)




0 0 1

2
(ÃT

1 P̂10L̂10 − C̃T
21)

0 0 − 1

2
C̃T

22
1

2
(ÃT

1 P̂10L̂10 − C̃T
21)

T − 1

2
C̃T

22 (1− δ10)I


 ≤ 0 (37)

for some symmetric positive-definite matrices P̂10, Q̂10, gain matrix L̂10 and some number
δ10 > 0.

Proposition 3.1 has not yet exploited the benefit of the coordinate transformation in
designing the filter (6) for the system (5). We shall now design separate reduced-order
filters for the decomposed subsystems which should be more efficient than the previous
one. If we let ε ↓ 0 in (5), we obtain the following reduced system model:

P̃a
r :





ξ1,k+1 = f̃1(ξ1) + g̃11(ξ)w,

0 = f̃2(ξ2) + g̃21(ξ)w,

yk = h̃21(ξ) + h̃22(ξ) + k̃21(ξ)w.

(38)

Then, we assume the following [15, 17].
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Assumption 3.1 The system (2), (38) is in the “standard form”, i.e., the equation

0 = f̃2(ξ2) + g̃21(ξ)w (39)

has l ≥ 1 isolated roots, we can denote any one of these solutions by

ξ̄2 = q(ξ1, w) (40)

for some C1 function q : X ×W → X .

Under Assumption 3.1, we obtain the reduced-order slow subsystem

Pa
r :





ξ1,k+1 = f̃1(ξ1,k) + g̃11(ξ1,k, q(ξ1,k, wk))wk +O(ε),

yk = h̃21(ξ1,k, q(ξ1,k, wk)) + h̃22(ξ1,k, q(ξ1,k, wk))+

k̃21(ξ1,k, q(ξ1,k, wk))wk + O(ε)

and a boundary-layer (or quasi-steady-state) subsystem as

ξ̄2,m+1 = f̃2(ξ̄2,m, ε) + g̃21(ξ1,m, ξ̄2,m)wm, (41)

where m = ⌊k/ε⌋ is a stretched-time parameter. This subsystem is guaranteed to be
asymptotically stable for 0 < ε < ε⋆ (see Theorem 8.2 in Ref. [15]) if the original system
(2) is asymptotically stable.

We can then proceed to redesign the filter (6) for the composite system (41), (41)
separately as

F̃da
2c :

{
ξ̆1,k+1 = f̃1(ξ̆1,k) + g̃11(ξ̂1,k)w̆

⋆
1,k + L̆1(ξ̆1,k, yk)(yk − h̃21(ξ̆1,k)− h̃22(ξ̆1,k)),

εξ̆2,k+1 = f̃2(ξ̆2,k, ε) + g̃21(ξ̂k)w̆
⋆
2,k + L̆2(ξ̆2,k, yk)(yk − h̃21(ξ̆k)− h̃22(ξ̆k)),

(42)
where

h̃21(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, ŵ
⋆
1,k)), h̃22(ξ̆1,k) = h̃21(ξ̆1,k, q(ξ̆1,k, ŵ

⋆
2,k)).

Notice also that, ξ2 cannot be estimated from (40) since this is a “quasi-steady-state”
approximation. Then, using a similar approximation procedure as in Proposition 3.1, we
arrive at the following result.

Theorem 3.1 Consider the nonlinear system (2) and the H∞ estimation problem for
this system. Suppose the plant Pda

sp is locally asymptotically stable about the equilibrium-
point x = 0 and zero-input observable. Further, suppose there exists a local diffeomor-
phism ϕ that transforms the system to the partially decoupled form (5), and Assumption
3.1 holds. In addition, suppose for some γ > 0, there exist C1 positive-semidefinite func-
tions V̆i : N̆i×Ῠi → ℜ+, i = 1, 2, locally defined in neighborhoods N̆i×Ῠi ⊂ X ×Y of the
origin (ξ̆i, y) = (0, 0) i = 1, 2 respectively, and matrix functions L̆i : N̆i × Ῠi → ℜni×m,
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Ῠi ⊂ Y, i = 1, 2 satisfying the pair of DHJIEs:

V̆1(f̃1(ξ̂1), y) +
1

2γ2
V̆
1,ξ̂1

(f̃1(ξ̂1), y)g̃11(ξ̂1, q(ξ1, w̆
⋆
1))g̃

T
11(ξ̂1, q(ξ1, w̆

⋆
1))V̆

T

1,ξ̂1
(f̃1(ξ̂1), y)−

V̄1(ξ̂1, yk−1)−
3

2
(y − h̃21(ξ̂1, q(ξ1, w̆

⋆
1))− h22(ξ̂1, q(ξ1, w̆

⋆
1)))

T (y − h̃21(ξ̂1, q(ξ1, w̆
⋆
1))−

h22(ξ̂1, q(ξ1, w̆
⋆
1))) = 0, V̆1(0, 0) = 0, (43)

V̆2(
1

ε
f̃2(ξ̆2, ε), y) +

1

2γ2
V̄
2,ξ̆2

(
1

ε
f̃2(ξ̆2, ε), y)g̃21(ξ̂, ε)g̃

T
21(ξ̆, ε)V̆

T

2,ξ̆2
(
1

ε
f̃2(ξ̆2, ε), y)−

V̆2(ξ̆2, yk−1)−
3

2
(y − h̃21(ξ̆, ε)− h̃22(ξ̆, ε))

T (y − h̃21(ξ̆, ε)− h22(ξ̆, ε)) = 0,

V̆2(0, 0) = 0 (44)

together with the side-conditions

w̆⋆
1 =

1

γ2
g̃T11(ξ̂1, q(ξ1, w̆

⋆
1))V̆

T

1,ξ̂1
(f̃1(ξ̂1), y), (45)

w̆⋆
2 =

1

γ2
g̃T21(ξ̂)V̆

T

2,ξ̂2
(
1

ε
f̃2(ξ̂2), y), (46)

V̂
1,ξ̂1

(f̃1(ξ̆1))L̆
⋆
1(ξ̆1, y) = −(y − h̃21(ξ̆1)− h̃22(ξ̂))

T , (47)

V̆ T

2,ξ̆2
(
1

ε
f̃2(ξ̆2, ε), y)L̆

⋆
2(ξ̆, y, ε) = −ε(y − h̃21(ξ̆, ε)− h̃22(ξ̆))

T . (48)

Then the filter F̃da
2c solves the H∞ filtering problem for the system locally in ∪N̆i.

Proof We define separately two Hamiltonian functionsHi : X×W×Y×ℜni×m×ℜ →
ℜ, i = 1, 2 for each of the two separate components of the filter (42). Then the rest of
the proof follows along the same lines as Proposition 3.1. 2

Remark 3.2 Comparing (43), (47) with (24), (25), we see that the two reduced-

order filter approximations are similar. Moreover, notice that ξ̆1 appearing in (48), (44)
is not considered as an additional variable, because it is assumed to be known from (42a),
(47) respectively, and is therefore regarded as a parameter. In addition, we observe that,
the DHJIE (43) is implicit in w̆⋆

1 , and therefore, some sort of approximation is required
in order to obtain an explicit solution.

Remark 3.3 Notice also that, in the determination of w̆⋆
1 , we assume ξ̄2 = q(ξ1, w) is

frozen in the Hamiltonian H2, and therefore the contribution to w̆⋆
1 from g̃11(., .), h̃21(., .)

is neglected.

We can similarly specialize the result of Theorem 3.1 to the discrete-time linear system
(27) in the following corollary.

Corollary 3.2 Consider the DLSPS (27) and the H∞ filtering problem for this sys-
tem. Suppose the plant Pl

sp is locally asymptotically stable about the equilibrium-point
x = 0 and observable. Suppose further, it is transformable to the form (29) and As-
sumption 3.1 is satisfied, i.e., Ã2 is nonsingular. In addition, suppose for some γ > 0
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there exist symmetric positive-definite matrices P̆i ∈ ℜni×ni , Q̆i ∈ ℜm×m, and matrix
L̆i ∈ ℜni×m, i = 1, 2 satisfying the following LMIs




ÃT
1 P̆1Ã1 − P̆1 − 3C̃T

21C̃21 ÃT
1 P̆1B̃11 3C̃T

21 0

B̃T
11P̆1Ã1 −γ2I 0 0

3C̃21 0 Q̆1 − 3I 0

0 0 0 −Q̆


 ≤ 0, (49)




−3C̃T
21C̃21 −3C̃T

21C̃22 0 3C̃T
21 0

−3C̃T
22C̃21 ÃT

2 P̆2Ã2 − P̆2 − 3C̃T
22C̃22 ÃT

2 P̆2B̃21 3C̃T
22 0

0 B̃T
21P̆2Ã2 γ2ε2I 0 0

3C̃21 3C̃22 0 Q̆2 − 3I − R̆2 0

0 0 0 0 −Q̆2



≤ 0, (50)

[
0 1

2
(ÃT

1 P̆1L̆1 − C̃T
21)

1

2
(ÃT

1 P̂1L̆1 − C̃T
21)

T (1− δ3)I

]
≤ 0, (51)




0 0 − 1

2
C̃T

21

0 0 1

2ε2
(ÃT

2 P̆2L̆2 − C̃T
22)

− 1

2
C̃21

1

2ε2
(ÃT

2 P̆2L̆2 − C̃T
22)

T (1− δ4)I


 ≤ 0, (52)

for some numbers δ3, δ4 > 0, where

B̃11 = B̃11 + C̃22Ã
−1
2 B̃21, C̃21 = C̃21 −

1

γ2
C̃22Ã

−1
2 B̃21B̃

T
11P̆1Ã1.

Then, the filter Fdl
2c solves the H∞ filtering problem for the system.

Proof We take similarly

V̆1(ξ̂1, y) =
1

2
(ξ̆T1 P̆1ξ̆1 + yT Q̆1y),

V̆2(ξ̂2, y) =
1

2
(ξ̆T2 P̆2ξ̆2 + yT Q̆2y)

and apply the result of the Theorem. 2

4 Aggregate Filters

In the absence of the coordinate transformation, ϕ discussed in the previous section, a
filter has to be designed to solve the problem for the aggregate system (2). We discuss
this class of filters in this section. Accordingly, consider the following class of filters
Fda

3ag :





x̀1,k+1 = f1(x̀k) + g11(x̀k)ẁ
⋆
k + L̀1(x̀k, yk, ε)(yk − h21(x̀1,k)− h22(x̀2,k));

x̀1(k0) = x̄10,

εx̀2,k+1 = f2(x̀k, ε) + g21(x̀k)ẁ
⋆
k + L̀2(x̀k, yk, ε)(yk − h21(x̀1,k)− h22(x̀2,k));

x̀2(k0) = x̄20,
z̀k = yk − h21(x̀1,k)− h22(x̀2,k),

(53)

where L̀1, L̀2 ∈ ℜn×m are the filter gains, and z̀ is the new penalty variable. We can
repeat the same kind of derivation above to arrive at the following.
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Theorem 4.1 Consider the nonlinear system (2) and the H2 estimation problem for
this system. Suppose the plant Pda

sp is locally asymptotically stable about the equilibrium-
point x = 0, and zero-input observable. Further, suppose there exist a C1 positive-definite
function V̀ : Ǹ × Ὺ → ℜ+, locally defined in a neighborhood Ǹ × Ὺ ⊂ X ×Y of the origin
(x̀1, x̀2, y) = (0, 0, 0), and matrix functions L̀i : Ǹ × Ὺ → ℜni×m, i = 1, 2, satisfying the
DHJIE:

V̀ (f1(x̀),
1

ε
f2(x̀, ε), y)− V̀ (x̀, yk−1) +

1

2γ2
[ V̀x̀1

(f1(x̀),
1

ε
f2(x, ε), y) V̀x̀2

(f1(x̀),
1

ε
f2(x̀, ε), y) ]×

[
g11(x̀)g

T
11(x̀)

1

ε
g11(x̀)g

T
21(x̀)

1

ε
g21(x̀)g

T
11(x̀)

1

ε2
g21(x̀)g

T
21(x̀)

] [
V̀ T
x̀1
(f1(x̀),

1

ε
f2(x̀, ε), y)

V̀ T
x̀2
(f1(x̀),

1

ε
f2(x̀, ε), y)

]

−
3

2
(y − h21(x̀1)− h22(x̀2))

T (y − h21(x̀1)− h22(x̀2)) = 0, V̂ (0, 0) = 0, (54)

together with the side-conditions

V̀x̀1
(f1(x̀),

1

ε
f2(x̀, ε), y)L̀

⋆
1(x̀, y) = −(y − h21(x̀1)− h22(x̀2))

T , (55)

V̀x̀2
(f1(x̀),

1

ε
f2(x̀, ε), y)L̀

⋆
2(x̀, y) = −ε(y − h21(x̀1)− h22(x̀2)). (56)

Then, the filter Fa
3ag solves the H∞ filtering problem for the system locally in Ǹ .

Proof Proof follows along the same lines as Proposition 3.1. 2

For the DLSPS (27), the Chang transformation ϕ is always available as given by (28).
Moreover, the result of Theorem 4.1 specialized to the DLSPS is horrendous, in the sense
that, the resulting inequalities are not linear and too involved. Thus, it is more useful
to consider the reduced-order filter which will be introduced shortly as a special case of
the nonlinear.

Using similar procedure as outlined in the previous section, we can obtain the limiting
behavior of the filter Fa

3ag as ε ↓ 0

F̄da
5ag :





x̀1,k+1 = f1(x̀k) + g11(x̀k)ẁ
⋆
10,k + L̀10(x̀k, yk)(yk − h21(x̀1,k));

x̀1(k0) = x̄10,
x̀2,k → 0

(57)

with

ẁ⋆
10 =

1

γ2
gT11(x̀)V̀

T
x̀1
(f1(x̀))

and the DHJIE (54) reduces to the DHJIE

V̀ (f1(x̀1), y) +
1

2γ2
V̄x̀1

(f1(x̀1), y)g11(x̀)g
T
11(x̀)V̀

T
x̀1,y

(f1(x̀))− V̀ (x̀1, y)−

3

2
(y − h21(x̀1))

T (y − h21(x̀1)) = 0, V̀ (0) = 0. (58)

together with the side-conditions

V̀x̀1
(f1(x̀1))L̀

⋆
10(x̀, y) = −(y − h21(x̀1))

T , (59)

L̀2(x̀, y) → 0. (60)
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Similarly, specializing the above result to the DLSPS (27), we obtain the following
reduced-order filter

Fdl
6agr :

{
x̀1,k+1 = A1x̀1,k +B11ẁ

⋆
10,k + L̀⋆

10(yk − C̃21x̀1,k) (61)

with

ẁ⋆
10 =

1

γ2
BT

11P̀1A1x̀1

and the DHJIE (58) reduces to the LMI




AT
1 P̀10Ã1 − P̀10 − 3CT

21C21 AT
1 P̀10B11 3CT

21 0

BT
11P̀10A1 −γ2I 0 0

3C21 0 Q̀1 − 3I 0

0 0 0 −Q̀


 ≤ 0, (62)

[
0 1

2
(AT

1 P̀10L̀10 − CT
21)

1

2
(AT

1 P̀10L̀10 − CT
21)

T (1− δ5)I

]
≤ 0 (63)

for some symmetric positive-definite matrices P̀10, Q̀10, gain matrix L̀10 and some number
δ5 ≥ 1.

Remark 4.1 If the nonlinear system (2) is in the standard form, i.e., the equivalent
of Assumption 3.1 is satisfied, and there exists at least one root x̄2 = σ(x1, w) to the
equation

0 = f2(x1, x2) + g21(x1, x2)w,

then reduced-order filters can also be constructed for the system similar to the result of
Section 3 and Theorem 3.1. Such filters would take the following form

Fa
7agr :





x̌1,k+1 = f1(x̌1,k, σ(x̌1, w̌
⋆
1,k)) + g11(x̌1, σ(x̌1, w̌

⋆
1,k))w̌

⋆
1,k+

Ľ1(x̌1,k, yk, ε)(yk − h21(x̌1,k)− h22(σ(x̌1, w̌
⋆
1,k)); x̌1(k0) = x̄10,

εx̌2,k+1 = f2(x̌k, ε) + g21(x̌1, x̌2)w̌
⋆
2,k + Ľ2(x̌k, yk, ε)(yk − h21(x̌1,k)−

h22(x̌2,k)); x̌2(k0) = x̄20,
žk = yk − h21(x̌1,k)− h22(x̌2,k).

However, this filter would fall into the class of decomposition filters, rather than aggre-
gate, and because of this, we shall not discuss it further in this section.

In the next section, we consider an example.

5 Examples

Consider the following singularly-perturbed nonlinear system

x1,k+1 = x
1

3

1,k + x
1

2

2,k + w,

εx2,k+1 = −x
1

2

2,k − x
1

3

2,k,

yk = x1,k + x2,k + w,

where w ∈ ℓ2[0,∞) is a noise process, ε ≥ 0. We construct the aggregate filter Fa
3ag

presented in the previous section for the above system. It can be checked that the
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system is locally observable, and with γ = 1, the function V̆ (x̀) = 1

2
(x̀2

1+ εx̀2
2), solves the

inequality form of the DHJIE (54) corresponding to system. Subsequently, we calculate
the gains of the filter as

L̀1(x̀, y) = −
(y − x̀1 − x̀2)

x̀
1

3

1 + x̀
1

2

2

, L̀2(x̀, y) =
(y − x̀1 − x̀2)

x̀
1

2

2 + x̀
1

3

2

, (64)

where the gains L̀1, L̀2 are set equal to zero if ‖x̆‖ < ǫ (small) to avoid the singularity
at the origin x̀ = 0.

6 Conclusion

In this paper, we have presented a solution to the H∞ filtering problem for discrete-time
affine nonlinear singularly-perturbed systems. Two classes of filters, namely, decomposi-
tion and aggregate filters, have been discussed, and in each case, first-order approximate
filters have been presented. Reduced-order filters have also been derived as limiting cases
of the above filters as the singular parameter ε ↓ 0. Sufficient conditions for the solvabil-
ity of the problem using each filter have been given in terms of DHJIEs. The results have
also been specialized to linear systems, in which case, the sufficient conditions reduce to
a system of matrix-inequalities or LMIs which are computationally efficient to solve. In
addition, an example has been presented to illustrate the approach.

Future efforts would concentrate in finding an explicit form for the coordinate trans-
formation discussed in Section 3, and developing computationally efficient algorithms for
solving the DHJIEs.
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