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1 Introduction

Let X and Y be two real reflexive Banach spaces such that Y is densely and compactly
embedded in X . In the present analysis we are concerned with the following quasilinear
integro-differential equation







du
dt (t) +A(t, u(t))u(t) =

∫ t

0
k(t, s)A(s, u(s))u(s)ds + f(t, ut), 0 < t ≤ T,

u0 = φ ∈ C([−T, 0], X),
(1)

where A(t, u) is a linear operator in X , depending on t and u, defined on an open subset
W of Y . We denote by J = [0, T ], k is a real valued function defined on J×J → R and f
is defined from J × C([−T, 0], X) into Y . Here C([a, b], Z), for −∞ ≤ a ≤ b <∞, is the
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Banach space of all continuous functions from [a, b] into Z endowed with the supremum
norm

‖χ‖C([a,b],Z) := sup
a≤s≤b

‖χ(s)‖Z, χ ∈ C([a, b], Z).

For u ∈ C([−T, t], X), we denote by ut ∈ C([−T, 0], X) a history function defined by

ut(θ) = u(t+ θ), θ ∈ [−T, 0].

By a strong solution to (1) on [0, T ′], 0 < T ′ ≤ T, we mean an absolutely continuous
function u from [−T, T ′] into X such that u(t) ∈ W with u0 = φ and satisfies (1) almost
everywhere on [0, T ′].

Kato [8] has proved the existence of a unique continuously differentiable solution to
the quasilinear evolution equation in X

du

dt
+A(u)u = f(u), 0 < t ≤ T, u(0) = u0, (2)

under the assumptions that there exists an open subsetW of Y such that for each w ∈W
the operator A(w) generates a C0-semigroup in X , A(·) is locally Lipschitz continuous
on W from X into X , f defined from W into Y , is bounded and globally Lipschitz
continuous from Y into Y , and there exists an isometric isomorphism S : Y → X such
that

SA(w)S−1 = A(w) +B(w), (3)

where B(w) is in the set B(X) of all bounded linear operators from X into X.
Crandall and Souganidis [6] have established the existence of a unique continuously

differentiable solution to the quasilinear evolution equation (2) with f = 0 under more
general assumptions on A(w). Kato [10] has proved the existence of a strong solution to
the quasilinear evolution equation

du

dt
+A(t, u)u = f(t, u), 0 < t ≤ T, u(0) = u0, (4)

under similar conditions on A(t, u) and f(t, u) as considered by Crandall and Souganidis
[6].

Recently Oka [11] has dealt with the abstract quasilinear Volterra integrodifferential
equation

{

du
dt (t) +A(t, u(t))u(t) =

∫ t

0
b(t− s)A(s, u(s))u(s)ds + f(t), t ∈ [0, T ],

u(0) = φ,
(5)

in a pair of Banach spaces X ⊃ Y , where b : [0, T ] → R is a scalar kernel and A(t, w) is
a linear operator in X , depending on t and w, defined on an open subset W of Y . Oka
has proved the existence, uniqueness and continuous dependence on the data.

Our analysis is motivated by the work of Bahuguna [1]. In [1] the author considered
the following quasilinear integrodifferential equation in a Banach space

du(t)

dt
+A(u(t))u(t) =

∫ t

0

a(t− s)k(s, u(s))ds+ f(t), 0 < t < T, u(0) = u0, (6)

by using the application of Rothe’s method, the author has established the existence and
uniqueness of a strong solution which depends continuously on the initial data.
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We shall use Rothe’s method to establish the existence and uniqueness results.
Rothe’s method, introduced by Rothe [15] in 1930, is a powerful tool for proving the
existence and uniqueness of a solution to a linear, nonlinear parabolic or a hyperbolic
problem of higher order. This method is oriented towards the numerical approximations.
For instance, we refer to Rektorys [14] for a rich illustration of the method applied to
various interesting physical problems. It has been further developed for nonlinear differ-
ential and Volterra integro-differential equations (VIDEs) see [1–4, 7, 14] and references
cited in these papers.

In the present study we extend the application of the method of lines to a class of
nonlinear VIDEs. In earlier works on the application of the method of lines to integro-
differential equations, only bounded perturbations to the heat equation in the integrands
have been dealt with. In the problem considered in our paper we have a differential oper-
ator appearing in the integrand and hence we have the case of unbounded perturbation.

2 Preliminaries

Let X and Y be as in the first section. Let Z be either X or Y . We use ‖ ‖Z to denote
the norm of Z and by B(X,Y ) the set of all bounded linear maps on X to Y , with
associated norm ‖ ‖B(X,Y ). We write B(X) for B(X,X) and corresponding norm by
‖ ‖B(X). The domain of the operator T is denoted by D(T ). We denote by C(J0, Z) and
Lip(J0, Z) the sets of all continuous and Lipschtz continuous functions from a subinterval
J0 of J into Z, respectively. Let Br(z0, r) be the Z-ball of radius r at z0 ∈ Z, i.e. the
set {z ∈ Z | ‖z − z0‖Z ≤ r}.

For a real number β,N(Z, β) represents the set of all densely defined linear operators
L in Z such that if λ > 0 and λβ < 1, then (I+λL) is one to one with a bounded inverse
defined everywhere on Z and

‖(I + λL)−1‖B(Z) ≤ (1 + λβ)−1,

where I is the identity operator on Z. The Hille-Yosida theorem states that L ∈ N(Z, β) if
and only if −L is the infinitesimal generator of a strongly continuous semigroup e−tL, t ≥
0 on Z satisfying ‖e−tL‖B(Z) ≤ eβt, t ≥ 0.

A linear operator L on D(L) ⊆ Z into Z is said to be accretive in Z if for every
u ∈ D(L)

〈Lu, u∗〉 ≥ 0 for some u∗ ∈ F (u),

where F : Z → 2Z
∗

, Z∗ is the dual of Z

F (z) = {z∗ ∈ Z | 〈z, z∗〉 = ‖z‖2 = ‖z∗‖2},

and 〈z, f〉 is the value of f ∈ Z∗ at z ∈ Z. If L ∈ N(Z, β) then (L + βI) is m-accretive
in Z, i.e. (L+βI) accretive and the range R(L+λI) = Z for some λ > β. (see corollary
1.3.8 and the remarks preceding it in Pazy [13], p.12). If Z∗ is uniformly convex then F
is single-valued and uniformly continuous on bounded subsets of Z.

In most of this paper X and Y will be related via a linear isometric isomorphism
S : Y → X. We assume, in addition, that the embedding of Y in X is compact and the
dual of X∗ is uniformly convex. Further, we make the following hypotheses.

(A1) There exists an open subset W of Y and u0 ∈ W . Furthermore, there exists β ≥ 0
such that A : [0, T ]×W → N(X, β).
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(A2) Y ⊆ D(A(t, w)), for each (t, w) ∈ [0, T ]×W , which implies that A(t, w) ∈ B(Y,X)
by the closed graph theorem. For each w ∈ W, t → A(t, w) is continuous in
B(Y,X)-norm, and for each t ∈ [0, T ], t → A(t, w) is Lipschitz continuous in the
sense that

‖(A(t1, w1)−A(t2, w2))v‖B(Y,X) ≤ µA[|t1 − t2|+ ‖w1 − w2‖X ]‖v‖Y ,

where µA is a constant and there exists a constant γA such that

‖A(t, w)v‖B(Y,X) ≤ γA‖v‖Y ,

for all v ∈ Y and (t, w) ∈ [0, T ]×W .

(A3) There is a family {S} of isometric isomorphism Y onto X such that

SA(t, w)S−1 = A(t, w) + P (t, w),

where P : [0, T ] ×W → B(X), ‖P (t, w)‖B(X) ≤ γP for (t, w) ∈ [0, T ] ×W, with
γP > 0, is a constant and

‖P (t, w1)− P (t, w2)‖B(X) ≤ µP ‖w1 − w2‖Y , ∀ w1, w2 ∈W,

where µP is a positive constant.

(A4) The function k : J × J → R and f : J × C([−T, 0], X) → Y satisfy the Lipschitz
conditions

|k(t2, s)− k(t1, s)| ≤ Lk|t2 − t1|,

‖f(t, u)− f(s, v)‖X ≤ Lf [|t− s|+ ‖u− v‖C([−T,0],X)],

where Lk and Lf are Lipschitz constant.

For all u, v ∈ BX(u0, R). Let R > 0 be such that WR = BY (u0, R) ⊆W and let

R0 =
R

6
(1 + e2θT )−1, (7)

M1 = TkT (γA + γPCe)R+ Lf [T + ‖ũ0 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X , (8)

M2 = TkT (γA + γPCe)R+ Lf [T + ‖ũj−1 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X , (9)

where Ce is a positive embedding constant, θ = β + ‖P‖X and kT = sups,t∈J |k(t, s)|.
Let z0 ∈ Y and T0, 0 < T0 ≤ T be such that for i = 1, 2

‖Su0 − z0‖X ≤ R0, (10)

T0[γA‖z0‖Y + γP ‖z0‖X +Mi] ≤ R0. (11)

We notice that (10) and (11) imply that

(1 + e2θT )[‖Su0 − z0‖X + T0{γA‖z0‖Y + γP ‖z0‖X +Mi}] ≤
R

3
. (12)

We shall use later the following lemma due to Crandall and Souganidis [6].
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Lemma 2.1 Let S : Y → X be a linear isometric isomorphism, Q ∈ N(X, β), Y ⊂
D(Q), domain of Q, P ∈ B(X), the space of all bounded linear operators on X and
SQ = QS + PS. Set θ = β + ‖P‖B(X). Then for every y ∈ X and λ > 0 such that
λθ < 1, the problem

x+ λQx = y, x̃+ λ(Qx̃+ P x̃) = y,

has a unique solution x and x̃ in X. Moreover

‖x‖X ≤ (1− λθ)−1‖y‖X , ‖x̃‖X ≤ (1− λθ)−1‖y‖X,

and if y ∈ Y , then x ∈ Y and

‖x‖Y ≤ (1− λθ)−1‖y‖Y .

We have the following main result.

Theorem 2.1 Suppose that (A1)-(A4) hold. Then there exists a unique strong so-
lution u to (1) such that u ∈ Lip(J0, X), J0 = [0, T0]. Furthermore, if v0 ∈ BY (u0, R0)
then there exists a strong solution v to (1) on [0, T0] with the initial point v(0) = ψ such
that

‖u(t)− v(t)‖X ≤ C‖u0 − v0‖X , t ∈ [0, T0], (13)

where C is positive constant.

3 Construction of the Scheme and the Convergence

To apply Rothe’s method, we use the following procedure. For any positive integer n we
consider a partition tnj defined by tnj = jh; h = T0

n , j = 0, 1, 2, . . . , n. We set un0 = φ(0)

for all n ∈ N . Let wn
0 = Sun0 for n ≥ N where N is a positive integer such that θ(T0

N ) < 1
2 .

We consider the following scheme

δunj +A(tnj−1, u
n
j−1)u

n
j = h

j−1
∑

i=0

knji A(t
n
i , u

n
i )u

n
i + fj, (14)

where

δunj =
unj − unj−1

h
, knji = k(tnj , t

n
i ) and fn

j = f(tnj , ũ
n
j−1), 1 ≤ i ≤ j ≤ n.

We define ũn0 (t) = φ(t) for t ∈ [−T, 0], ũn0 (t) = φ(0) for t ∈ [0, T0] and for 2 ≤ j ≤ n

ũnj−1(θ) =

{

φ(tnj + θ), θ ≤ −tnj ,

uni−1 + (t− tj−1)δu
n
i , θ ∈ [−tnj+1−i,−t

n
j−i], 1 ≤ i ≤ j.

(15)

For notational convenience, we occasionally suppress the superscript n, throughout, C
will represent a generic constant independent of j, h and n. Our first result is concerned
with the solvability of (14) in WR.

Lemma 3.1 For each n ≥ N, there exists a unique uj , j = 1, 2, . . . , n, in WR satis-
fying (14).
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Proof Lemma 2.1 implies that there exists a unique u1 ∈ Y such that

u1 + hA(t0, u0)u1 = u0 + h2k10A(t0, u0)u0 + hf1. (16)

Applying S on both the sides in (16) using (A3) and letting w1 = Su1, we have

(w1 − z0) + hA(t0, u0)(w1 − z0) + hP (t0, u0)(w1 − z0)

= (w0 − z0)− hA(t0, u0)z0 − hP (t0, u0)z0

+h2k10[A(t0, u0) + P (t0, u0)]w0 + hSf1.

The estimates in Lemma 2.1 imply that

‖w1 − z0‖X ≤ (1− hθ)−1[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}].

Since hθ < 1
2 , we have

‖w1 − z0‖X ≤ e2hθ[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}].

Therefore,

‖w1 − z0‖X ≤ (1 + e2hθ)[‖w0 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M1}] ≤ R,

in view of the estimates (12). Hence, u1 ∈ WR. Now, suppose that uj ∈ WR for
i = 1, 2, . . . , j − 1. Again, Lemma 2.1 implies that for 2 ≤ j ≤ n, there exists a unique
uj ∈ Y such that

uj + hA(tj−1, uj−1)uj = uj−1 + h2
j−1
∑

i=0

kjiA(ti, ui)ui + hfj. (17)

Proceeding as before and letting wj = Suj, we get the estimate

‖wj − z0‖X ≤ e2hθ[‖wj−1 − z0‖X + h{γA‖z0‖Y + γP ‖z0‖X +M2}].

Reiterating the above inequality, we get

‖wj − z0‖X ≤ e2jhθ[‖w1 − z0‖X + jh{γA‖z0‖Y + γP ‖z0‖X +M2}].

Hence

‖wj − z0‖X ≤ (1 + e2Tθ)[‖w1 − z0‖X + T0{γA‖z0‖Y + γP ‖z0‖X +M2}] ≤ R.

The above inequality and equations (16) and (17) imply that uj ∈ WR satisfy (14) for
1 ≤ j ≤ n, n ≥ N . This completes the proof of the lemma. 2

Lemma 3.2 There exists a positive constant C, independent of j, h and n such that

‖δuj‖X ≤ C, j = 1, 2, . . . , n; n ≥ N.

Proof In (14) for j = 1, we get

δu1 + hA(t0, u0)δu1 = −A(t0, u0)u0 + hk10A(t0, u0)u0 + f1.
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Using Lemma 2.1 we have

‖δu1‖X ≤ e2hT [(1 + hkT )γA‖u0‖Y + fT ] := C1,

where fT = Lf [T + ‖ũ0 − φ‖C([−T,0],X)] + ‖f(0, φ)‖X . Now, from (14) for 2 ≤ j ≤ n, we
have

δuj + hA(tj−1, uj−1)δuj = δuj−1 − [A(tj−1, uj−1)−A(tj−2, uj−2)]uj−1

+ hkjj−1A(tj−1, uj−1)uj−1

+ h

j−2
∑

i=0

[kji − kj−1i]A(ti, ui)ui + fj − fj−1.

Applying Lemma 2.1 and using (A2) and (A4) we get

‖δuj‖X ≤ e2hθ
[

(1 + µAhR)‖δuj−1‖X + µAhR+ hγAR{|kjj−1|

+

j−2
∑

i=0

|kji − kj−1j |} + ‖fj − fj−1‖Y
]

≤ e2hθ
[

(1 + µAhR)‖δuj−1‖X +M3h+ Lfh‖δũj−1‖C([−T,0],X)

]

,

where M3 = µAR+ γAR(kT + LkT ) + LfT . Denoting by C2 = µAR+ Lf , we have

max
1≤i≤j

‖δui‖X ≤ e2hθ
[

(1 + C2h) max
1≤i≤j−1

‖δui‖X +M3h
]

.

Reiterating the above inequality, we get

max
1≤i≤j

‖δui‖X ≤ e2jhθ(1 + C2h)
j
[

‖δu1‖X +M3T
]

,

hence
‖δuj‖X ≤ e2(θ+C2)T [C2 +M3T ] := C.

This completes the proof of the lemma. 2

Definition 3.1 We define the Rothe sequence {Un} ∈ C([−T, T ], Y ) given by

Un(t) =

{

φ(t), t ∈ [−T, 0],

uj−1 +
uj−uj−1

h (t− tj−1), t ∈ [tj−1, tj ], j = 1, 2, . . . , n.
(18)

Further, we define a sequence of functions {Xn} from [−T, T ] into Y given by

Xn(t) = φ(t) for t ∈ (−T, 0], Xn(t) = uj for t ∈ (tj−1, tj ]. (19)

Remark 3.1 Each of the functions {Xn(t)} lies in WR for all t ∈ (−h, T0] and {Un}
is Lipschitz continuous with uniform Lipschitz constant, i.e.,

‖Un(t)− Un(s)‖X ≤ C|t− s|, t, s ∈ J0.

Furthermore, ‖Un(t)−Xn(t)‖X ≤ C
n . Also, we define

Kn(t) = h

j−1
∑

i=0

kjiA(ti, ui)ui, t ∈ (tj−1, tj], (20)

fn(t) = f(tj , ũ
n
j−1), t ∈ (tj−1, tj ]. (21)

An(t, u) = A(tj−1, u), t ∈ (tj−1, tj), j = 1, 2, . . . , n. (22)
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Lemma 3.3 Under the given assumptions we have

(a) {Kn(t)} is uniformly bounded;

(b)
∫ t

0
An(s,Xn(s− h))Xn(s)ds = u0 − Un(t) +

∫ t

0
Kn(s)ds+

∫ t

0
fn(s)ds;

(c) d−

dt U
n(t) +An(t,Xn(t− h))Xn(t) = Kn(t) + fn(t), t ∈ (0, T0],

where d−

dt is the left-derivative.

Proof (a) This is a direct consequence of the assumptions (A2)-(A4).

(b) For 2 ≤ j ≤ n and t ∈ (tj−1, tj ], by Definition 3.1, we have

∫ t

0

An(s,Xn(s− h))Xn(s)ds

=

j−1
∑

i=1

∫ ti

ti−1

An(s,Xn(s− h))Xn(s)ds +

∫ t

tj−1

An(s,Xn(s− h))Xn(s)ds

= −

j−1
∑

i=1

(ui − ui−1)−
1

h
(t− tj−1)(uj − uj−1) + h

j−1
∑

i=1

[

h

i−1
∑

p=0

kipA(tp, up)up

]

+ (t− tj−1)[h

j−1
∑

p=0

kipA(tp, up)up] + h

j−1
∑

i=0

fn
i − (t− tj−1)f

n
j

= u0 − Un(t) +

∫ t

0

Kn(s)ds+

∫ t

0

fn(s)ds.

When j = 1, t ∈ (0, t1], we have

∫ t

0

An(s,Xn(s− h))Xn(s)ds = tA(t0, u0)u1

= −
t

h
(u1 − u0) + thk10A(t0, u0)u0 + tfn

1

= u0 − Un(t) +

∫ t

0

Kn(s)ds+

∫ t

0

fn(s)ds.

(c) for t ∈ (tj−1, tj ],

An(t,Xn(t− h))Xn(t) = A(tj−1, uj−1)uj and
d−un

dt
(t) =

1

h
(uj − uj−1).

Therefore,

d−u

dt
(t)−An(t,Xn(t− h))Xn(t) =

1

h
(uj − uj−1)−A(tj−1, uj−1)uj

= h

j−1
∑

i=0

kjiA(ti, ui)ui + fn
j

= Kn(t) + fn(t).

This completes the proof of the lemma. 2

In the next lemma we prove the local uniform convergence of the Rothe sequence.
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Lemma 3.4 There exists a subsequence {Unk} of the sequence {Un} and a function
u in Lip(J0, X) such that

Unk → u in C(J0, X),

with supremum norm as k → ∞.

Proof Since {Xn(t)} is uniformly bounded in Y , the compact imbedding of Y implies
that there exists a subsequence {Xnk} of {Xn} and a function u : J0 → X such that
Xnk(t) → u(t) in X as k → ∞. The reflexivity of Y implies that u(t) is the weak limit of
Xnk(t) in Y hence u(t) ∈ Y in fact inWR since Xnk(t) ∈ WR. Now, X

nk(t)−Unk(t) → 0
in X, Unk(t) → u(t) as k → ∞. The uniform Lipschitz continuity of {Unk} on J0 implies
that {Unk} is an equicontinuous family in C(J0, X) and the strong convergence of Unk(t)
to u(t) in X implies that {Unk(t)} is relatively compact in X . We use the Ascoli-Arzela
theorem to assert that Unk → u in C(J0, X) as k → ∞. Since Unk are in Lip(J0, X) with
uniform Lipschitz constant, u ∈Lip(J0, X). This completes the proof of the lemma. 2

Lemma 3.5 Let ψ : [0, T ] → X be given by ψ(t) = A(t, u(t))u(t). Then ψ is Bochner
integrable on [0, T ].

Proof Proof of this lemma can be established in similar way as that of Lemma 4.6
in Kato [9]. 2

Lemma 3.6 Let {Kn(t)} be the sequence of functions defined by (20) and

K(ψ)(t) =

∫ t

0

k(t, s)ψ(s)ds.

We have Knk(t) → K(ψ)(t), uniformly on [0, T0] as k → ∞.

Proof For notational conveneince, we shall use the index n in place of nk for the
subsequence nk of n. We first show that Kn(t) −K(ψn)(t) → 0 uniformly on [0, T0] as
n → ∞ where ψn : [0, T0] → X is given by ψn(t) = A(t,Xn(t))Xn(t). For t ∈ (tj−1, tj ],
we have

Kn(t)−K(ψn)(t) = h

j−1
∑

i=0

knjiA(ti, ui)ui −

∫ t

0

k(t, s)A(s,Xn(s))Xn(s) ds

=

j−1
∑

i=1

[

∫ ti

ti−1

[kjiA(ti, ui)− k(t, s)A(s,Xn(s))] ds

]

ui

+ hk(tj , t0)A(t0, u0)u0 −

[

∫ t

tj−1

k(t, s)A(s, uj)ds

]

uj.

Since ‖A(t, uj)uj‖X ≤ γAR, and k : [0, T0] → R being Lipschitz continuous imply that
the last two terms on the right hand side tend to zero strongly and uniformly on [0, T0]
as n→ ∞ we have

‖Kn(t)−K(ψn)(t)‖X ≤ γAR

[

j−2
∑

i=0

∫ ti+1

ti

|kji − k(t, s)|ds

]

.



406 JAYDEV DABAS

Now, since k satisfies (A4), k(t, s) is uniformly continuous in t as well as in s on [0, T0].
Hence for each ǫ > 0 we can choose n sufficiently large such that for |t1− t2|+ |s1− s2| <
h = T

n , ti, si ∈ [0, T0], i = 1, 2, we have

|k(t1, s1)− k(t2, s2)| <
ǫ

γART
.

Then for sufficiently large n, we have

‖Kn(t)−K(ψn)(t)‖X ≤
ǫ

γART
γARjh < ǫ,

Which show that Kn(t) − K(ψn)(t) → 0 as n → ∞, uniformly on [0, T0]. Now we
show that K(ψn)(t) → K(ψ)(t) uniformly as n → ∞. For any v ∈ X , We note that
〈A(t, u(t))u(t), v〉 is continuous hence we may write

〈

K(ψ)(t), v
〉

=

∫ t

0

k(t, s)〈A(s, u(s))u(s), v〉 ds.

Now, for any v ∈ X ,

〈K(ψn)(t), v〉 =

j−2
∑

i=0

∫ ti+1

ti

k(t, s)〈A(s, ui+1)ui+1, v〉ds

+

∫ t

tj−1

k(t, s)〈A(t, uj)uj , v〉ds.

This implies that 〈K(ψn)(t), v〉 → 〈K(ψ)(s), v〉, as n → ∞. This completes the proof of
the lemma.2

3.1 Proof of Theorem 2.1.

Proof First we show that Am(t,Xm(t−h))Xm(t)⇀ A(t, u(t))u(t) in X as m→ ∞,
where ‘⇀′ denotes the weak convergence in X ,

A(tj−1, X
m(t− h))Xm(t)− A(t, u(t))u(t)

= [A(tj−1, X
m(t− h))−A(t, u(t))]Xm(t) +A(t, u(t))[Xm(t)− u(t)].

Since,

‖[A(tj−1, X
m(t− h))−A(t, u(t))]Xm(t)‖X ≤ µAR[|tj−1 − t|+ ‖Xm(t− h)− u(t)‖X ],

as m→ ∞ the right hand side of the above equation tends to zero. Since Xm(t) → u(t)
in X uniformly on J0 and A(t, u(t)) ∈ N(X, β), βI +A(t, u) is m-accretive in X . We use
Lemma 2.5 due to Kato [9] and the fact that

‖A(t, u(t))[Xm(t− h)− u(t)]‖X ≤ 2µAR,

to assert that A(t, u(t))Xm(t) ⇀ A(t, u(t))u(t) in X and, hence, Am(t,Xm(t −
h))Xm(t) ⇀ A(t, u(t))u(t) in X as m → ∞. Now we show that A(t, u(t))u(t) is weakly
continuous on J0, let {tp} ⊂ J0 be a sequence such that tp → t, as p → ∞. Then
u(tp) → u(t) in X as p → ∞ and we can follow the same arguments as above to prove
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that A(tp, u(tp))u(tp) ⇀ A(t, u(t))u(t) in X as p → ∞. Now from Lemma 3.3 for each
x∗ ∈ X∗ we have

〈Um(t), x∗〉 = 〈u0, x
∗〉+

∫ t

0

〈−Am(s,Xm(s− h))Xm(s) +Km(s) + fm(s), x∗〉ds.

Letting m→ ∞ using bounded convergence theorem and Lemma 3.6 we get

〈U(t), x∗〉 = 〈u0, x
∗〉+

∫ t

0

〈−A(s, u(s))u(s) +K(ψ)(s) + f(s, us), x
∗〉ds.

Continuity of the integrand implies that 〈u(t), x∗〉 is continuously differentiable on J0.
The Bochner integrability of A(t, u(t))u(t) implies that the strong derivative of u(t) exists
a.e. on J0 and

du

dt
+A(t, u(t))u(t) =

∫ t

0

k(t, s)A(s, u(s))u(s)ds + f(t, ut), a.e on J0.

Since u(0) = u0, u is a strong solution to (1). Now for the uniqueness of the solution of
(1). Let v be another strong solution to (1) on J0. Let U = u− v, then for a.e. t ∈ J0

〈

dU

dt
(t), F (U(t))

〉

+ 〈βI +A(t, u(t))U(t), F (U(t))〉

= β‖U(t)‖2X + 〈(A(t, u(t)) −A(t, v(t)))v(t), F (U(t))〉

+

〈
∫ t

0

k(t, s)[A(s, u(s))−A(s, v(s))]u(s)ds, F (U(t))

〉

+

〈
∫ t

0

k(t, s)A(s, v(s))[u(s) − v(s)]ds, F (U(t))

〉

+〈f(t, ut)− f(t, vt), F (U)〉.

Using m-accretivity of βI +A(t, u(t))u(t) and Assumptions (A2) and (A4) we get

1

2

d

dt
‖U(t)‖2X ≤ CT ‖U‖2C([0,t],X),

where CT = β+µAR+ kT (γACe +µAR)+Lf . Integrating the above inequality on (0, t)
and taking the supremum we get

1

2
‖U(t)‖2C([0,t],X) ≤ CT

∫ t

0

‖U‖2C([0,s],X)ds.

Applying the Gronwall’s inequality we get U = 0 on J0.

Continuous dependence. Let v0 ∈ BY (u0, R0). Then

‖Sv0 − z0‖X ≤ ‖Sv0 − Su0‖X + ‖Su0 − z0‖X ≤ 2R0.

Hence

(1 + e2θT )[‖Sv0 − z0‖X + T0{γA‖z0‖Y + γA‖z0‖X +M}] ≤ 3R0 =
R

2
.
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We can proceed as before to prove the existence of vnj ∈WR satisfying scheme (14) with
unj and u0 replaced by vnj and v0 respectively. Convergence of vnj to v(t) can be proved in
a similar manner. Let U = u− v then following the steps used to prove the uniqueness,
we have for a.e. t ∈ J0

1

2

d

dt
‖U(t)‖2X ≤ CT ‖U‖2C([0,t],X).

Integrating the above inequality on (0, t) and taking the supremum we get

1

2

d

dt
‖U(t)‖2C([0,t],X) ≤

1

2
T ‖U(0)‖2X + CT

∫ t

0

‖U(t)‖2C([0,s],X).

Applying the Gronwall’s inequality we get

‖U(t)‖2C([0,t],X) ≤ C‖U(0)‖2X ,

where C is a positive constant. This completes the proof of the theorem.2

4 Application

For illustration, we consider the existence and uniqueness of a solutions for the following
model



















a0(x, u)
∂u
∂t +

∑m
j=1 aj(t, x, u)

∂u
∂xj

=
∫ 0

−T g(t, u(t+ θ, x)dθ,

+
∑m

j=1

∫ t

0
k(t− s)aj(s, x, u)

∂u
∂xj

ds, 0 < t ≤ T, x ∈ R
m,

u(θ, x) = φ0(θ, x) for θ ∈ [−T, 0] and x ∈ R
m,

(23)

where the unknown u = (u1, . . . , uN ) is an N-vector, a0 and aj , j = 1, 2, . . . ,m, are
N × N symmetric matrix-valued smooth functions on Ω × R

N and [0, T ] × Ω × R
N ,

respectively, where Ω ⊂ R
m is a bounded domain with sufficiently smooth bounday. We

set

Y = Hs(Ω,RN ), Z = Hs−1(Ω,RN ), X = H0(Ω,RN ), W = Br(Y ),

S = (1−∆)s/2, s > m/2 + 1,

A(t, w) = a0(x,w)
−1

m
∑

j=1

aj(t, x, w)
∂

∂xj
,

and use the variable norm

‖v‖2w =

∫

Ω

a0(x,w)v.vdx.

We suppose that for j = 1, 2, . . . ,m, aj(t, x, u) are simultaneously diagonalizable by a
common nonsingular C1 matrix q(t, x, w) and a0(x,w) is positive-definite. The function
g : R+ × R

N → R is continuous and Lipschitzian with respect to the second argument,
the function φ0 : [−r, 0]× Ω → R will be specified later.

Note that A(t, w) ∈ G(Xw, 1, β) with β depending on ‖w‖Y , and G(Xw , 1, β) denotes
the set of all (negative) generators A of C0-semigroups on Xw such that ‖e−tA‖ ≤Meβt

for t > 0. Again verification of the conditions is straightforward, except that we have to
prove that −A(t, w) is the generator of C0-semigroup (for details see [8]).
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Let f : [0, T ]× C([−T, 0], X) → Y be defined by

f(t, χ)(x) =

∫ 0

−T

g(t, χ(θ)(x)dθ, t ≥ 0.

The initial data φ ∈ C([−T, 0], X) is defined by

φ(θ)(x) = φ0(θ, x) for θ ∈ [−T, 0].

Then (23) takes the following abstract form







d
dtu(t) +A(t, u(t))u(t) =

∫ t

0
k(t− s)A(s, u(s))u(s)ds + f(t, ut), 0 < t ≤ T,

u0 = φ ∈ C([−T, 0], X).
(24)
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