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Periodic Solutions of Singular Integral Equations

T.A. Burton 1∗ and B. Zhang 2

1 Northwest Research Institute,
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2 Department of Mathematics and Computer Science, Fayetteville State University,
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Abstract: We consider a scalar integral equation

x(t) = a(t)−

∫
t

−∞

C(t, s)g(s, x(s))ds

in which C(t, s) has a singularity at t = s. There are periodic assumptions on a, C,

and g. First we prove a fixed point theorem of the Krasnoselskii–Schaefer type. We
then construct a Liapunov functional which allows us to satisfy the conditions of the
fixed point theorem and to prove that there is a periodic solution.

Keywords: integral equations; fixed point theorems; periodic solutions; Liapunov

functionals.

Mathematics Subject Classification (2000): 45D05, 45D20, 45M15.

1 Introduction

We consider a scalar integral equation

x(t) = a(t)−

∫ t

−∞

C(t, s)g(s, x(s))ds (1)

for which there is a T > 0 so that

a(t+ T ) = a(t), g(t+ T, x) = g(t, x), C(t+ T, s+ T ) = C(t, s) (2)

∗ Corresponding author: mailto:taburton@olypen.com
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for all t ∈ ℜ and s < t with a and g continuous. We denote by (PT , ‖ · ‖) the Banach
space of continuous T -periodic functions.

If g is Lipschitz and if C is small enough then a contraction mapping will yield a pe-
riodic solution. If C is convex then Liapunov arguments will produce a priori bounds.
Under compactness conditions, Schaefer’s fixed point theorem will yield a periodic solu-
tion. A collection of such results are found in Burton [7]. A recent n-dimensional result
is given in [17].

In this paper we ask that g satisfies

|g(t, x)− g(t, y)| ≤ K|x− y| (3)

for all x, y ∈ ℜ and some K > 0, while C satisfies a truncated convexity condition,
but has a significant singularity at t = s. We derive a set of conditions measuring the
magnitude of the singularity that will still permit proof of the existence of a periodic
solution using a combination Krasnoselskii–Schaefer fixed point theorem which we will
prove in Section 2.

2 A Fixed Point Theorem

In this section, we will prove a fixed point theorem of Krasnoselskii-Schaefer type in
which the mapping function has the form Px = Bx + Ax with A being compact and
(I − B)−1 continuous on an appropriate subset M of a Banach space S. The theorem
resembles that of Burton–Kirk [6] without having a λ term in B. See [8, 10, 11, 13, 14, 15]
for work on Krasnoselskii and Schaefer theorems and their extended forms.

Since P is the sum of two operators, it is in general a non-self map; that is, P may
not necessarily map a closed convex subset M of S into itself. To prove the existence
of a fixed point of P , we apply topological degree theory or transversality method by
constructing a homotopy Uλ on M with U1 = P . It is assumed that Uλ(φ) = U(λ, φ) is
a continuous mapping of [0, 1] × M into a compact subset of S. In many applications,
U0 is a constant map sending M to a point p ∈ M/∂M . In this case, U0 is an “essential”
map. If Uλ(φ) is fixed point free on ∂M for all λ ∈ (0, 1), then U1(φ) is essential having
a fixed point property in M (Granas and Dugundji [9, p.120-123]). This fact is often
written in the form of Leray–Schauder principle or its nonlinear alternatives which states
that either

(A1) U1 has a fixed point in M or

(A2) there exists x ∈ ∂M and λ ∈ (0, 1) with x = Uλ(x)

(see [1, p. 48], [9, p. 123], [15, p. 28], [16]).

Theorem 2.1 Let (S, ‖·‖) be a Banach space, A,B : S → S such that A is continuous
with A mapping bounded sets into compact sets, (I − B)−1 exists and is continuous on
(I − B)S with λA(M) ⊂ (I − B)S for each closed convex subset M ⊂ S and λ ∈ [0, 1].
Then either

(i) x = Bx+ λAx has a solution in S for λ = 1, or

(ii) the set of all such solutions, 0 < λ < 1, is unbounded.
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Proof Since λA(M) ⊂ (I−B)S, we have 0 ∈ (I−B)S. If x∗ = (I−B)−1(0), then x∗

is the unique fixed point of B. For each positive integer n, define a closed and bounded
set

Mn = {x ∈ S : ‖x‖ ≤ n}.

We choose n sufficiently large so that x∗ ∈ Mn/∂Mn. Now (I − B)−1 exists and is
continuous on (I −B)S. Since A is continuous with A mapping Mn into a compact set,
so is (I −B)−1(λA) for each λ ∈ [0, 1]. Define U : [0, 1]×Mn → S by

U(λ, φ) = (I −B)−1(λAφ).

Then Uλ(φ) = U(λ, φ) is a continuous mapping of [0, 1] × Mn into a compact subset
of S. Indeed, set Γ = {λAφ : λ ∈ [0, 1], φ ∈ Mn} and let {(λk, φk)} be a sequence in
[0, 1]×Mn. We may assume that λk → λ0 ∈ [0, 1] as k → ∞. Since AMn is contained
in a compact subset of S, there exists a convergent subsequence {Aφkj

} of {Aφk}. Now
{λkj

Aφkj
} converges in S. This implies that Γ is pre-compact, and so is (I − B)−1Γ.

Observe that for all φ ∈ Mn,

U0(φ) = (I −B)−1(0) = x∗

is a constant map. Moreover, x∗ ∈ Mn/∂Mn. By the statement of nonlinear alternatives
(A1) and (A2) above, either U1 has a fixed point in Mn or there exists xn ∈ ∂Mn such
that xn = Uλ(xn) for some λ ∈ (0, 1). This implies that either x = Bx + Ax has a
solution in Mn or there exists xn ∈ ∂Mn with xn = Bxn + λAxn for some λ ∈ (0, 1). In
the later case, we have ‖xn‖ = n. Thus, if (i) does not hold, then ‖xn‖ → ∞ as n → ∞
and (ii) must hold. This completes the proof.

Remark 2.1 It is clear that if B is a contraction mapping with contraction constant
0 < α < 1, then (I −B)−1 exists and is continuous on S. Many generalized or nonlinear
contractions satisfy this condition (see [2, 3, 8, 11, 12, 13]).

3 Technical Conditions

We now introduce the conditions which will produce the a priori bound needed in the
fixed point theorem, as well as the required compactness. The kernel, C(t, s), can have
a singularity at t = s, but we ask that there exists a fixed ǫ > 0 so that

C(t, s) ≥ 0, Cs(t, s) ≥ 0, Ct(t, s) ≤ 0, Cst(t, s) ≤ 0 (4)

provided that
−∞ < s ≤ t− ǫ, t < ∞. (5)

Moreover, if x ∈ PT , then

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds and

∫ t

t−ǫ

C(t, s)g(s, x(s))ds are continuous. (6)

The ǫ will play a central role. First, assume that there is a η < 1 with

K

∫ t

t−ǫ

|C(t, s)|ds ≤ η, t ∈ ℜ. (7)
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Next, there are positive constants α and β with 2α+ β < 2 so that both

∫ s+ǫ

s

[ǫCs(u, u− ǫ) + C(u, u− ǫ) + |C(u, s)|]du < α, s ∈ ℜ (8)

and

C(t, t− ǫ)ǫ +

∫ t

t−ǫ

|C(t, s)|ds < β, t ∈ ℜ. (9)

The work here is motivated by and is an extension of [4]. Relations (7)–(9) specify
the strength of the singularity. For a “mild” singularity such as C(t, s) = [t − s]−p,
0 < p < 1, then (4), (5), (7)–(9) are satisfied for any K > 0 when it is allowed that ǫ can
be taken sufficiently small. But (6) would fail. The following function satisfies (4)-(9)
with 0 < ǫ ≤ 1 and an appropriate constant k > 0

C(t, s) =
k

(t− s)(1 + | ln(t− s)− ln ǫ|)2
.

We now define for 0 ≤ λ ≤ 1 a companion equation to (1)

x(t)= λ

[

a(t)−

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

]

−

∫ t

t−ǫ

C(t, s)g(s, x(s))ds. (1λ)

The mappings A,B : PT → PT mentioned in the theorem are defined by φ ∈ PT which
implies that

(Aφ)(t) := a(t)−

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds (10)

and

(Bφ)(t) := −

∫ t

t−ǫ

C(t, s)g(s, φ(s))ds. (11)

By (6), if φ ∈ PT then φ is continuous so these integrals are continuous functions. To
see that Aφ,Bφ ∈ PT we note that

(Aφ)(t + T ) = a(t+ T )−

∫ t+T−ǫ

−∞

C(t+ T, s)g(s, φ(s))ds

= a(t)−

∫ t−ǫ

−∞

C(t+T, s+T )g(s+T, φ(s+T ))ds=(Aφ)(t)

while

(Bφ)(t + T ) = −

∫ t+T

t+T−ǫ

C(t+ T, s)g(s, φ(s))ds

= −

∫ t

t−ǫ

C(t+ T, s+ T )g(s+ T, φ(s+ T ))ds = (Bφ)(t).

Moreover, by (3) and (7), B is a contraction.
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4 A Liapunov Functional

We begin with the assumption that there is an L > 0 with

xg(t, x) ≥ 0 for |x| ≥ L (12)

and that
lim

s→−∞
(t− s)C(t, s) = 0 for fixed t. (13)

Then define a Liapunov functional by

V (t, ǫ) = λ

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds. (14)

This Liapunov functional in the continuous case with finite delay was recently discussed
in [5].

Lemma 4.1 If x ∈ PT solves (1λ) then V ′(t, ǫ) satisfies

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2g(t, x)

[

λC(t, t− ǫ)

∫ t

t−ǫ

g(v, x(v))dv −

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

]

+ 2g(t, x)[λa(t) − x(t)]. (15)

Proof Taking into account that Cst ≤ 0 we have

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(v, x(v))dvds.

If we integrate the last term by parts and use (13) in the lower limiting evaluation,
keeping in mind that x is bounded, we obtain

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

[

C(t, s)

∫ t

s

g(v, x(v))dv

∣

∣

∣

∣

t−ǫ

−∞

+

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

]

= λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

[

C(t, t− ǫ)

∫ t

t−ǫ

g(v, x(v))dv

]

+ 2g(t, x)

[

λ

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds +

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

]

− 2g(t, x)

∫ t

t−ǫ

C(t, s)g(s, x(s))ds.
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Using (1λ) in the next-to-last term yields (15).
We will integrate (15) to relate g(t, x(t)) to a(t) and then use that relation in a lower

bound on the Liapunov functional to obtain the a priori bound. We now obtain that
lower bound.

Lemma 4.2 For any q > 0, if x ∈ PT solves (1λ), then

(x(t) − λa(t))2 ≤ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds V (t, ǫ)

+ 2(1 + q−1)ǫC2(t, t− ǫ)

∫ t

t−ǫ

g2(s, x(s))ds

+ (1 + q)

(
∫ t

t−ǫ

|C(t, s)|ds

)2(

K‖x‖+ sup
0≤u≤T

|g(u, 0)|

)2

. (16)

Proof Let q > 0 be fixed and define H = (1+λq)

(
∫ t

t−ǫ

C(t, s)g(s, x(s))ds

)2

so that

from (1λ) we obtain

(x(t)− λa(t))2 =

(

λ

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds +

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

)2

≤ λ(1 + q−1)

(
∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

)2

+H

= λ(1 + q−1)

(

− C(t, s)

∫ t

s

g(u, x(u))du

∣

∣

∣

∣

t−ǫ

−∞

+

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

(using (13) and x ∈ PT )

= λ(1 + q−1)

(

− C(t, t− ǫ)

∫ t

t−ǫ

g(u, x(u))du

+

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

≤ 2λ(1 + q−1)C2(t, t− ǫ)

(
∫ t

t−ǫ

g(u, x(u))du

)2

+ 2(1 + q−1)

(
∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

≤ 2λ(1 + q−1)C2(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(u, x(u))du +H

+ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds

≤ 2λ(1 + q−1)C2(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(u, x(u))du

+ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds V (t, ǫ)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (2) (2011) 113–123 119

+ (1 + q)

(
∫ t

t−ǫ

|C(t, s)|ds

)2 (

K‖x‖+ sup
0≤u≤T

|g(u, 0)‖

)2

,

as required.

Lemma 4.3 If
|g(t, x)| ≤ |x| for |x| ≥ L, (17)

where L is defined in (12), then for any γ > 0 there is an M > 0 such that for any
solution of (1λ) in PT we have

V ′(t, ǫ) ≤ Ma2(t) + [γ + β − 2]g2(t, x(t)) +M

+

∫ t

t−ǫ

[|C(t, s)| + ǫCs(t, t− ǫ) + C(t, t− ǫ)]g2(s, x(s))ds. (18)

Proof By Cauchy inequality, for any γ > 0, there is an M > 0 such that

2g(t, x)a(t) ≤ γg2(t, x) +Ma2(t).

By (17), we may choose M so large that

−2g(t, x)x ≤ −2g2(t, x) +M

for all t ≥ 0 and x ∈ ℜ. Now from (15) we have

V ′(t, ǫ) ≤ γg2(t, x) +Ma2(t)

− 2g2(t, x) +M + Cs(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(v, x(v))dv

+ C(t, t− ǫ)

∫ t

t−ǫ

[g2(t, x(t)) + g2(v, x(v))]dv

+

∫ t

t−ǫ

|C(t, s)|[g2(t, x(t)) + g2(s, x(s))]ds

= Ma2(t) + g2(t, x)

[

γ − 2 + ǫC(t, t− ǫ) +

∫ t

t−ǫ

|C(t, s)|ds

]

+M

+

∫ t

t−ǫ

[ǫCs(t, t− ǫ) + C(t, t− ǫ) + |C(t, s)|]g2(s, x(s))ds

by (9)

≤ Ma2(t) + g2(t, x)[γ + β − 2] +M

+

∫ t

t−ǫ

[ǫCs(t, t− ǫ) + C(t, t− ǫ) + |C(t, s)|]g2(s, x(s))ds,

as required.

Lemma 4.4 If (17) holds, if ǫ ≤ T , and if γ is small enough then there is a µ > 0
so that if x solves (1λ) and x ∈ PT then

∫ T

0

g2(s, x(s))ds ≤ (M/µ)

∫ T

0

a2(s)ds+ TM/µ. (19)
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Proof We are going to integrate (18) from 0 to T and note that 0 = V (T, ǫ)−V (0, ǫ).
First, we estimate the integral of the last term in (18) as follows. We have

∫ T

0

∫ t

t−ǫ

[|C(t, s)|+ ǫCs(t, t− ǫ) + C(t, t− ǫ)]g2(s, x(s))dsdt

≤

∫ T

−ǫ

∫ s+ǫ

s

[|C(t, s)|+ ǫCs(t, t− ǫ) + C(t, t− ǫ)]dtg2(s, x(s))ds

≤ α

∫ T

−ǫ

g2(s, x(s))ds ≤ 2α

∫ T

0

g2(s, x(s))ds.

With this information we now integrate (18) and obtain

0 = V (T, ǫ)− V (0, ǫ) ≤ M

∫ T

0

a2(s)ds+ TM

+

∫ T

0

[γ − 2 + β + 2α]g2(s, x(s))ds

≤ M

∫ T

0

a2(s)ds− µ

∫ T

0

g2(s, x(s))ds + TM

since β + 2α < 2 and γ can be made as small as we please.

Lemma 4.5 Let the conditions of Lemma 4.4 hold and suppose there is a Q > 0 with

∫ t−ǫ

−∞

Cs(t, s))(t+ T − s)2ds ≤ Q. (20)

Then there is a Q∗ > 0 with V (t, ǫ) ≤ Q∗.

Proof We have

V (t, ǫ) =

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds

≤

∫ t−ǫ

−∞

Cs(t, s)(t− s)

∫ t

s

g2(u, x(u))duds

≤

∫ t−ǫ

−∞

Cs(t, s)(t− s)

[
∫ t+T

s

(M/µ)a2(u)du+ (t− s+ T )TM/µ

]

ds

≤

∫ t−ǫ

−∞

Cs(t, s)(t+ T − s)2ds[(M/µ)‖a2‖+ TM/µ]

from which the result follows.

Lemma 4.6 Let the conditions of Lemma 4.5 hold. Then there exists a constant
J > 0 such that ‖x‖ < J whenever x is T -periodic solution of (1λ) for 0 < λ ≤ 1.

Proof By (9) and (13), we have

∫ t−ǫ

−∞

Cs(t, s)ds = C(t, t− ǫ) ≤ β/ǫ.
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If x ∈ PT solves (1λ), then (19) holds, and by Lemma 4.5, V (t, ǫ) ≤ Q∗. Now taking into
account that (7) holds with η < 1, we obtain from (16) that

(x(t)−λa(t))2 ≤ 2(1+q−1)(β/ǫ)Q∗+2(1+q−1)(β2/ǫ)TM(‖a2‖+1)/µ+(1+q)(η‖x‖+βg∗)2,

where g∗ = ‖g(t, 0)‖. Since η < 1, we may choose q > 0 small enough so that (1+ q)η2 <
1, and hence, there exists J > 0 such that ‖x‖ < J . The proof is complete.

5 Continuity and Compactness

We select part of (10) and define the mapping U : PT → PT by φ ∈ PT which implies
that

(Uφ)(t) =

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds. (21)

Then U is well defined on PT by (6). By a change of variable we have

(Uφ)(t) =

∫ t

−∞

C(t, s− ǫ)g(s− ǫ, φ(s− ǫ))ds

with a fully convex kernel.

Lemma 5.1 Suppose that
∫ t−ǫ

−∞
[|C(t, s)|+ |Ct(t, s)|]ds is bounded for all t ∈ ℜ. Then

U is continuous on PT and for each J > 0, Γ = {U(φ) : φ ∈ PT |, ‖φ‖ ≤ J} is uniformly
bounded and equicontinuous.

Proof First, there is a J∗ such that φ ∈ Γ implies that |g(t, φ(t))| ≤ J∗ and there is
a C∗ with

∫ t−ǫ

−∞

[|C(t, s)| + |Ct(t, s)|]ds ≤ C∗, t ∈ ℜ. (22)

It is clear that Uφ ∈ PT by (6) and the argument following (10). We now show that U
is continuous on PT . If φ̃, φ ∈ PT , then

|U(φ)(t) − U(φ̃)(t)| =

∣

∣

∣

∣

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds −

∫ t−ǫ

−∞

C(t, s)g(s, φ̃(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t−s

−∞

C(t, s)
[

g(s, φ(s))− g(s, φ̃(s))
]

ds

∣

∣

∣

∣

. (23)

Since g is uniformly continuous on [0, T ]× {x ∈ R : |x| ≤ ‖φ̃‖+ 1}, for any ǫ > 0,

there exists 0 < δ < 1 such that ‖φ − φ̃‖ < δ implies |g(s, φ(s)) − g(s, φ̃(s))| < ε for all
s ∈ [0, T ]. It follows from (23) that ‖U(φ)−U(φ̃)‖ ≤ ǫC∗. Thus, F is continuous on PT .

Next, for an arbitrary φ ∈ Γ we have

d

dt
(Uφ)(t) = C(t, t− ǫ)g(t− ǫ, φ(t− ǫ)) +

∫ t−ǫ

−∞

Ct(t, s)g(s, x(s))ds.

and this derivative is bounded by

C(t, t− ǫ)J∗ + J∗

∫ t−ǫ

−∞

|Ct(t, s)|ds ≤ J∗ sup
0≤t≤T

‖C(t, t− ǫ)‖+ J∗C∗.
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This implies that Γ is equicontinuous. The uniform boundedness of Γ follows from the
inequality

|U(φ)(t)| ≤

∫ t−ǫ

−∞

|C(t, s)||g(s, φ(s))|ds ≤ J∗C∗.

6 Periodic Solutions

We will show the existence of T -periodic solutions of (1) by applying Theorem 2.1. By
(10) and (11), we see that x ∈ PT is a solution of (1λ) if and only if it is a fixed point of
B + λA.

Theorem 6.1 If (2)-(9), (12), (13), (17), (20), and (22) hold with ǫ ≤ T , then (1)
has a T -periodic solution.

Proof Let the mappings A and B be defined in (10) and (11) with S = PT . Then
B is a contraction mapping with contraction constant η, and hence, (I − B)−1 exists
and is continuous on (I − B)S = S. By Lemma 5.1 and the Ascoli–Arzela theorem, we
see that A is continuous and maps bounded sets into compact sets. It is also clear that
λA(M) ⊂ (I −B)S for each closed convex subset M ⊂ S and λ ∈ [0, 1]. Now by Lemma
4.6, the set of solutions to x = Bx + λAx is bounded. Therefore, the alternative (i) of
Theorem 2.1 must hold; that is, B + A has a fixed point in PT which is a T -periodic
solution of (1).

Remark 6.1 Observe that the continuity of C(t, s) with respect to s for t−ǫ < s < t
is not required for fixed t. One may readily verify that the function C(t, s) defined by
C(t, s) = k(t− s)−p for t− s ≥ ǫ and C(t, s) = (t− s)−q for 0 < t− s < ǫ with p > 2, 0 <
q < 1, 0 < ǫ ≤ 1, k > 0 satisfy all conditions of Theorem 6.1 for an appropriately chosen
constant k.
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Abstract: We present an in-host HIV/AIDS model with saturation effect and a
discrete time delay. It is shown that infection is endemic when R0 > 1 but dies out
when R0 < 1. The switching phenomenon for the stable equilibria is observed when
a discrete time delay is incorporated. The parameters that can control the disease
transmission are also discussed. Numerical simulations are carried out to verify and
support the analytical results and illustrate possible behavior scenarios of the model.

Keywords: HIV/AIDS; stability; delay; switching.
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1 Introduction

Throughout the ages and despite all medical and sanitary progress humankind has
severely been afflicted by infectious diseases. The spread of human immune virus (HIV)
is alarming today and becomes a global crisis of the modern era. No other disease engen-
ders as much fear, revulsion, despair and utter helplessness as acquired immunodeficiency
syndrome (AIDS). In a survey carried out in 2009, it was noted that about 33.3 million
people are living with HIV/AIDS and 2.6 million people have newly been infected during
this year only. Further, in this 2009 the number of AIDS-related deaths is estimated as
1.8 million [1]. The sexually active and risk groups such as truck drivers, commercial
sex workers, bathhouse customers, and drinkers are known to play a central role in HIV
population dynamics.
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HIV infection typically begins when an HIV particle containing two copies of the
HIV RNA encounters a cell with a surface molecule called cluster designation 4 (CD4).
Although these CD4+ T cells appear to be the main targets of HIV, other immune system
cells with and without CD4 molecules on their surfaces are infected as well. Among these
cells, monocytes and macrophages act as reservoirs of HIV by harboring a large amount
of the virus without being killed. CD4+ T cells also serve as important reservoirs of
HIV; a small proportion of these cells harbor HIV in a stable and inactive form. Normal
immune processes may activate these cells, which leads to the production of new HIV
virions [2]. HIV causes AIDS by destroying a type of white blood cells (T cells or CD4
cells) that the immune system must have to fight infection. AIDS is the final stage of
HIV infection. It can take about 5 to 15 years for a person infected with HIV, even
without treatment, to reach this stage [3]. In brief, HIV carries copies of its DNA and
inserts this into the host cell’s (mainly CD4+ T cells) DNA. The host cell after being
stimulated to reproduce, it reproduces copies of HIV virus. Further the count of CD4+
T cells is a primary indicator used to measure progression of HIV infection. Chronic
HIV infection causes gradual depletion of the CD4+ T cells’ pool, and thus progressively
compromises the host’s immune response to opportunistic infections, leading to AIDS.
Three main stages of disease progression after HIV virus is introduced into the body are
as follows: the first one is the initial transient — a relatively short period of time when
both the T cell population and the virus population increase greatly. This is followed
by the second stage, clinical latency — a period of time when there are extremely large
numbers of virus and T cells undergoing incredible dynamics, the overall result of which
is an appearance of latency (disease steady state). The AIDS stage follows finally, and
it is characterized by a drop in T cells to a very low number (or zero) and the virus
grows without any bound and leads to death. In particular cell-cell fusions also have an
important pathogenic role in vivo [4].

Wodarz and Nowak [5] showed through a diversity threshold model that evolution
of virus can drive disease progression and also destruct the immune system. They also
pointed out that mathematical models may be used to correlate the long-term immuno-
logical control of HIV and designing of therapy that convert a progressing patient into
a state of long-term non-progression. Culshaw and Ruan [6] modified the model pro-
posed by Perelson et al. [7] by introducing discrete time delay and studied the effect
of time delay on the stability of equilibria. Further, Nelson and Perelson [8] developed
and studied a set of models that include intercellular delays, combination antiretroviral
therapy and the dynamics of both infected and uninfected T cells. The role of drug
efficacy was highlighted along with general stability results of non-linear delay differen-
tial equation while Bachar and Dorfmayr [9] modeled the latent period and the delayed
onset of positive treatment effects in the patients and carried out stability analysis of
the system with numerical simulations depending on the size of the treatment-induced
delay. On the other hand Banks and Bortz [10] studied cellular HIV infection models
by using sensitivity methodology for non-linear delay system and carried out a typical
sensitivity investigation. Zhou et al. [11] investigated the dynamics of a model of HIV
infection of CD4+ T-cells with cure rate and obtained threshold conditions onR0 for per-
sistence and periodic solutions. Mukandavire et al. [12] analyzed a mathematical model
for HIV/AIDS with time delay due to incubation period and remarked that prolonged
incubation period due to medical interventions may yield higher HIV/AIDS prevalence
whereas Pastore [13] studied an HIV model incorporating mutation and discussed the
effects of a virus attack on the human immune system in the presence of HIV infection
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and the break down of the immune system. Stilianakis and Schenzle [14] studied an
intra-host dynamics of HIV-1 infection by incorporating the effect of the permanently
increasing susceptibility of CD4+T cell clones and suggested that the HIV evolutionary
speed plays a crucial role in the progression of disease. Li and Shu investigated an in-
host viral model with intracellular delay [15] and observed that for R0 > 1, the infection
persists and the chronic-infection equilibrium is locally as well as globally asymptotically
stable. They further stated that without cell division no sustained oscillations regime
exists even if in the presence of intracellular delays.

The interaction between HIV and the human immune system is a highly dynamic
and multifactorial process and as a result it is essential to base therapeutic interventions
on a more solid theoretical ground than it has been the case until now. Previous studies
considered different aspects on models of HIV/AIDS, namely, effect of mutation, cellular
HIV infection, inter-cellular delays, delay due to incubation period only to mention a
few. To the best of our knowledge, none of the studies considered the saturation effects
and latent class. For in-host models of HIV/AIDS to be more realistic, the saturation
effects should be incorporated together with the effect of delay on the latently infected
class. Actually saturation effect is applicable because of the presence of large number of
virions. Hence we incorporate both these effects into the model system and our interest
is to explore the effects of various parameters involved in the development of infection
using analytic and numerical methods. The main thrust of the paper is to highlight the
effect of delay and also the role of the rate of production of new virions.

The paper is organized as follows: in Section 2 we present the mathematical model
and assumptions made in the formulation. Conditions for boundedness and existence
of equilibria of the model are derived in Section 3. The basic reproductive number,
R0, is also computed in this section. The local stability behaviour of the infection-free
and endemic equilibria of the model in the absence of delay is discussed in Section 4
where global stability behaviour of the endemic equilibrium is also studied. In Section
5, stability switching behaviour is addressed. A brief discussion rounds up the paper in
Section 6 with numerical simulations.

2 Mathematical Model

In [16] we note that some cells after being infected by the HIV, enter a latent class.
Although these cells do not produce new virions while in this class, they are reactivated
later to do so. On basis of these views, here we formulate an in-host HIV model with a
latent infected class and incorporate a discrete time delay along with saturation effect.

The relationship between the virus and the uninfected cells is similar to the relation-
ship between predator and prey in ecological problem and with this analogy βX is the
functional response of the viruses to the uninfected cells. Further, we assume that the
function that describes the rate at which uninfected cells are produced by the host is a
decreasing function of virions. When the numbers of virions tend to zero then the unin-
fected cells are produced at a constant rate. Thus one can infer that virions affect the
production of uninfected cells by the host. In other words uninfected cells are produced
by the organism at the rate c

k+V
which depends on the number of virions in an organism.

This is analogous to assuming that not all newborn cells are uninfected. Then infected
cells and latent cells are produced by the organism at certain rates (vertical transmission
of HIV/AIDS). Consequently, we consider uninfected cells being produced by the host
at the rate c

k+V
.
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The following system of differential equations specifies the model

dV

dt
= aY1 − bV,

dX

dt
=

c

k + V
− dX − βXV,

dY1

dt
= q1βXV − f1Y1 + δY2 (t− τ) ,

dY2

dt
= q2βXV − f2Y2 − δY2,

(1)

where V (t), X(t), Y1(t), Y2(t) represent the number of virions, number of uninfected target
cells, number of productive infected cells and number of latent infected cells respectively
at any time, in a host.

The virus is replicated by the infected cells, so its rate of production, a is assumed to
be proportional to Y1. Virions die at a specific rate b. The uninfected cells are produced
by the host at a specific rate c

k+V
. They die at a rate d, and become infected by the

virus at a specific rate βV , entering Y1 class and Y2 class respectively,in proportions.
A proportion q1 of the infected cells become productively infected while the remaining
proportion, q2 = (1− q1) become latently infected. Productive infected cells and latent
infected cells die at specific rates f1 = e1+d and f2 = e2+d, respectively, where d is the
natural death rate, e1 and e2 are the additional death rates due to infection. Only the
Y1 cells produce virions, and Y2 cells move to the Y1 class at a per capita rate δ. Further,
τ (0 < τ < ∞) is the delay due to the formation of productive infected class from the
latent infected class. The parameter c is a constant and k is the half saturation constant.

3 Boundedness and Equilibria

In this section we first show that the solutions of model system (1) are bounded.

Lemma 3.1 If a < f1 then the solutions of model system (1) are bounded.

Proof Define the function U = V +X + Y1 + Y2. Now

U̇ <
c

k
− bV − dX + (a− f1)Y1 − f2Y2.

For each λ > 0 the following inequality is fulfilled:

U̇ + λU ≤
c

k
− (b− λ)V − (d− λ)X − (f1 − a− λ))Y1 − (f2 − λ)Y2.

If we choose λ < min{b, d, f1 − a, f2}, then right hand side is bounded ∀(V,X, Y1, Y2) ∈
R

4
+. Thus, U̇ + λU ≤ c

k
. Applying a theorem on differential inequality we have

0 ≤ U ≤
c

kλ
+

1

eλt
U(V (0), X(0), Y1(0), Y2(0))

and 0 ≤ U ≤ c
kλ

for t → 0. Thus, all solutions of system (1) enter the region

B = {(V (t), X(t), Y1(t), Y2(t)) : U ≤
c

kλ
+ ǫ, ∀ǫ > 0}.
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The assumption a < f1 indicates that to keep the population under control, the
production rate of virions must be below the specific death rate of productive infected
cells. The system has two equilibrium points given by:

(1) E1(0,
c
kd
, 0, 0), (2) E2(

aY ∗

1

b
, b2c
(kb+aY ∗

1
)(bd+aβY ∗

1
)
, Y ∗

1 ,
f1q2Y

∗

1

f2q1+δq1+δq2
), provided

a > bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
, Y ∗

1 = 1

2a2β

[

−ad(d+ kβ)+
√

a2b2(d− kβ)2 + 4a3bcβ2(f2q1+δq1+δq2)

f1(f2+δ)

]

.

Latent infected cells Y2, become productive infected cells Y1, at a rate δ after a
period of time 1

δ+f2
. Hence, adding contributions from cells Y1and Y2 cells, the basic

reproductive number becomesR0 = βac

bdkf1
(q1+q2

δ
δ+f2

). The inequalityR0 > 1 represents

the same threshold condition as the expression a > bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
. Hence E2 exists only

when R0 > 1.

4 Stability Analysis without Delay

In this section we investigate the local stability characteristics of the infection-free equi-
librium point, E1 and endemic equlibrium point, E2 of the system. Global stability of
E2 is also discussed.

4.1 Local stability analysis

The Jacobian matrix of model system (1) is as follows:

J =









−b 0 a 0
−βX − c

(k+V )2
−(d+ βV ) 0 0

q1βX q1βV −f1 δ
q2βX q2βV 0 −(f2 + δ)









.

Theorem 4.1 The infection-free equilibrium E1 is locally asymptotically stable if
R0 < 1 and is unstable if R0 > 1.

Proof The characteristic equation of the Jacobian matrix of model system (1) at E1

is λ3 +Aλ2 +Bλ+ C = 0, where

A = b+f1+f2+δ, B = (b+f1)(f2+δ)+bf1−
acβq1
kd

, C = (δ+f2)(bf1−
acβq1
kd

)−
acβδq2
kd

.

Now C > 0 implies that a < bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
. Again if a < bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
then

AB − C > 0.
Further the inequality R0 < 1 represents the same threshold condition as the expres-

sion a < bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
. Hence, the result follows by Routh-Hurwitz criterion for the

equilibrium point E1.

Theorem 4.2 The equilibrium point E2 is locally asymptotically stable if Di > 0, for
i = 1, 2, 3, 4; where D1 = P,D2 = PQ−R,D3 = P (QR− PS)− P 2 and D4 = SD3.

Proof The characteristic equation of the Jacobian matrix of model system (1) at E2

is given by
λ4 + Pλ3 +Qλ2 +Rλ+ S = 0,
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where P = b+ d+ δ + f1 + f2 + βV ∗,
Q = bf1 + (b + f1)(d+ βV ∗ + f2 + δ) + (d+ βV ∗)(f2 + δ)− aq1βX

∗,
R = bf1(d+βV ∗+ f2+ δ)+ (b+ f1)(d+βV ∗)(f2+ δ)+aq1βV

∗{βX∗+ c
(k+V ∗)2

}−a(d+

βV ∗)q1βX
∗ − aq1βX

∗(f2 + δ)− aq2δβX
∗,

S = a{q1βV
∗(f2 + δ) + q2δβV

∗}{βX∗ + c
(k+V ∗)2

} − aδq2βX
∗(d+ βV ∗) − aq1βX

∗(f2 +

δ)(d+ βV ∗) + bf1(d+ βV ∗)(f2 + δ).

Hence, by Routh–Hurwitz criterion E2 is locally asymptotically stable if Di > 0 , for
i = 1, 2, 3, 4; where D1 = P,D2 = PQ−R,D3 = P (QR− PS)− P 2 and D4 = SD3.

4.2 Global stability analysis of the endemic equilibrium

We now show that the endemic equilibrium point E2(V
∗, X∗, Y ∗

1 , Y
∗
2 ) is globally asymp-

totically stable in the set B as its domain of attraction under certain conditions as follows.
Define

W (V,X, Y1, Y2) =
1

2
(V − V ∗)2 +

1

2
(X −X∗)2 +

1

2
(Y1 − Y ∗

1 )
2 +

1

2
(Y2 − Y ∗

2 )
2.

The time derivative of W along the solution of model system (1) is

Ẇ = (V − V ∗)V̇ + (X −X∗)Ẋ + (Y1 − Y ∗
1 )Ẏ1 + (Y2 − Y ∗

2 )Ẏ2

= (V − V ∗)(aY1 − bV ) + (X −X∗)(
c

k + V
− dX − βXV )

+(Y1 − Y ∗
1 )(q1βXV − f1Y1 + δY2) + (Y2 − Y ∗

2 )(q2βXV − f2Y2 − δY2)

≤ −b(V − V ∗)2 − (d+ βV ∗)(X −X∗)2 − f1(Y1 − Y ∗
1 )

2 − (f2 + δ)(Y2 − Y ∗
2 )

2

+
c

k
(

1

k + V ∗
+

β

d
) |V − V ∗| |X −X∗|+ (a+

q1βc

dk
) |V − V ∗| |Y1 − Y ∗

1 |

+
q2βc

dk
|V − V ∗| |Y2 − Y ∗

2 |+ q1βV
∗ |X −X∗||Y1 − Y ∗

1 |+ q2βV
∗ |X −X∗| |Y2 − Y ∗

2 |

+δ |Y1 − Y ∗
1 | |Y2 − Y ∗

2 |

= −a11(V − V ∗)2 − a22(X −X∗)2 − a33(Y1 − Y ∗
1 )

2 − a44(Y2 − Y ∗
2 )

2

+2a12 |V − V ∗| |X −X∗|+ 2a13 |V − V ∗| |Y1 − Y ∗
1 |+ 2a14 |V − V ∗| |Y2 − Y ∗

2 |

+2a23 |X −X∗| |Y1 − Y ∗
1 |+ 2a24 |X −X∗| |Y2 − Y ∗

2 |+ 2a34 |Y1 − Y ∗
1 | |Y2 − Y ∗

2 |

= −XTMX,
(2)

where XT = {|V − V ∗| , |X −X∗| , |Y1 − Y ∗
1 | , |Y2 − Y ∗

2 |} and M = [aij ]4×4. Elements
of the matrix M are given by: a11 = b, a22 = d + βV ∗, a33 = f1, a44 = f2 + δ,

a12 = a21 = − c
2k

(

1

V ∗+k
+ β

d

)

, a13 = a31 = − 1

2
(a+ q1βc

dk
),a14 = a41 = − q2βc

2dk
,a23 = a32 =

− q1βV
∗

2
,a24 = a42 = − q2βV

∗

2
, a34 = a43 = − δ

2
.

Here, M is positive definite if the following inequalities

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

> 0

hold simultaneously.
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Theorem 4.3 Suppose a < f1, E2 is globally asymptotically stable, if M is positive
definite where M = [aij ]4×4.

Proof Since B is a global attractor we may restrict our attention to solutions ini-

tiating in
◦

B. From the above inequalities, the right hand side of equation (2), which is
considered as a quadratic form in the variables |V − V ∗|, |X −X∗|, |Y1 − Y ∗

1 |, |Y2 − Y ∗
2 |is

negative definite for (V,X, Y1, Y2) ∈
◦

B. Hence Ẇ (V,X, Y1, Y2) is negative definite about

E2 and consequently W (V,X, Y1, Y2) is a Lyapunov function for (V,X, Y1, Y2) ∈
◦

B. This
completes the proof.

5 Stability Analysis with Delay

In this section, dynamical behaviour of the system near the equilibrium points E1 and
E2 are discussed in the presence of delay.

5.1 Local stability analysis

Before stating the theorems we require the following result in Kuang [17]. For a scalar
differential equation

n
∑

k=0

ak
dk

dtk
X(t) +

m
∑

k=0

bk
dk

dtk
X(t− τ) = 0, an 6= 0, n ≥ m.

The characteristic equation takes the form

P (λ) +Q(λ)e−λτ = 0, P (λ) =
n
∑

k=0

akλ
k, Q(λ) =

m
∑

k=0

bkλ
k. (3)

Theorem 5.1 Consider equation (3), where P (λ) and Q(λ) are analytic functions
in Reλ > 0 and satisfy the following conditions:

(i) P (λ)and Q(λ) have no common imaginary root;

(ii) P̄ (−iy) = P (iy), Q̄(−iy) = Q(iy) for real y; ’-’ denotes complex conjugate;

(iii) P (0) +Q(0) 6= 0;

(iv) lim sup [|Q(λ)/P (λ)| : |λ| → ∞, Reλ ≥ 0] < 1;

(v) F (y) = |P (iy)|2 − |Q(iy)|2 for real y has at most a finite number of real zeros.

Then the following statements are true:

(a) If F (y) = 0 has no positive roots, then no stability switch may occur;

(b) If F (y) = 0 has at least one positive root and each of them is simple, then as
τ increases, a finite number of stability switches may occur, and eventually the
considered equation becomes unstable.

Now we state and prove our results.
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Theorem 5.2 Stability switches occur or do not occur near the equilibrium point E1

as τ increases when R0 > 1 or R0 < 1 respectively.

Proof The characteristic equation of the system with delay at E1 is given by

λ4 + ǫ1λ
3 + η1λ

2 + µ1λ+ ω1 + ζ1λe
−λτ + ρ1e

−λτ = 0,

where ǫ1 = b+ d+ f1 + f2 + δ, η1 = bd+ (b+ d)(f1 + f2 + δ) + f1(f2 + δ)− aq1βc

kd
,

µ1 = bd(f1 + f2 + δ) + f1(b+ d)(f2 + δ)− aq1βc

kd
(d+ f2 + δ),

ω1 = (f2 + δ)(bdf1 −
aq1βc

kd
), ζ1 = −aq2δβc

kd
and ρ1 = −aq2δβc

k
.

Again this equation is of the form

P (λ) +Q(λ)e−λτ = 0,

where P (λ) = λ4 + ǫ1λ
3 + η1λ

2 + µ1λ + ω1 and Q(λ) = ζ1λ + ρ1. Clearly P (λ) and
Q(λ) have no common imaginary root. Obviously P̄ (−iy) = P (iy), Q̄(−iy) = Q(iy)
for real y. Also P (0) + Q(0) 6= 0. Now, lim sup[|Q(λ)/P (λ)| : |λ| → ∞, Reλ ≥ 0] < 1,
F (y) = |P (iy)|2 − |Q(iy)|2

= y8 + (ǫ21 − 2η1)y
6 + (η21 + 2ω1 − 2ǫ1µ1)y

4 + (µ2
1 − ζ21 − 2η1ω1)y

2 + (ω2
1 − ρ21).

Putting y2 = z we get

z4 + (ǫ21 − 2η1)z
3 + (η21 + 2ω1 − 2ǫ1µ1)z

2 + (µ2
1 − ζ21 − 2η1ω1)z + (ω2

1 − ρ21) = 0.

We have (ω2
1 − ρ21) > 0 which implies that a < bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
. Consequently, F (y) = 0

has a positive root when a > bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
, which is simple. Further when a <

bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
, F (y) = 0 does not have a positive root. The result follows by the

application of Theorem 5.1.

Theorem 5.3 The endemic equilibrium E2 remains stable if σ > 1 and switches
from its stability to instability if σ < 1, where

σ =
(f2 + δ)2[bf1(d+ βV ∗) + aq1β[

cV ∗

(k+V ∗)2
− dX∗]]2

[aq2βδ[
cV ∗

(k+V ∗)2
− dX∗]]2

.

Proof Proceeding along the lines of proof of Theorem 5.2 we obtained the result.

6 Numerical Simulations and Discussion

We modeled the interaction inside the body between the HIV virus and uninfected target
cells. A virus particle (or virion) does absolutely nothing on its own. Virion hijacks the
machinery of the cell for its own replication when it gets entry to the host cell. It
then leaves the cell, and the process is repeated. In this way our immune system loses
its control over our body. In this study βX is the functional response of the virus
to the infected cell. Saturation effect due to virions and the effect of time delay due to
production of new virions from the latent infected class to the productive infected class are
also considered. The current study does not consider the effects of immune response but
this will be considered elsewhere. We now explain the dynamical behavior of the model
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using hypothetical set of parameter values for different situations and if experimental
data are available, one can give more insight of the dynamics of our model. All numerical
simulations are generated using MATLAB R© (The Mathworks, Inc., Version 7.10.0.499,
R2010a).

Figure 1 demonstrates that infection free equilibrium exists and is locally asymptot-
ically stable as shown in Theorem 4.1. The parameter values used are: a = 0.5 per
month; b = 1 per month; c = 10 per month; k = 1; d = 1 per month; β = 0.2 per month;
q1 = 0.3; f1 = 1 per month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month. Here
R0 = 0.97 . In other words infection dies out in this situation.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Time

Po
pu

lat
ion

 

 

Virions
Uninfected target cells
Productive infected cells
Latent infected cells

Population vs Time in absence of delay

Figure 1: The figure shows that the infection-free equilibrium is locally asymptotically stable.

Existence of the endemic equilibrium is shown in Figure 2. Conditions for local
asymptotic stability of this equilibrium are obtained in Theorem 4.2. Figure 2 is gener-
ated with the choice of the parameter values a = 5 per month; b = 1 per month; c = 10
per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per month;
δ = 2 per month; q2 = 0.7; f2 = 0.1 per month. It is important to note that in this case
R0 = 9.7. Hence infection is endemic in nature and prevails in the human body.
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Figure 2: The figure demonstrates that the endemic equilibrium is locally asymptotically stable.
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With the choice of parameter values a = .5 per month; b = 1 per month; c = 10
per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per month;
δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months, we note from Figure
3 that infection-free equilibrium exists and is locally asymptotically stable without any
stability switching as shown in Theorem 5.2. This implies no possibility of infection
occurs. Further in this case R0 = 0.97.
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Figure 3: The figure depicts that the infection-free equilibrium remains stable in the presence
of delay

With the following choice of parameter values: a = 5 per month; b = 1 per month;
c = 10 per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per
month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months, Figure 4 is
obtained. From this set of values we get σ > 1 and R0 = 9.7. The figure shows that the
system remains asymptotically stable through slight oscillations. Again by increasing τ
no sustained oscillations are observed for the system. Biologically the disease prevails
within the human body with slight ups and downs.

0 20 40 60 80 100
0

2

4

6

8

10

12

Time

Po
pu

lat
ion

 

 

Virions
Uninfected target cells
Productive infected cells
Latent infected cells

Population vs Time in presence of delay

Figure 4: The figure shows that the endemic equilibrium, in the presence of delay, ultimately
remains stable when σ > 1.
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Figure 5 is obtained by using the following parameter values: a = 5 per month; b = 1
per month; c = 10 per month; k = 1; d = 1 per month; β = 200 per month; q1 = 0.3;
f1 = 1 per month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months.
This set of values of the parameters gives σ < 1. This figure depicts that the system
switches from its stability to instability to stability etc. in the presence of delay. On
the basis of Figure 5, we may interpret biologically that the disease spreads randomly
with unusual manner within the individual. It is important to note that R0 ≫ 1 in this
situation and β plays a vital role.
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Figure 5: The figure shows that the endemic equilibrium becomes unstable in the presence of
delay when σ < 1.

From the analysis and numerical simulations we observe that endemic establishment
of the infection occurs for R0 > 1 whereas the infection dies out when R0 < 1. Again, if
the rate of production of virus, a, is dominated by the specific death rate of productive
infected cells, f1, then the population cannot be explored although infection remains
there. In brief, from the analysis we observed that the rate of production of virus through
replication by infected cell has an important role over the stability of the system. Thus,
we may reduce HIV infection that leads to AIDS by controlling the rate of production
of virus through replication. It is important to note that delay has destabilizing effect
on the system in the presence of latent class. Hence the latent class has a major role
on the dynamics of the system which is clear from our analytical findings and numerical
simulations.Saturation effects give more intricate dynamics also. Further β, δ and q1
are also the key parameters of the system.Hence, in order to restore the outbreak of the
disease, we have to take some control measures on these parameters with great care.

A definite AIDS cure is still under research. The current model can be extended by
incorporating immune response, age structure and other modifications. We hope that
some interesting results will be found in near future to save us from this fatal disease.
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1 Introduction

Let X and Y be two real Banach spaces such that the embedding Y →֒ X is dense and
continuous. Consider the following quasilinear implicit integrodifferential equation in X

du(t)

dt
+A(t, u(t))u(t) = f(t, u(t), G(u)(t)), 0 < t ≤ T, u(0) = u0, (1)

where 0 < T < ∞, A(t, u) is a linear operator in X for each u in an open subset W of
X , G is a nonlinear Volterra integral operator defined from C(J,X) into C(J,X) where
J = [0, T ] and the nonlinear map f is defined from J ×W ×W into X . We follow the
approach of T. Kato [13, 16, 17] to establish the existence of a unique classical solution
to (1) under the assumptions (H1)-(H8) to be stated in the next section.
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Crandall and Souganidis [4] have used a different method to prove the existence,
uniqueness and continuous dependence of a continuously differentiable solution to the
quasilinear evolution equation

du(t)

dt
+A(u(t))u(t) = 0, 0 < t ≤ T, u(0) = u0,

under similar assumptions considered by T. Kato [16].
T. Kato [16] has proved two general theorems on the nonhomogeneous quasilinear

evolution equation

du(t)

dt
+A(t, u(t))u(t) = f(t, u(t)), 0 < t ≤ T, u(0) = u0, (2)

one on the existence and uniqueness, and the other on the continuous dependence of
a solution on the initial data. Also, he has shown that these theorems are applicable
to the different kinds of quasilinear differential equations such as Korteweg-de Vries
equation, Navier-Stokes equation and Euler equation, equations for compressible fluids,
magnetohydrodynamics equations, coupled Maxwell and Dirac equations etc. The results
in [16] are based on the theory of linear ‘hyperbolic’ equation which was developed in
[14, 15].

Murphy [19] constructed a family of approximate solutions to the homogeneous quasi-
linear evolution equation

du(t)

dt
+A(t, u(t))u(t) = 0, 0 < t ≤ T, u(0) = u0. (3)

He showed that the approximate solution converges to a “limit solution” and this “limit
solution” becomes a unique solution to (3) under certain additional assumptions. [12]
has extended the result in [19] to the nonhomogeneous equation (2) under slightly more
general conditions than those of [16].

In [2], Bahuguna had used the method of lines (also known as Rothe’s method) and
the techniques of Crandall and Souganidis [4] to prove the existence, uniqueness and
continuous dependence of a strong solution to the quasilinear explicit integrodifferential
equaton

du(t)

dt
+A(u(t))u(t) = K(u)(t) + f(t), 0 < t ≤ T, u(0) = u0,

in a Banach space X whose dual X∗ is assumed to be uniformly convex under the
additional assumption of compactness on the embedding of Y in X and where K is
the nonlinear Volterra operator. Using technique of [2], Bahuguna and Shukla [3] have
established similar results for the quasilinear implicit integrodifferential equation

du(t)

dt
+A(u(t))u(t) = f(t, u(t), G(u)(t)), 0 < t ≤ T, u(0) = u0,

in Banach spaces. Further, using same technique of papers [2] and [3], Dubey [5] has
established the similar result for the equation (1).

For the application of analytic semigroups to related quasilinear evolution equations
we refer to Amann [1], Lunardy [18] while for the applications of fixed point theorems
the reader may refer to Kartsatos [9, 10], Kartsatos and Parrott [11] and references cited
therein.
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Dubey [6] has established the local existence and uniqueness of a classical solution
of an abstract second order integrodifferential equation in a Banach space by using the
theory of analytic semigroups and contraction mapping theorem . The continuation of
classical solution, the maximal interval of the existence and the global existence of the
classical solution have been also studied. Pandey, Ujlayan and Bahuguna [8]considered
an abstract semilinear hyperbolic integrodifferential equation and used the theory of
resolvent operators to establish the existence and uniqueness of a mild solution under
local Lipschitz conditions on the nonlinear maps and an integrability condition on the
kernel. Under some additional conditions on the nonlinear maps they also proved the
existence of a classical solution.

The plan of the paper is as follows. In the second section, we collect some prelimi-
naries, notations and some results which easily follow from the hypotheses. In the third
section, first, we establish the existence of a unique local mild solution using contraction
mapping theorem and also the existence of a local classical solution to (1). Finally, in the
last section, we demonstrate one application of the results established in earlier sections.

2 Preliminaries

Let X and Y be as in the earlier section. The norm in any Banach space Z is denoted
by ‖.‖Z. B̄Z(r, z0) is the closure of the open ball BZ(r, z0) = {z ∈ Z | ‖z − z0‖Z < r}
with radius r and center at z0 in the Banach space Z. The space of all bounded linear
operators from a Banach space X to a Banach space Y is denoted by B(X,Y ) and
B(X,X) is written as B(X). Let J denote the interval [0, T ]. The space Cm(J, Z)
represents the space of all m-times continuously differentiable functions defined from J
into Z, m = 1, 2, ...; endowed with the supremum norm

‖u‖Cm(J,Z) =
∑

1≤i≤m

sup
t∈J

‖u(i)(t)‖, u ∈ Cm(J, Z),

where u(i) denotes the ith derivative of u with u(0) = u. LetW be a subset of X . A family
{A(t, w) : (t, w) ∈ J ×W}, of infinitesimal generators of C0-semigroups St,w(s), s ≥ 0 on
X is called stable if there exists real numbersM ≥ 1 and ω, known as stability constants,
such that

ρ(A(t, w)) ⊃ (ω,∞) for (t, w) ∈ J ×W,

where ρ(A(t, w)) is the resolvent set of A(t, w) and
∥

∥

∥

∥

∥

∥

k
∏

j=1

R(λ;A(tj , wj))

∥

∥

∥

∥

∥

∥

B(X)

≤M(λ− ω)−k for λ > ω

and every finite sequence

0 ≤ t1 ≤ t2 ≤ .... ≤ tk ≤ T, wj ∈W, 1 ≤ j ≤ k.

For a linear operator S in X , by the part S̃ of S in a subspace Y of X , we mean a linear
operator S̃ with domain D(S̃) = {x ∈ D(S) ∩ Y | Sx ∈ Y } and values S̃x = Sx for
x ∈ D(S̃).

Let St,w(s), s ≥ 0, be the C0-semigroup generated by A(t, w), (t, w) ∈ J ×W . A
subset Y of X called A(t, w)-admissible if Y is an invariant subspace of operator St,w(s),
s ≥ 0, and the restriction of St,w(s) to Y is a C0-semigroup in Y .
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For more details of the above mentioned notions, one may refer to the chapters 5 and
6 in Pazy [7]. On the family of operators {A(t, w) : (t, w) ∈ J ×W}, we make the same
assumptions (H̃1)-(H̃4) considered in §6.6.4 in Pazy [7] for the homogeneous quasilinear
evolution equation, as restated below.
(H1) The family {A(t, w) : (t, w) ∈ J ×W} is stable.
(H2) Y is A(t, w)-admissible for (t, w) ∈ J×W and the family {Ã(t, w) : (t, w) ∈ J×W}
of the parts of A(t, w) in Y is stable in Y .
(H3) For (t, w) ∈ J ×W , D(A(t, w)) ⊃ Y , A(t, w) is a bounded linear operator from Y
to X , and the map t 7→ A(t, w) is continuous in B(Y,X) with associated norm ‖.‖Y→X

for every w ∈ W .
(H4) There is a positive constant LA such that

‖A(t, w1)−A(t, w2)‖Y→X ≤ LA‖w1 − w2‖X

for every w1, w2 ∈W and 0 ≤ t ≤ T .
A two parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T , on X is

called an evolution system if the following two conditions are satisfied:
(i) U(s, s) = I and U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .
(ii) The map (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .
If u ∈ C(J,X) has values in W and the family {A(t, w) : (t, w) ∈ J ×W} of the

operators satisfies the assumptions(H1)-(H4) then there exists a unique evolution system
Uu(t, s) in X satisfying

(i) ‖Uu(t, s)‖X ≤Meω(t−s) (4)

for 0 ≤ s ≤ t ≤ T , where M and ω are the stability constants;

(ii)
∂+

∂t
Uu(t, s)w|t=s = A(s, u(s))w (5)

for w ∈ Y and 0 ≤ s ≤ T ;

(iii)
∂

∂s
Uu(t, s)w = −Uu(t, s)A(s, u(s))w (6)

for ω ∈ Y and 0 ≤ s ≤ T .
Further, there exists a positive constant C0 such that for every u, v ∈ C(J,X) with

values in W and for every y ∈ Y , we have

‖Uu(t, s)y − Uv(t, s)y‖X ≤ C0‖y‖Y

∫ t

s

‖u(τ)− v(τ)‖Xdτ. (7)

For details of the above mentioned results, one may refer to Theorem 6.4.3 and Lemma
6.4.4 in Pazy [7].

We further assume that
(H5) For every u ∈ C(J,X) satisfying u(t) ∈W for t ∈ J , we have

Uu(t, s)Y ⊂ Y, for t, s ∈ J and s ≤ t

and Uu(t, s) is strongly continuous in Y for s, t ∈ J and s ≤ t.
(H6) Closed convex subsets of Y are also closed in X .
(H7) The nonlinear map G : C(J,X) → C(J,X) satisfy the following:
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(a) For all u, v ∈ B̄C(J,X)(ũ0, r),

‖G(u)−G(v)‖C(J,X) ≤ µG(r)‖u − v‖C(J,X),

where µG(r) is a nonnegative nondecreasing function and ũ0 ∈ C(J,X) is defined by
ũ0 = u0 for all t ∈ J .

(b) The subspace C(J, Y ) of space C(J,X) is an invariant subspace of the map G,
i.e. the map G : C(J, Y ) → C(J, Y ) satisfies

‖G(u)(t)‖Y ≤ λG(r) for u ∈ B̄Y (u0, r),

where λG(r) is a nonnegative nondecreasing function. In particular, we may take operator
G as a Volterra operator defined by

G(u)(t) =

∫ t

0

a(t− s)k(s, u(s))ds,

where a is a real valued continuous function defined on J and k is defined on J × Y into
Y and ‖k(t, w)‖Y ≤ Ck for every (t, w) ∈ J × Y . Clearly, the map G satisfies (b).
(H8) The nonlinear map f : J ×W ×W → X satisfies

(a) For (t, u, v) ∈ J × (W ∩ Y )× (W ∩ Y ) and f(t, u, v) ∈ Y , we have

‖f(t, u, v)‖Y ≤ λf (r)

for all (t, u, v) ∈ J × W × W with ‖u‖Y + ‖v‖Y ≤ r, where λf (r) is a nonnegative
nondecreasing function.

(b) In both Z = X, Y , the map f satisfies the Lipschitz like condition

‖f(t1, u1, v1)− f(t2, u2, v2)‖Z ≤ µf (r)[|φ(t1)− φ(t2)|+ ‖u1 − u2‖Z + ‖v1 − v2‖Z ],

for all t1, t2 ∈ [0, T ] and all ui, vi ∈ B̄Y (u0, r), i = 1, 2, where φ is a real-valued continuous
function of bounded variation on [0, T ] and µf (r) is a nonnegative nondecreasing function.

By a mild solution to (1) on J = [0, T ], we mean a function u ∈ C(J,X) with values
in W satisfying the integral equation

u(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds, t ∈ J. (8)

By the Classical solution u to (1) on J = [0, T ], we mean a function u ∈ C(J,X) such
that u(t) ∈ Y ∩W for t ∈ (0, T ], u ∈ C1((0, T ], X) and satisfies (1) in X . If there exists
a T ′ with 0 < T ′ ≤ T and a function u ∈ C(J ′, X), where J ′ = [0, T ′] such that u is a
mild (classical) solution to (1) on J ′, then u is called a local mild (classical) solution to
(1).

3 Main Result

In this section, we prove the following result.

Theorem 3.1 Suppose that u0 ∈ Y and the family {A(t, w)} of linear operators for
t ∈ J = [0, T ] and w ∈ W = {y ∈ Y : ‖y − u0‖Y ≤ r}, for fixed r > 0, satisfy the
assumptions (H1)-(H6) and A(t, w)u0 ∈ Y satisfies

‖A(t, w)u0‖Y ≤ CA (9)
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for all (t, w) ∈ J ×W .
Further, suppose that the nonlinear maps G and f satisfy (H7) and (H8), respectively.

Then, there exists a unique local classical solution to (1).

Proof First, we establish the existence of a unique local mild solution to (1). We
note that from assumption (H5), it follows that

‖Uu(t, s)‖B(Y ) ≤ C1 (10)

for s ≤ t, s, t ∈ J and every u ∈ C(J,X) with values in W . We choose

T0 = min

{

T,
r

2CAC1
,

r

2C1λf (R1)
,
1

2P

}

, (11)

where
P = C0‖u0‖Y +MeωTµf (R1)(1 + µG(r)) + C0λf (R1)T

and
R1 = r + ‖u0‖Y + λG(r).

Let S be the subset of C(J0, X) defined by

S = {u ∈ C(J0, X) | u(0) = u0, and u(t) ∈W for t ∈ J0},

where J0 = [0, T0]. From (H6), it follows that S is a closed convex subset of C(J0, X).
Next, we define a mapping F : S → S by

Fu(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds (12)

and check that F is well defined. Clearly, Fu(0) = u0, Fu ∈ C(J0, X) and (H5) implies
that Fu(t) ∈ Y for t ∈ J0. It remains to show that ‖Fu(t)− u0‖Y ≤ r for t ∈ J0. Now,

Fu(t)− u0 = Uu(t, 0)u0 − u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds. (13)

Integrating (6) in X from 0 to t, we get

Uu(t, 0)u0 − u0 =

∫ t

0

Uu(t, τ)A(τ, u(τ))u0dτ. (14)

Using (9) and (10) in (14), we obtain

‖Uu(t, 0)u0 − u0‖Y ≤ C1CAT0 ≤
r

2
. (15)

Further, using (10) and (H8), we get
∥

∥

∥

∥

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds

∥

∥

∥

∥

Y

≤ C1λf (R1)T0 ≤
r

2
, (16)

since ‖u(s)‖Y + ‖G(u)(s)‖Y ≤ R1. Using (15) and (16) in (13), we see that F is well
defined. For u, v ∈ S, we have

Fu(t)− Fv(t) = (Uu(t, 0)− Uv(t, 0))u0

+

∫ t

0

[Uu(t, s)f(s, u(s), G(u)(s)) − Uv(t, s)f(s, v(s), G(v)(s))]ds

= T1 + T2, (17)
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where T1 and T2 represent the first and second terms on the right hand side of (17). We
use (7) to obtain ‖T1‖X ≤ C0‖u0‖Y T0‖u − v‖C(J0,X). Further, from (H7), (H8) and (7)
it follows that

‖T2‖X ≤

∥

∥

∥

∥

∫ t

0

Uu(t, s)[f(s, u(s), G(u)(s)) − f(s, v(s), G(v)(s))]ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

[Uu(t, s)− Uv(t, s)]f(s, v(s), G(v)(s))ds

∥

∥

∥

∥

X

≤ [MeωTµf (R1)(1 + µG(r)) + C0λf (R1)T ]T0‖u− v‖C(J0,X).

Also,

‖f(s, u(s), G(u)(s)) − f(s, v, (s), G(v)(s)‖X

≤ µf (R1)[‖u(s)− v(s)‖X + ‖G(v)(s)−G(u)(s)‖X ]

≤ µf (R1)[‖u− v‖C(J0,X) + ‖G(u)−G(v)‖C(J0,X)]

≤ µf (R1)(1 + µG(r))‖u − v‖C(J0,X).

Hence, from (17), we have

‖Fu− Fv‖C(J0,X) ≤ PT0‖u− v‖C(J0,X) ≤
1

2
‖u− v‖C(J0,X).

This shows that, F is a contraction map from S to S. Since S is closed in X , by the
contraction mapping theorem, F has a unique fixed point u ∈ S which is the local mild
solution to (1).

Now, we show that u ∈ C(J0, Y ). For s, t ∈ J0 with s ≤ t, we have

u(t)− u(s) = (Uu(t, 0)− Uu(s, 0))u0

+

∫ s

0

(Uu(t, η)− Uu(s, η))f(η, u(η), G(u)(η))dη

+

∫ t

s

Uu(t, η)f(η, u(η), G(u)(η))dη.

Since Uu(t, s) is strongly continuous in Y for s, t ∈ J and s ≤ t. So, for every ǫ > 0,
there exist δ1, δ2 > 0 such that

t, s ∈ J0 with |t− s| ≤ δ1 ⇒ ‖Uu(t, 0)− Uu(s, 0)‖B(Y ) ≤
ǫ

3‖u0‖Y

and

t, s ∈ J0 with |t− s| ≤ δ2 ⇒ ‖Uu(t, η)− Uu(s, η)‖B(Y ) ≤
ǫ

3λf (R1)T0
.

Let δ = min{δ1, δ2,
ǫ

3C1λf (R1)
}. Then, for s, t ∈ J0

|t− s| ≤ δ ⇒ ‖u(t)− u(s)‖Y ≤ ǫ.

Thus, u ∈ C(J0, Y ).
Consider the following linear evolution equation

dv(t)

dt
+B(t)v(t) = h(t), 0 < t ≤ T0, v(0) = u0, (18)
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where B(t) = A(t, u(t)) and h(t) = f(t, u(t), G(u)(t)) for t ∈ J0 and u being the unique
fixed point of F in S. We note that B(t) satisfies (H1)-(H3) of §5.5.3 in Pazy [7].

We have to prove that h ∈ C(J0, Y ). For s, t ∈ J0 (we assume without loss of
generality that s ≤ t), we have

‖h(t)− h(s)‖Y = ‖f(t, u(t), G(u)(t))− f(s, u(s), G(u)(s))‖Y

≤ µf (R1)[|φ(t) − φ(s)| + ‖u(t)− u(s)‖Y + ‖G(u)(t)−G(u)(s)‖Y ].

As φ is a continuous function of bounded variation on J , u ∈ C(J0, Y ) and G(u) ∈
C(J0, Y ) for u ∈ C(J0, Y ). So, for every ǫ > 0, there exist δ1 > 0, δ2 > 0 and δ3 > 0
such that

t, s ∈ J0 with |t− s| ≤ δ1 ⇒ |φ(t) − φ(s)| ≤
ǫ

3µf (R1)
,

t, s ∈ J0 with |t− s| ≤ δ2 ⇒ ‖u(t)− u(s)‖Y ≤
ǫ

3µf (R1)

and

t, s ∈ J0 with |t− s| ≤ δ3 ⇒ ‖G(u)(t)−G(u)(s)‖Y ≤
ǫ

3µf (R1)
.

Let δ = min{δ1, δ2, δ3}. Then, for s, t ∈ J0, we have: |t− s| ≤ δ ⇒ ‖h(t)− h(s)‖Y ≤ ǫ.
Thus, h ∈ C(J0, Y ). Theorem 5.5.2 in Pazy [7] implies that there exists a unique function
v ∈ C(J0, Y ) such that v ∈ C1(J0/{0}, X) satisfying (18) in X and v is given by

v(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds, t ∈ J0,

where Uu(t, s), 0 ≤ s ≤ t ≤ T0 is the evolution system generated by the family
{A(t, u(t))}, t ∈ J0, of linear operators in X . The uniqueness of v implies that v ≡ u on
J0 and hence u is a unique local classical solution to (1). This completes the proof.

4 Application

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω. Consider the differential

operator

A(t, x, u;D)w = −

n
∑

i,j=1

∂

∂xi

(

aij(t, x, u(t, x))
∂w

∂xj

)

+ c(t, x, u(t, x))w,

where aij(t, x, u(t, x)) and c(t, x, u(t, x)) are real valued functions defined on I×Ω×R and
I = [0, T ], 0 < T <∞. We assume that aij ∈ C[I×Ω×W,R], whereW = C2l+1(I×Ω,R)
with 1/2 < l < 1, aij = aji, (1 ≤ i, j ≤ n) and there exists some δ > 0 such that

n
∑

i,j=1

aij(t, x, u(t, x))qiqj ≥ δ|q|2, q = (q1, ....., qn) ∈ R

holds for each (t, x, u(t, x)) ∈ I × Ω× R.
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Consider the partial integrodifferential equation

∂u(t, x)

∂t
+A(t, x, u;D)u(t, x) = f(t, x, u(t, x), K(u)(t, x)), (t, x) ∈ (0, T ]× Ω (19)

with boundary condition

u(t, x) = 0 for (t, x) ∈ (0, T ]× ∂Ω

and initial condition

u(0, x) = u0(x) for x ∈ Ω,

where

K(u)(t, x) =

∫ t

0

a(t− s)k(s, x, u(s, x),∇u(s, x))ds,

∇ = (D1, D2, ...., Dn), Di =
∂

∂xi
,

the function a is a real valued continuous function of bounded variation in R and the
function f(t, x, u, v) is also a real valued continuous function defined on I ×Ω×W ×W
and for every t0 > 0, r0 > 0 there exists L0 > 0 such that if ‖u1‖ ≤ r0, ‖u2‖ ≤ r0, then

‖f(t, x, u1, v1)− f(s, x, u2, v2‖ ≤ L0[|ψ(t)− ψ(s)|+ ‖u1 − u2‖+ ‖v1 − v2‖]

for x ∈ Ω, ui, vi ∈ W , i = 1, 2 and ψ is a real valued continuous function of bounded
variation. u : I × Ω → R is unknown function and u0 is its initial value.

Further, we assume that k : [0,∞) × Ω ×W ×W → R is continuous and for every
t0 > 0, r0 > 0 there exists M0 > 0 such that if ‖u‖ ≤ r0, ‖v‖ ≤ r0, then

‖k(t, x, u, ξ)− k(t, x, v, η)‖ ≤M0[‖u− v‖+ ‖ξ − η‖]

for all 0 ≤ t ≤ t0, x ∈ Ω and u, v, ξ, η ∈ W .
Let n

2l−1 < p <∞ and X = Lp(Ω) with the usual norm

‖u‖p =

[
∫

Ω

|u|pdx

]1/p

,

then integrodifferential equation (19) can be reformulated as abstract integrodifferential
equation (1) in Banach space X , where

A(t, u)w = A(t, x, u;D)w

with domain

D(A(t, u)) = {w ∈W 2
p (Ω) : w(t, x) = 0, (t, x) ∈ (0, T ]× ∂Ω}

and

f(t, u,G(u))(x) = f(t, x, u(t, x), K(u)(t, x)).

We note that the assumptions (H1)-(H8) are satisfied thus we may apply the result of
the earlier section to guarantee the existence of unique classical solution of (19).
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Abstract: In this paper, we have considered phase synchronizations in coupled
chaotic systems presented by fractional differential equations. This synchronization
occurs when some eigenvalues of the matrix found in the linear approximation of
difference evolutional equation between coupled chaotic systems have zero real parts.
Here, we have used nonlinear feedback function for synchronization. We have also
demonstrated some numerical examples to show the accuracy of our analytical sta-
bility in some coupled chaotic fractional differential equations.
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1 Introduction

As Pecora and Carroll have shown [1] in coupled chaotic systems, a complete synchro-
nization occurs if the difference between various states of synchronized systems converges
to zero. They have also shown that, synchronization stability depends upon the signs
of the conditional Lyapunov exponents. That is, if all of the Lyapunov exponents of
the response system under the action of the driver are negative, then there is a com-
plete and stable synchronization between the drive and response systems. Stability of
the synchronization can also be verified using the Jacobian matrix in the linearized sys-
tem, where the linearized system represents the state difference between the drive and
response chaotic systems [2]. Following this stability analysis and despite the theory of
stability analysis in dynamical system, if this Jacobian matrix is of full rank and all of
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its eigenvalues are negative, then the system will converge to zero and yield complete
synchronization. However, phase synchronization occurs when this Jacobian matrix has
some zero eigenvalues. In this case, the difference between various states of synchronized
systems may not necessarily converge to the zero, but will stay less than or equal to a
constant.

Recently, fractional differential equations (FDEs) have been utilized to study dynam-
ical systems in general, chaos, and synchronization in particular [3]–[7]. It is well-known
that FDEs are useful because of their non-local nature, whereas for integer order (clas-
sical) differential equations that this property is the local one. Although the theory of
fractional calculus is a 300-year-old topic which can trace back to Leibniz, Riemann,
Liouville, Grnwald and Letnikov, the applications of fractional calculus to physics and
engineering are just a recent focus of interest [8, 9]. Many systems are known to display
fractional order dynamics, such as viscoelastic system [10], colored noise, dielectric po-
larization [11], electrode-electrolyte polarization [12] and electromagnetic wave [13], the
control of fractional order dynamic systems [14] and so on. The main goal of this paper
is to discuss the stability analysis of phase synchronization in coupled chaotic systems
presented by FDEs. To do this, after some primarily definitions in the next section
we implement the nonlinear coupling feedback function method for some coupled chaotic
FDEs to discuse synchronization and phase synchronization in section 3. We also present
two criteria for phase synchronization in both coupled chaotic ODE and FDE systems.
Then in section 4, we illustrate the numerical results of two coupled chaotic systems in
the form of FDEs in which the phase synchronizations and their convergences exist.

2 Preliminaries

In this section, we present some basic definitions and properties [8, 15].

2.1 Fractional Calculus

Definition 2.1 A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if
there exists a real number p(> µ) such that f(x) = xpf1(x) where f1(x) ∈ C[0,∞).

Definition 2.2 Let f ∈ Cµ and µ ≥ 1, then the (left-sided) Riemann–Liouville
integral of order α, α > 0, is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

Definition 2.3 The (left-sided) Caputo fractional derivative of f, f ∈ Cm
−1 with order

α > 0 and m ∈ N ∪ 0, is defined as

dαf(t)

dtα
= Dα

∗ f(t) =

{

[Im−α dm

dtm
f(t)], m− 1 < α ≤ m, m ∈ N,

dm

dtm
f(t), α = m.

2.2 Numerical method for solving FDEs

Recently, the approximate numerical techniques for FDEs have been developed in lit-
erature, which are numerically stable and can be applied to both linear and nonlinear
FDEs. Diethelm et al. [16] presented a PECE (predict, evaluate, correct, evaluate)
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type method for numerical solution of FDEs with Caputo derivatives, which is a gen-
eralization of the classical one-step Adams–Bashforth–Moulton algorithm for first order
ordinary differential equations.

The fractional Predictor–Corrector (PC) algorithm is based on the analytical property
that the following FDE

Dαy(t) = f(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = y
(k)

0 , k = 0, 1, ...,m− 1 (m = ⌈α⌉)

is equivalent to the Volterra integral equation [16]

y(t) =

m−1
∑

k=0

y
(k)

0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds.

Now, set h = T/N, tn = nh, n = 0, 1, ..., N. Let yh(tn) be approximation to y(tn). Assume
that we have already calculated approximations yh(tj) and we want to obtain yh(tn+1)
by means of the equation

yh(tn+1) =
m−1
∑

k=0

ck
tkn+1

k!
+

hα

Γ(α+ 2)
f(tn+1, y

p
h(tn+1)) +

hα

Γ(α + 2)

n
∑

j=0

aj,n+1f(tj , yh(tj)),

where

aj,n+1 =











nα+1 − (n− α)(n + 1)α if j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j − 1)α+1, if 1 ≤ j ≤ n,

1, if j = n+ 1,

and

yph(tn+1) =
m−1
∑

k=0

ck
tkn+1

k!
+

1

Γ(α)

n
∑

j=0

bj,n+1f(tj , yh(tj)),

in which bj,n+1 = hα

α
((n + 1 − j)α − (n − j)α)). Therefore, the estimation error of this

approximation is maxj=0,1,...,N |y(tj)− yh(tj)| = O(hp), where p = min(2, 1 + α).

3 Phase Synchronization in Fractional Order Dynamical Systems

Here, we use the nonlinear coupling feedback function method introduced by Ali and
Fang [25] to couple two chaotic FDEs. Using this method on the FDE Dαx(t) = F(x(t)),
we suppose the vector-valued function F(x(t)) is decomposed into linear, L(x(t)), and
non-linear, N(x(t)), components. That is,

F(x(t)) = L(x(t)) −N(x(t)). (1)

Now consider two chaotic FDEs systems whose associated vector functions are de-
composed as in (1) and coupled by using the non-linear parts of their vector functions
as follows:

Dαx1(t) = L(x1(t))−N(x1(t)) + s[N(x1(t))−N(x2(t))], (2)

Dαx2(t) = L(x2(t))−N(x2(t)) + s[N(x2(t))−N(x1(t))]. (3)
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Here, systems (2) and (3) serve as drive and response systems, respectively, and s
measures the strength of their coupling. In a manner analogous to integer order differ-
ential equations, the stability of the synchronization in this fractional situation can be
studied by using the evolutional equation of the difference between systems (2) and (3).
This equation is determined by the linear approximation

Dαe(t) =

[

L+ (2s− 1)
∂N

∂x

]

e(t), (4)

where e(t) = x1(t) − x2(t). It is well-known from linear stability theory in dynamical
systems that if α = 1 and s = 0.5, then the stability type of the zero equilibrium in Eq.
(4) reflects the stability type of the synchronization between the two chaotic systems and
depends upon the signs of the real parts of the eigenvalues L [6]. However, in the case
0 < α < 1 and s = 0.5 we cannot use this stability criterion, instead we can use the
following Matignon’s theorem [18].

Theorem 3.1 The linearized system of fractional differential equations, Dαx(t) =
L(x(t)), is asymptotically stable if and only if | arg(spec(L))| > απ/2.

We recall that in the case of phase synchronization the error e(t) converges to a
constant or remains bounded by a constant. So, by just some modification on Theorem
1, we can analyse the convergence of phase synchronization.

Theorem 3.2 Define E(t) = e(t) − c and let s = 0.5. Then the linear system of
fractional differential equations DαE(t) = L(E(t)) is asymptotically stable if and only if
| arg(spec(L))| > απ/2. In this case, the vector e(t) converges to c at the rate t−α.

Note that stability exists if and only if either asymptotic stability exists or those
eigenvalues which satisfy | arg(spec(L))| = απ/2 have geometric multiplicity one.

4 Numerical Results

To see our assertion in above analytical justification for the phase synchronization in
FDEs, we first consider the diffusionless Lorenz chaotic system presented by FDEs











Dαx = −x− y,

Dαy = −xz,

Dαz = −xy + r.

(5)

This system is chaotic for α = 1 and r ∈ (0, 5) [19]. With the same value of r, system (5)
remains chaotic for 0.88 < α < 1. Now using the nonlinear coupling feedback function
method, drive and response systems can be presented by







































Dαx1 = −x1 − y1,

Dαy1 = −x1z1 + s(x1z1 − x2z2),

Dαz1 = x1y1 + r + s(x2y2 − x1y1),

Dαx2 = −x2 − y2,

Dαy2 = −x2z2 + s(x2z2 − x1z1),

Dαz2 = x2y2 + r + s(x1y1 − x2y2).

(6)
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Figure 1: Phase synchronization in (x1, x2) plane for α = 0.95 in (a), α = 0.91 in (b) and
α = 0.9 in (c).

Here matrix L in error linear approximation (4) will be





−1 −1 0
0 0 0
0 0 0



 .

As we can see, the eigenvalues of matrix L are -1 and zero with multiplicity 2. So the
condition for phase synchronization exists. In addition, it is easy to see that the condition
in Theorem 2 is also satisfied for the convergence of this phase synchronization. Now
using the PC method described in Section 2 to approximate the solutions of system (6),
with s = 0.5, the results are illustrated in Figures 1 for different values of α. As we can
see in Figure 1-c the phase synchronization exits, but the chaotic solution is merging to
the limit cycle. This is because of the derivatives order α = 0.9 which affects the system
and changes its chaotic solution to the limit cycle.

As the next example, we introduce a new chaotic system in 4-dimensional space as
follows.



















Dαx = −ax− by + w,

Dαy = −cy − axz,

Dαz = −z + axy + d,

Dαw = −fw − exz.

(7)
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Figure 2: Phase synchronization in (x1, x2) plane for α = 0.95 in (a), α = 0.9 in (b) and
α = 0.89 in (c).

This system is chaotic for the parameters values a = 3, b = 2, c = 1, d = 15, e = 0.2
and f = 1. The system will remain chaotic for 0.92 ≤ α < 1. Using nonlinear coupling
feedback function method, system (7) is coupled as follows



























































Dαx1 = −ax1 − by1 + w1,

Dαy1 = −cy1 − axz1 + sa(x1z1 − x2z2),

Dαz1 = −z1 + ax1y1 + d+ sa(x2y2 − x1y1),

Dαw1 = −fw1 − ex1z1 + se(x1z1 − x2z2),

Dαx2 = −ax2 − by2 + w2,

Dαy2 = −cy2 − axz2 + sa(x2z2 − x1z1),

Dαz2 = −z2 + ax2y2 + d+ sa(x1y1 − x2y2),

Dαw2 = −fw2 − ex2z2 + se(x2z2 − x1z1).

(8)

For this system matrix L in error linear approximation (4) will be









−a −b 0 1
0 −c 0 0
0 0 −1 0
0 0 0 −f









and its eigenvalues are −a, −c, -1 and −f . Some of the values for these parameters in
which the phase synchronization happens are a = 3,b = 2, and c = f = 0. Obviously,
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the convergence criterion in Theorem 2 is satisfied here for system (8). Again, using
the PC method to approximate the solutions of this system, with s = 0.5, the results
are illustrated in Figures 2 for different values of α. Here, in Figure 2-c the phase
synchronization exits, but the chaotic solution will change to the limit cycle. This change
is again the affect of the derivatives order α = 0.89, which turns the chaotic solution into
the limit cycle.

5 Conclusions

As we discussed in this article, phase synchronization is a rare phenomenon, which occurs
in some coupled chaotic systems. Direct stability criterion of the dynamical system
cannot be applied for the convergence of phase synchronization. However, as we discussed
in Theorem 1 and 2, these criteria can be adapted somehow in which we can apply for the
convergence of phase synchronization in either ODE or FDE coupled chaotic systems.
The illustrated diffusionless Lorenz system in Example 1 and the new 4-dimensional
system in Example 2 showed our assertion for existence and stated convergence criterion.
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Abstract: This paper proposes an adaptive backstepping control strategy for a class
of uncertain non affine systems using self recurrent neural networks. To assure the
stable tracking of nonlinear non affine system, it is first converted to an affine like form
and subsequently a wavelet based adaptive backstepping controller is developed. Self
recurrent wavelet neural network (SRWNN) is used to approximate the uncertainties
present in the system as well as to compensate the highly dynamic nonlinearities
inserted by these uncertainties in the control terms. In addition robust control terms
are also designed to attenuate the approximation error due to SRWNN. Based on the
Lyapunov theory, the online adaptation laws and stability of the closed loop system
are verified. A numerical example is provided to verify the effectiveness of theoretical
development.

Keywords: non-affine systems; self recurrent wavelet networks; backstepping con-
trol; adaptive control; Lyapunov analysis.
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1 Introduction

Over last few years, several efforts on the development of adaptive control strategies for
uncertain nonlinear systems have been cited in the literature. In these cases the common
assumption was that the system is affine in input [1, 2]. However the development of
control strategies is still an active area of research.

To deal with the non affine systems, two control strategies are cited in the literature.
One is based on the dynamic inversion satisfying the assumptions of Tikhonov theorem

∗ Corresponding author: mailto:a.kulkarni17@gmail.com

c© 2011 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 155

mailto: a.kulkarni17@gmail.com
http://e-ndst.kiev.ua


156 A. KULKARNI, M. SHARMA AND S. PUNTAMBEKAR

from the singular perturbation theory. Other is based on the conversion of non affine
system to an affine like form by applying a suitable transformation and designing the
controller for the later form by implicit function theorem [3]–[7].

Backstepping is a recursive design methodology where some appropriate functions
of state variables as pseudocontrol inputs for lower dimension subsystems of the overall
system are derived. Each backstepping stage results in a new pseudocontrol design,
expressed in terms of the pseudocontrol designs from preceding design stages. When
the procedure is terminated, a feedback design for the true control input results, which
achieves the original design objective by virtue of a final Lyapunov function, which is
formed by summing up the Lyapunov functions associated with each individual design
stage. Thus, the backstepping control approach is capable of keeping the robustness
properties with respect to the uncertainties [13]–[15]. Via adaptive backstepping this
methodology can be effectively extended to non linear systems with unmodelled dynamics
[1].

Based on the concept of transformation of non affine systems into affine like form,
some researchers have proposed adaptive backstepping based control schemes for non
affine uncertain systems [7].

Employment of neural network (NN) as an approximation tool in adaptive control
strategies has greatly relaxed the assumptions on linear parameterized nonlinearities and
thereby broadens the class of the uncertain nonlinear systems which can be effectively
dealt by adaptive controllers [8]. However there are certain difficulties associated with
NN based controller. The basis functions are generally not orthogonal or redundant;
i.e., the network representation is not unique and is probably not the most efficient one.
Furthermore, the convergence of neural networks may not be guaranteed. Even when it
exhibits a good convergence rate, the training procedure may still be trapped in some
local minima depending on the initial settings. Wavelet neural networks are feed-forward
neural networks using wavelets as activation function. Due to their space and frequency
localization properties, the learning capability of WNN is superior to conventional neural
networks. Training algorithms for WNN converge in smaller number of iterations than for
conventional neural networks. These WNN combines the capability of artificial neural
network for learning ability and capability of wavelet decomposition for identification
ability. Thus WNN based control systems can achieve better control performance than
NN based control systems [9, 10]. The feedforward structure of the conventional WNN
limits the applicability of these networks only to static environmental conditions. These
networks are not very effective under the frequently changing operating conditions and
dynamic properties as they can not adapt rapidly under such circumstances. To overcome
this problem, a feedback mechanism is inserted in conventional WNN giving rise to either
output recurrent WNN (ORWNN) or self recurrent WNN (SRWNN). These recurrent
networks combines the properties of recurrency with the convergence properties of WNN
to solve the complex control problems [11, 12].

This paper deals with the designing of a backstepping based adaptive tracking con-
troller for a class of uncertain non affine systems. SRWNN are used for approximating the
system uncertainty as well as to compensate the nonlinearities arising in the controller
terms due to these uncertainties.

For the class of the system under consideration the backstepping control terms contain
the system nonlinearities as well as their derivatives of various orders. Consideration of
these derivatives while deriving the controller terms results in numerically untraceable so-
lution, whereas if these derivatives are neglected, it results in approximate backstepping.
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In this work such derivative terms are approximated by using SRWNN, thereby reduc-
ing the mathematical complexities as well as improving the accuracy of the controller
strategy.

The paper is organized as follows: Section 2 deals with the system preliminaries,
system description is given in Section 3. SRWNN based backstepping controller designing
aspects are discussed in Section 4. Effectiveness of the proposed strategy is illustrated
through an example in Section 5 while Section 6 concludes the paper.

2 System Preliminaries

2.0.1 Self recurrent wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. SRWNN is
modified form of WNN composed of a self feedback wavelon layer as shown in Figure
1. Due to the self feedback layer the wavelon layer can store the past information of
the network, thereby capturing the dynamic response of the system. This modification
allows SRWNN to approximate dynamic nonlinearities with high degree of accuracy.
This makes SRWNN more suitable tool for the adaptive control strategies as compared
to conventional WNN.

Output of an n dimensional SRWNN with m wavelet nodes is

f =
m∑
i=1

αiϕi (θi, ϕ̄i, x, wi, ci) , (1)

where ϕi is the ith wavelet node given by

ϕi (θi, ϕ̄i, x, wi, ci) =
n∏
j=1

ϕij(θij , ϕ̄ij , x, wij , cij), (2)

where ϕij is the jth wavelon of ith wavelet node. x = [x1, x2, . . . , xn]T is the vector of
the states of the system and act as external input vector the SRWNN, whereas ϕ̄i =
[ϕ̄i1, ϕ̄i2, . . . , ϕ̄in] is the previous value vector of the wavelon constituting the ith wavelet
node This vector serves as the memory element and stores the previous information of the
network, and acts as the feedback input for the respective wavelon. θi = [θi1, θi2, . . . , θin]
is the weight vector of the feedback input. Whereas wi = [wi1, wi2, . . . , win] and ci =
[ci1, ci2, . . . , cin] are dilate and translate vectors respectively. The net input applied to
the wavelet network is given by zi = [x1 + θi1ϕ

′
i1, x2 + θi2ϕ

′
i2, . . . , xn + θinϕ

′
in]T .

Now (1) can be rewritten as

f = αTϕ (x, θ,ϕ̄,w, c) , (3)

where w = [w1, w2, ..., wm]
T ∈ Rmxn and c = [c1, c2,..., cm]

T ∈ Rmxn are dilation and

translation parameters respectively; α = [α1, α2, .., αm]
T ∈ Rm and θ = [θ1, θ2, .., θm]

T ∈
Rnxm are the output and feedback weights respectively. ϕ̄ = [ϕ̄1, ϕ̄2.., ϕ̄m]

T ∈ Rnxm is
the feedback input vector of SRWNN.

Let f∗ be the optimal function approximation using an ideal wavelet approximator
then

f = f∗ + ∆ = α∗Tϕ∗ + ∆, (4)
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where ϕ∗ = ϕ (x, θ∗,ϕ̄,w∗, c∗) and α∗, w∗, c∗, θ∗ are the optimal parameter vectors of
α,w, c, θ respectively and ∆ denotes the approximation error and is assumed to be
bounded by |∆| ≤ ∆∗, in which ∆∗ is a positive constant. Optimal parameter vectors
needed for the best approximation of the function are difficult to determine so define an
estimate function as

f̂ = α̂T ϕ̂, (5)

where ϕ̂ = ϕ
(
x, ŵ, ĉ, θ̂, ϕ̄

)
andα̂, ŵ, ĉ, θ̂ are the estimates of α∗, w∗, c∗, θ∗ respectively.

Define the estimation error as

f̃ = f − f̂ = f∗ − f̂ + ∆ = αT ϕ̃+ α̂T ϕ̃+ α̃T ϕ̂+ ∆, (6)

where α̃ = α∗−α̂, ϕ̃= ϕ∗−ϕ̂.
By properly selecting the number of nodes, the estimation error f̃ can be made

arbitrarily small on the compact set so that the bound
∥∥∥f̃∥∥∥ = f̃m holds for all x ∈ <.

Using Taylor expansion linearization technique to transform the nonlinear function
into a partially linear form as a step towards the derivation of online tuning laws for the
wavelet parameters to achieve the favorable estimation of system dynamics [1]

ϕ̃=AT w̃ +BT c̃+ CT θ̃ + h, (7)

where w̃ = w∗− ŵ, c̃ = c∗− ĉ, θ̃ = θ∗− θ̂ and h are the vectors of higher order terms and

A =
[
dϕ1

dw ,
dϕ2

dw , ...,
dϕm

dw

]∣∣∣
w=ŵ

,

B =
[
dϕ1

dc ,
dϕ2

dc , ...,
dϕm

dc

]∣∣∣
c=ĉ

,

C =
[
dϕ1

dθ ,
dϕ2

dθ , ...,
dϕm

dθ

]∣∣∣
θ=θ̂

,

with
dϕ̂i

dw =
[
0, ..., 0, dϕ̂i

dw1i
, dϕ̂i

dw2i
, ..., dϕ̂i

dwni
, 0...0

]T
,

dϕ̂i

dc =
[
0, ..., 0, dϕ̂i

dc1i
, dϕ̂i

dc2i
, ..., dϕ̂i

dcni
, 0...0

]T
,

dϕ̂i

dθ =
[
0, ..., 0, dϕ̂i

dθ1i
, dϕ̂i

dθ2i
, ..., dϕ̂i

dθni
, 0...0

]T
.

Substituting (7) into (6), we have

f̃ =
(
α̃T
(
ϕ̂−AT

1 ŵ −BT1 ĉ− CT θ̂
)

+ w̃TAα̂+ c̃TBα̂+ θ̃TCα̂+ ε
)
, (8)

where ε is the uncertain term.

3 System Description

Consider a non affine system of the form

ẋ1 = x2 + φ1(x, u),
ẋ2 = x3 + φ2(x, u),
...
ẋn = φn(x, u),
y = x1,

(9)
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Figure 1: Self recurrent wavelet network.

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

φ = [φ1, φ2, ..., φn]
T

: <n+1 → <n are smooth unknown, nonlinear functions of state
variables and input.

Applying the transformation the system (9) can be converted to an affine like form
and can be rewritten as [7]

ẋ1 = x2 + φ1(x, u),
ẋ2 = x3 + φ2(x, u),
...,
ẋn = φn(x, u) = u+ (φn(x, u)− u) = u+ f(x, u),
y = x1.

(10)

The objective is to formulate a state feedback control law to achieve the desired track-
ing performance. The control law is formulated using the transformed system (10). Let

ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired tracking trajectory. Following assumptions

are taken for the systems under consideration.

Assumption 3.1 1. Desired trajectory yd (t) is assumed to be smooth, continu-
ous Cn and available for measurement.

2. The nonlinear function φn(x, u) satisfies:
∣∣ ∂
∂uφn(x, u)

∣∣ ≥ β ≥ 0, which ensures the
controllability of the system.

In the next section the SRWNN based adaptive control strategy for (10) is discussed.
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4 SRWNN Based Adaptive Backstepping Controller Design

Define the state tracking error vector e(t) as e(t) = [x1 − yd, x2 − ẏd, . . . , xn −
n−1
y ]T . So

the error system of (10) becomes

ė1 = e2 + φ1(x, u), (11)

ė2 = e3 + φ2(x, u), (12)

...

ėn = u+ f(x, u)− n
yd . (13)

Considering subsystem (11), let e2d be the desired value of the e2 required to stabilize

(11), e2d = −k1e1 − φ̂1 + e2dr, where k1 > 0, φ̂1 is the SRWNN approximation of φ1.
e2dr is the robust term used to attenuate the uncertainties introduced by the SRWNN.
The online tuning laws for the wavelet parameters are:

˙̂α1 = − ˙̃α1 = β11e1(ϕ̂1 −AT1 ŵ1 −BT1 ĉ1 − CT1 θ̂1),
˙̂w1 = − ˙̃w1 = β12e1Aα̂1,
˙̂c1 = − ˙̃c1 = β13e1B1α̂1,
˙̂
θ1 = − ˙̃

θ1 = β14e1C1α̂1.

(14)

And the robust control term is defined as

e2dr = − (ρ21 + 1)e1
2ρ21

, (15)

where ρ1 is the prescribed attenuation, β11, β12, β13 and β14 are the positive learning
rates. Similarly the pseudo controller design for recursive ith subsystem is given by

e(i+1)d = (−δi − ki(ei − eid)− (ei−1 − e(i−1)d) + e(i+1)dr), (16)

where ki > 0 and δi is the approximation of φi − ėid. The term ėid contains the higher
order derivatives of previous pseudo controller terms which in turn consist of state vari-
ables, input and their derivatives. Presence of all such terms makes it highly dynamic
in nature and hence SRWNN is the most appropriate tool for the approximation if such
highly dynamic nonlinear term. e(i+1)dr is the robust term used to attenuate the uncer-
tainties introduced by the SRWNN. The online tuning laws for the wavelet parameters
are:

˙̂αi = − ˙̃αi = βi1(ei − eid)(ϕ̂i −ATi ŵi −BTi ĉi − CTi θ̂i),
˙̂wi = − ˙̃wi = βi2(ei − eid)Aiα̂i,
˙̂ci = − ˙̃ci = βi3(ei − eid)Biα̂i,
˙̂
θi = − ˙̃

θi = βi4(ei − eid)Ciα̂i.

(17)

And the robust control term is defined as

eidr = − (ρ2i + 1)(ei − eid)
2ρ2i

, (18)

where ρi is the prescribed attenuation, βi1, βi2, βi3 and βi4 are the positive learning
rates. Proceeding in the same manner the control law for the overall system is defined
as

u = (−δn − kn(en − end)− (en−1 − e(n−1)d) + ur +
n
yd), (19)
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where kn > 0 and δn is the approximation of f − ėnd. ur is the robust term used to
attenuate the uncertainties introduced by the SRWNN. The online tuning laws for the
wavelet parameters are:

˙̂αn = − ˙̃αn = βn1(en − end)(ϕ̂n −ATn ŵn −BTn ĉn − CTn θ̂n),
˙̂wn = − ˙̃wn = βn2(en − end)Anα̂n,
˙̂cn = − ˙̃cn = βn3(en − end)Bnα̂n,
˙̂
θn = − ˙̃

θn = βn4(en − end)Cnα̂n.

(20)

And the robust control term is defined as

ur = − (ρ2n + 1)(en − end)
2ρ2n

, (21)

where ρn is the prescribed attenuation, βn1, βn2, βn3 and βn4 are the positive learning
rates.

5 Simulation Results

Simulation is performed to verify the effectiveness of proposed SRWNN based backstep-
ping control strategy. Consider a system of the form

ẋ1 = x2 + 0.1x21,

ẋ2 = u3

3 + sinu+ ux21 + 0.5x41,
y = x1.

(22)
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Figure 2: System output and tracking error.
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Figure 3: States of the system and control signal.

System belongs to the class of uncertain non affine systems defined by (9) with n = 2.
The proposed controller strategy is applied to this system with an objective to solve the
tracking problem of system.

The desired trajectory is taken as yd = 0.5 sin t + 0.1 cos t2 + 0.3. Initial conditions

are taken as [0.3, 0.3]
T

. Attenuation level for the robust control terms is taken as 0.01.
Controller parameters are taken as k1 = 10, k2 = 10. Two self recurrent wavelet networks
with Mexican hat as the mother wavelet are used for approximating the unknown system
dynamics. Wavelet parameters for these wavelet networks are tuned online using the
proposed adaptation laws, initial conditions for all the wavelet parameters are set to
zero. Simulation results are shown in Figure 2 and Figure 3. As observed from the
figures, system response tracks the desired trajectory rapidly.

6 Conclusion

A SRWNN based adaptive backstepping control strategy is proposed for solving the
tracking control problem for a class of non affine systems with unknown system dynamics.
Self recurrent adaptive wavelet networks are used for approximating the unknown system
dynamics of the system. Adaptation laws are developed for online tuning of the wavelet
parameters. The theoretical analysis is validated by the simulation results.
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1 Introduction

In 1964, S. Bochner introduced almost automorphic functions in one of his landmark pa-
per [10]. Almost automorphic functions are more general than almost periodic functions.
Many authors had established the almost periodic solution of differential equations in
abstract spaces ([8, 9, 13, 15], etc.). The theory has been generalized by many authors
for almost automorphic solutions ([11, 12, 14], etc.). Goldstein [14] has considered the
following differential equation in a Banach space X

dx(t)

dt
= Ax(t) + f(t, x(t)), t ∈ R, (1)

where A generates an exponentially stable C0- semigroup and f be a jointly continuous
function and shown the existence of almost automorphic solution of the problem if f is
almost automorphic.
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These days, functional differential equations have been of very great interest, for many
mathematicians. Bahuguna [1] studied a class of partial functional differential equtations
and its application to population dynamics. Analytical techniques of semigroup theory
have been applied in [2], [3] and [4], which we are also going to use in this paper.

Bahuguna and Muslim [5] also considered the second order history valued delay dif-
ferential equations [4] and used evolution equations and semigroup theory to find approx-
imation of a solution. Recently, D.N. Pandey, A. Ujlayan and D. Bahuguna [6] proved
existence and uniqueness of a hyperbolic integrodifferential equation with a nonlocal
condition.

Abbas and Bahuguna [7] considered the following nonautonomous neutral functional
differential equations

d

dt
(x(t) − F1(t, x(t − g(t)))) = A(t)x(t) + F2(t, x(t), x(t − g(t))), (2)

where A(t) generates an exponentially stable evolution systems and g is a continuous
function. The authors have shown the existence of an almost periodic mild solutions
using Kransnoselskii’s fixed point theorem and theory of evolution operator. They also
assumed the well known Acquistapace–Terreni conditions which ensure the existence of
evolution family.

In the present work we study the existence of an almost automorphic solution of
equation (2) using the evolution semigroup and the Banach fixed point approach.

2 Preliminaries

Let X be a complex Banach space endowed with the norm ‖.‖X . N, R and C stand for
Natural, Real and Complex numbers respectively. Let B(X) be a Banach space of all
bounded linear operators from X to itself; endowed with norm ‖.‖B(X) given by

‖L‖B(X) = sup{‖Lx‖X : x ∈ X and ‖x‖X ≤ 1}.

Now, we will recall certain definitions to be used subsequently in this paper.

Definition 2.1 A continuous function f : R → X is said to be almost automorphic
if for every sequence {sn}n∈N of real numbers there exists a subsequence {τn}n∈N such
that limn→∞ f(t+ τn) = g(t) and limn→∞ g(t− τn) = f(t) for all t ∈ R.

We denote by AA(X) the set of all such functions.

Definition 2.2 A continuous function f : R×X → X is said to be almost automor-
phic if f(t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ Y , where Y is
any bounded subset of X.

Equivalently, for every sequence of real numbers {sn}n∈N we can extract a subse-
quence {τn}n∈N such that g(t, x) = limn→∞ f(t+ τn, x) is well defined for all t ∈ R and
for all x ∈ Y and f(t, x) = limn→∞ g(t − τn, x) is well defined for all t ∈ R and for all
x ∈ Y .

Lemma 2.1 (AA(X), ‖.‖AA(X)) is a Banach space with supremum norm, given by
‖f‖AA(X) = supt∈R ‖f(t)‖.

Lemma 2.2 If f : R → X is almost automorphic, then f is bounded.
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For the proof of the above two lemmas, we refer to [12].

Lemma 2.3 Suppose Z and W are Banach spaces. Let F : R×Z → W be an almost
automorphic function in t ∈ R, for each z ∈ Z and assume that F satisfies Lipschitz
condition in z uniformly in t ∈ R. Let φ : R → Z be an almost automorphic function,
then the function Φ : R → W, defined by Φ(t) = f(t, φ(t)) is almost automorphic.

In [18], Acquistapace and Terreni gave conditions on A(t), t ∈ R, which ensure the
existence of unique evolution family {U(t, s) : t ≥ s > −∞} on X, such that

u(t) = U(t, 0)u(0) +

∫ t

0

U(t, ξ)f(ξ)dξ,

where u(t) satisfies
du(t)

dt
= A(t)u(t) + f(t), t ∈ R.

Lemma 2.4 ATC (Acquistapace–Terreni condition). Let

Sθ = {λ ∈ C : | argλ| ≤ θ} ∪ {0} ⊂ ρ(A(t)), θ ∈ (
π

2
, π).

If there exist a constant K0 and a set of real numbers α1, ..., αk, β1, ...βk with 0 ≤ βi <
αi ≤ 2, i = 1, 2, ...k, such that

‖A(t)(λ−A(t))−1(A(t)−1 −A(s)−1)‖B(X) ≤ K0 Σk
i=1(t− α)αi |λi|

βi−1

for t, s ∈ R and λ ∈ Sθ\{0} and there exists constant M ≥ 0 such that

‖(λ−A(t))−1‖ ≤
M

1 + |λ|
, λ ∈ Sθ,

then there exists a unique evolution family {U(t, s) : t ≥ s > −∞} on X.

These conditions resulting from Theorem 2.3 of [17] are known as ”Acquistapace–
Terreni conditions”.

Definition 2.3 A mild solution of (2) is a continuous function x : R → X, satisfying

x(t) − F1(t, x(t− g(t)) = U(t, s)(x(s) − F1(s, x(s− g(s))))

+

∫ t

a

U(t, ξ)F2(ξ, x(ξ), x(ξ − g(ξ)))dξ (3)

for t ≥ s all s ∈ R.

Note: We say, an evolution family {U(t, s)}t≥s>−∞ is exponentially stable, if ∃M ≥
1 and δ > 0 such that ‖U(t, s)‖ ≤ Me−δ(t−s) for t ≥ s. When s → −∞ the above
equation takes the form

x(t) = F1(t, x(t − g(t))) +

∫ t

−∞

U(t, ξ)F2(ξ, x(ξ), x(ξ − g(ξ)))dξ.
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Assumptions:

(C1) : F1(t, x), F2(t, x, y) are almost automorphic.

(C2) : F1 and F2 are Lipschitz continuous that is there exist positive numbers LF1
(t)

and LF2
(t) such that

‖F1(t, x) − F1(t, y)‖ ≤  LF1
(t)‖x− y‖AA(X),

‖F2(t, x, u) − F2(t, y, v)‖ ≤ LF2
(t)(‖x − y‖AA(X) + ‖u− v‖AA(X)).

(C3) : {U(t, s) : t ≥ s} is an exponentially stable evolution family on X.

(C4) : For every sequence {sn} of real numbers there exists a subsequence {τn} and for
any fixed s ∈ R , ǫ > 0, there exists N ∈ N such that for all n ≥ N, it follows that

‖U(t+ τn, s+ τn) − U(t, s)‖ ≤ ǫe−
δ

2
(t−s)

and
‖U(t− τn, s− τn) − U(t, s)‖ ≤ ǫe−

δ

2
(t−s) for all t ≥ s ∈ R.

3 Almost Automorphic Solution

We define the mapping F by

(Fx)(t) = F1(t, x(t− g(t))) +

∫ t

−∞

U(t, s)F2(s, x(s), x(s) − g(s)))ds.

Lemma 3.1 For x(.) ∈ AA(X), we have Fx is also almost automorphic.

Proof Since F1 is Lipschitz and F1 ∈ AA(R, X); by Lemma 2.3, we have

F1(t, x(t− g(t))) = K(t) ∈ AA(X).

By (C2), we have F2(., x(.), y(.)) ∈ AA(R×X ×X,X), also we have assumed that F2 is
Lipschitz with respect to both variables x and y, further using the fact that X × X is
Banach space; hence from Lemma 2.3, one can easily see that F2(., x(.), y(.)) ∈ AA(X).

Next, we define F2(t, x(t), y(t)) = H(t), where H(.) ∈ AA(X). Now we show that

‖Fx‖AA(X) < ∞,

‖Fx(t)‖X ≤ ‖K(t)‖X +

∫ t

−∞

‖U(t, s)‖‖F2(s, x(s), x(s − g(s)))‖Xds

≤ M1 +

∫ t

−∞

Me−δ(t−s)‖H(s)‖Xds

≤ M1 + M2
M

δ
<∞. where sup

t∈R

‖H(t)‖ = M2.

Thus, we have shown that Fx is bounded.
Now, we show that (Fx)(t) is almost automorphic with respect to t ∈ R. Since

H(.) ∈ AA(X) for all sequence {sn} of real numbers, there exists a subsequence {τn}
such that
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(H1) : h(t) = limn→∞H(t+ τn) is well defined for all t ∈ R.

(H2) : H(t) = limn→∞ h(t− τn) is well defined for all t ∈ R.

As we are going to use Lebesgue dominated convergence theorem to show that
(Fx)(t + τn) → (Gx)(t) as n → ∞; we need to show |Fx(t + τn)| < l(t) for all n ∈ N;
where l is some integrable function. Consider

(Fx)(t + τn) = F1(t+ τn, x(t+ τn − g(t+ τn))

+

∫ t+τn

−∞

U(t+ τn, s)F2(s, x(s), x(s − g(s)))ds.

= F1(t+ τn, x(t+ τn − g(t+ τn))

+

∫ t

−∞

U(t+ τn, s+ τn)F2(s+ τn, x(s+ τn), x(s+ τn − g(s+ τn)))ds.

Taking the norm on both sides, we have

‖(Fx)(t + τn)‖ ≤ ‖K‖AA(X) +

∫ t

−∞

‖U(t+ τn, s+ τn)‖‖H(s+ τn)‖ds

≤ M1 +
M2M

δ
(‖H‖ ≤M2).

By (H1), for any fixed s ∈ R, ǫ > 0 there exists N1 ∈ N such that for all n > N1 we have

‖H(s+ τn) − h(s)‖ ≤ ǫ.

In addition by (C4) for s and ǫ as above there exists N2 ∈ N such that for all n > N2

‖U(t+ τn, s+ τn) − U(t, s)‖ < ǫe
−δ

2
(t−s).

Let N = max{N1, N2}, then

‖U(t+ τn, s+ τn)H(s+ τn) − U(t, s)h(s)‖

≤ ‖U(t+ τn, s+ τn) − U(t, s)‖‖H(s+ τn)‖ + ‖U(t, s)‖‖H(s+ τn) − h(s)‖

≤M2ǫe
−δ

2
(t−s) +Mǫe

−δ

2
(t−s)

⇒ U(t+ τn, s+ τn)H(s+ τn) → U(t, s)h(s)

as n → ∞ for all fixed s ∈ R and t ≥ s. Since K(.) ∈ AA(X), for any sequence {sn} of
real numbers there exists a subsequence {τn} such that

lim
n→∞

K(t+ τn) = k(t), lim
n→∞

k(t− τn) = K(t).

Thus, we have K(t+τn) → k(t) as n→ ∞. By Lebesgue dominated convergence theorem
we get (Fx)(t+τn) → Gx(t) as n→ ∞. In a similar way we can show that (Gx)(t−τn) →
(Fx)(t) as n→ ∞ for all t ∈ R ⇒ Fx ∈ AA(X).

Theorem 3.1 Let x(.) be an almost automorphic function and F1, F2 and U(t, s) sat-
isfy all conditions from (C1) to (C4). Then equation (2) has unique almost automorphic
mild solution, whenever (LF1

+ 2LF2

M
δ

) < 1.
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Proof It follows by Lemma 3.1, that Fx ∈ AA(X), whenever x does. Let us assume
that

LF1
= sup

t∈R

LF1
(t), LF2

= sup
t∈R

LF2
(t).

For x, y ∈ AA(X), we have:

‖(Fx)(t) − (Fy)(t)‖

≤ ‖F1(t, x(t− g(t))) − F1(t, y(t− g(t)))‖

+

∫ t

−∞

‖U(t, s)F2(s, x(s), x(s − g(s))) − U(t, s)F2(s, y(s), y(s− g(s)))‖ds

≤ LF1
(s)‖x− y‖

+LF2
(s){‖x(s) − y(s)‖ + ‖x(s− g(s)) − y(s− g(s))‖}

∫ t

−∞

Me−δ(t−s)ds

≤ LF1
‖x− y‖AA(X) + 2LF2

‖x− y‖AA(X)

∫ t

−∞

Me−δ(t−s)ds

≤ LF1
‖x− y‖AA(X) + 2LF2

M

δ
.

By Banach contraction principle, F has a unique fixed point x ∈ AA(X) such that
Fx = x.

Fixing s ∈ R, we have

x(t) = F1(t, x(t− g(t))) +

∫ t

−∞

U(t, s)F2(s, x(s), x(s − g(s)))ds.

Since U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s, let

x(ξ) = F1(ξ, x(ξ − g(ξ))) +

∫ ξ

−∞

U(ξ, s)F2(s, x(s), x(s − g(s)))ds

so

U(t, ξ)x(ξ) = U(t, ξ)F1(ξ, x(ξ − g(ξ))) +

∫ ξ

−∞

U(t, s)F2(s, x(s), x(s − g(s)))ds.

For t ≥ ξ,
∫ t

ξ

U(t, s)F2(s, x(s), x(s − g(s)))ds =

∫ t

−∞

U(t, s)F2(s, x(s), x(s − g(s)))ds

−

∫ ξ

−∞

U(t, s)F2(s, x(s), x(s − g(s)))ds

= x(t) − U(t, ξ)x(ξ) − F1(t, x(t− g(t)))

+U(t, ξ)F1(ξ, x(ξ − g(ξ))).

Hence we get

x(t) = F1(t, x(t − g(t))) − U(t, ξ)F1(ξ, x(ξ − g(ξ)))

+U(t, ξ)x(ξ) +

∫ t

ξ

U(t, s)F2(s, x(s), x(s − g(s)))ds. (4)
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Remark 3.1 Consider the following differential equation

d

dt
(x(t) − F1(t, x(t− g(t)))) = A(t)x(t) + F2(t, x(t),

∫ t

−∞

G(t− s)f(s, x(s))ds), (5)

where G ∈ L1(R) and f is almost automophic, Lipschitz with respect to second variable.
Now f ∈ AA(R×X,X) and f is Lipshitz by Lemma 2.3, we have f ∈ AA(X).
Let f(t, x(t)) = ψ(t).

If we can show
∫ t

−∞
G(t− s)f(s, x(s)) is almost automorphic, then as a consequence

of the above theorem, equation (5) has a unique almost automorphic solution.
As ψ is almost automorphic for every sequence of real numbers {tn} there exists a sub-
sequence {τn} such that limn→∞ ψ(t + τn) = ψ1(t) is well defined for all t ∈ R and
ψ(t) = limn→∞ ψ1(t− τn) is well defined for all t ∈ R.

Consider

‖

∫ t+τn

−∞

G(t+ τn − s)ψ(s)ds−

∫ t

−∞

G(t− s)ψ1(s)ds‖

= ‖

∫ t

−∞

G(t− s)ψ(s+ τn)ds−

∫ t

−∞

G(t− s)ψ1(s)ds‖

≤ (‖ψ(s+ τn) − ψ1(s)‖)

∫ t

−∞

|G(t− s)|ds

≤M ′(‖ψ(s+ τn) − ψ1(s)‖)

for some M ′ <∞ → 0 as n→ ∞. Thus,
∫ t

−∞
G(t− s)ψ(s)ds is almost automorphic and

we have the result.

4 Example

Consider the following equation

u′′ + (ε2u
2 + 1)u′ + u = ε1

d

dt

(

sin
( 1

sin t+ sin
√

2t

)

u2(t− g(t))
)

− ε2(cos t+ cos
√

2t).

Let u = u1 and u′1 = u2, then we can write the above equation in matrix form as
follows

(

u′1
u′2

)

=

(

0 1
−1 −1

)

×

(

u1
u2

)

+
d

dt
F1(t, U(t− g(t))) + F2(t, U(t), U(t− g(t))),

where

U =

(

u1
u2

)

,

F1(t, U(t− g(t))) =

(

0
sin( 1

sin t+sin
√
2t

)u21

)

,

F2(t, U(t), U(t− g(t))) =

(

0

ε2(cos t+ cos
√

2t) − ε2u
2
1u2

)

.

This is of the form (2). Thus we can apply our results to ensure the existence and
uniqueness of almost automorphic solutions.
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Abstract: The quantum dynamics of a nonlinear kicked oscillator is studied by a
recently proposed complex non-hermitian Hamiltonian technique. It is shown that
the probability density and the energy function display either a growing or a de-
caying exponential time dependence characteristic of absorption or dissipation. It is
furthermore shown that though a decrease in the kicking period increases the diffu-
sive motion leading to the ballistic spreading, increasing its value does not apparently
favour any localization. The anharmonicity also enhances the dissipative dynamics
but with time gives rise to energy crossings typical of a quantum chaos. The varia-
tion in the spatial periodicity of the delta-function kicking however exhibits a more
complex behaviour showing diffusive character to super-diffusion leading to ballistic
motion on the one side and the quantum localization on the other.

Keywords: nonlinear kicked oscillator; quantum diffusion; dissipation; localization

Mathematics Subject Classification (2000): 35Q72, 81Q50, 37L50.

1 Introduction

Recent years have witnessed a flurry of investigations in the area of quantum chaos and
dynamical quantum localization and in this context the quantum dynamics of area pre-
serving maps has attracted a particular attention [1, 2]. The kicked harmonic oscillator
is an example that belongs to this class and has been studied quite extensively in the
last two decades [3, 4, 5, 6]. The kicked harmonic oscillator however has generated some
renewed interest in recent times for it simulates some interesting low-dimensional sys-
tems like quantum wires, semiconductor superlattices [7] or trapped ions [8] periodically
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kicked by intense monochromatic short-time pulses like laser light. The effect of Gross–
Pitaevskii nonlinearity in the kicked oscillator has been recently studied by Artuso and
Rebuzzini [9] and they have shown that the qualitative features depend strongly on the
parameters of the system.

The dynamics of a kicked oscillator system can be determined by studying the gener-
alized master equation for the probability distribution or by calculating the propagator
and thereby constructing the time-dependent wave function using the propagator as the
kernel for the time development. Of course the probability density obtained from these
methods has to be consistent with the time-dependent Schrödinger equation. Several
techniques have been proposed in recent years to deal with the nonlinear differential
equations with varying degree of success and rigour. Kovalev et al. have developed the
method of oriental manifold to study the geometric properties of nonlinear differential
systems with control [10]. Stability of systems with linear and nonlinear perturbations
has been studied by Jeffrey J. DaCunha [11]. Practical stability and controllability for
a class of nonlinear discrete systems with time delay have been investigated by Su et al.
[12].

Recently Liboff and Porter [13] have proposed a novel technique to study the energy
absorption and dissipation in quantum systems by introducing a complex non-Hermitian
term in the Hamiltonian. The purpose of the present paper is to apply this technique to
study the dynamics of a kicked oscillator problem. Since the trapping potential of the
real ion traps or the ion-ion potential in a quantum wire may not be strictly harmonic,
we introduce the anharmonicity in the problem and study its effect on the oscillator
dynamics. We also include a spatial periodicity in the kicking term. It must however
be mentioned that the nonlinearity considered here is different from that studied in [9].
We consider the oscillator to be anharmonic, while in [9] the potential is nonlinear in the
wavefunction itself and therefore the problem of [9] requires a self-consistent solution.
Our problem will be important for a quantum wire like a carbon nanotube with an
anharmonic confining potential and periodically kicked by a laser wave. We find, as
expected from [13], that the probability density and the energy of a kicked nonlinear
oscillator exhibit as a function of time a growing or a decaying behaviour depending
on the sign of the coefficient that gives the kicking strength. We observe that as the
kicking period is decreased, the motion of the nonlinear oscillator becomes more and more
diffusive finally reaching the ballistic regime. However, interestingly enough, increasing
the kicking period does not apparently yield any localization. The anharmonicity is also
found to favour the dissipative dynamics and gives rise to crossing of the energy curves
characteristic of quantum chaos. We furthermore show that the spatial periodicity of
the kicking potential seems to be a very sensitive parameter the variation of which can
lead to a variety of features ranging from a ballistic motion through classical diffusion to
dynamical localization. In what follows we shall first briefly discuss the method of Liboff
and Porter [13] and then apply it to the problem of a nonlinear kicked oscillator.

2 General Formalism of Liboff and Porter

Consider a complex Hamiltonian of the form

H =
p2

2m
+ V (x) + i~α(x, t) = H0 + i~α(x, t), (1)
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where α(x, t) can be written as a product of the space-part and the time-part and the
unperturbed Hamiltonian satisfies the time-independent Schrödinger equation

H0un(x) = E(0)
n un(x). (2)

We can therefore write

[H0 + i~α(x, t)]un(x) = Enun(x) = [E(0)
n + i~α(x, t)]un(x). (3)

The time-dependent Schrödinger equation for the problem is given by

i~∂Ψ/∂t = HΨ = [H0 + i~α(x, t)]Ψ, (4)

where Ψ(t) can be formally written as

Ψ(t) = exp [− i
~

∫ t

0

dλH(λ)]Ψ(0), (5)

where Ψ(0) is the initial state function given by

Ψ(0) =
∑
n

anun. (6)

The expectation value of the Hamiltonian at t = 0 yields

< Ψ(0)|H|Ψ(0) >=
∑
n

|an|2E(0)
n = E0, (7)

where the expansion coefficients may be fixed from the knowledge of the initial configura-
tion of the state of the system. Substituting (6) in (5) and using the eigenvalue equation
(3), we get

Ψ(t) = eg(t)
∑
n

anune
− i

~E
(0)
n t, (8)

where

g(t) =

∫ t

0

dtα(t), (9)

so that the real part of the energy expectation value at time t (E(t)) is given by

E(t) = Re < Ψ(t)|H|Ψ(t) >= E0e
2
∫ t
0
dλα(λ). (10)

3 Kicked Harmonic Oscillator

We shall now employ this formalism to a kicked nonlinear oscillator for which we write

V (x) =
1

2
mω2x2 + λx4 (11)

and choose α(x, t) as

α(x, t) = −ε < cos(kx) >
N∑
s=1

δ(t− Ts), (12)
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where ε gives the measure of the δ-function kicking, k measures the spatial periodicity of
the kicking potential, T is the kicking period, N is the number of kicks and < cos(kx) >≡
κ is the expectation value of cos(kx) taken with respect to the eigenstate of the effective
harmonic oscillator. We assume that the initial state is prepared in the n-th excited state
of the linear oscillator and incorporate the quartic term using a mean-field approximation
so that the unperturbed potential can be written as an effective harmonic oscillator with
a new frequency

ω̃ = [ω2 +
2λ

m
< x2 >]1/2, (13)

where

< x2 >=

∫ ∞
−∞

u(0)n x2u(0)n dx. (14)

According to our initial configuration,

< x2 >= (n+
1

2
), (15)

and hence

ω̃ = [1 + 2λ(n+
1

2
)]1/2, (16)

where we have assumed m = ~ = ω = 1. A simple calculation shows that κ can be
obtained as

κ = e−β
2

Ln(β2), (17)

where β = (1/2ω̃)1/2k and Ln(x) is the Laguerre polynomial of order n and is given by

Ln(x) =
n∑

m=0

(−1)m
n!β2m

(m!)2(n−m)!
. (18)

The time-dependent energy E(t) is then finally obtained as

E(t) = E0P (t), (19)

where P (t) is the temporal probability that the system would be found in the state Ψ(t)
at time t and is given by

P (t) =< Ψ(t)|Ψ(t) >= e−2εκφ(t), (20)

where

φ(t) =
N∑
s=1

∫ t

0

δ(λ− sT )dλ. (21)

One can immediately see that φ(t) is equal to the number of s values for which s is
less than t/T . We would like to point out here that in [10] the value of φ(t) has been
determined erroneously. In fact the definition of φ(t) in [10] violates causality. We obtain

Pl[lT ≤ t < (l + 1)T ] = e−2εκl, (22)

where l = 0, 1, 2, . . . , and consequently the time-dependent energy of the n-th excited
state of the nonlinear oscillator reads

En[lT ≤ t < (l + 1)T ] = (n+
1

2
)e−2εκl. (23)
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4 Numerical Results and Discussion

In Figure 1, we show the behaviour of the energy of the first excited state as a function
of time. In (12), we have chosen the sign of the kicking term as negative in order that
the dynamics becomes dissipative. We show the energy dissipation with time for three
values of the kicking strength ε. One can observe that the delta-function kicking results
in instantaneous dissipations in the energy at the kicking times and remains constant
in between two successive kicks leading to a stair-case like structure. As the kicking
strength increases, the dissipation of course becomes more and more rapid.

Figure 1: The first excited state energy E as a function of time for three values of the kicking
strength ε.

In Figure 2 we compare the dissipation for the first two excited states (n = 1 and
n = 2) of the nonlinear oscillator. The dissipation behaviour of the second excited state is
almost similar to the first one, except that the decay rate is faster for the second excited
state than that for the first excited state. In Figure 3 we study the energy-time behaviour
for the first excited state for a few values of the nonlinearity parameter λ. We find that
the energy, as expected for the present system, is initially larger for a larger value of
λ but the decay is interestingly faster for larger λ-values. This leads to an interesting
crossing of the energies at a long enough time which may be attributed to a dynamics
akin to quantum chaos.

The variation of the dissipative dynamics as we change the kicking period T is studied
in Figure 4. It is clearly evident that the dissipation becomes more and more rapid as
the kicking period decreases so much so that for very low values of T , the dynamics is
essentially ballistic, while for very large values of T the energy spreading is more or less
diffusive. However we do not observe any localization here.

From (17) and (22) one can note that neither the temporal probability P (t) nor
the energy E(t) is a monotonically increasing or decreasing function of k. In fact the
dependence of E on k is quite interesting which we show in Figure 5 where we have plotted
the energy for the first two excited states as a function of k for three values of time t.
One can see that the first excited state energy has two maxima, lying symmetrically
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Figure 2: The decay of the energies of first two excited states n = 1 and n = 2 with time.

Figure 3: The dissipation of the first excited state with time for three values of the nonlinearity
parameter λ.
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Figure 4: The dissipation of the first excited state with time for four values of the kicking
period T .

Figure 5: The variation of the time-dependent energy of the first two excited states as a
function of the spatial periodicity k of the kicking potential for three values of time t.
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Figure 6: The variation of the energy of the first excited state as a function of time t for k = 0
and k = 10. The inset shows the behaviour for k = 2.5.

about k = 0 where it has a central minimum and the energy saturates to a constant
after k reaches some critical value. Interestingly, however, the locations of the maxima
and minima on the k-line do not change with time. For n = 2, however, two additional
(secondary) minima develop symmetrically on either side of k = 0 and the maxima get
shifted outward on both sides of k = 0, while the central minima still lie at k = 0.

The maxima-minima structure seems to have an interesting bearing on the dynamical
behaviour of the system and throws up a variety of possibilities for different ranges of
the k-values. For n = 1, with the parameter values we have chosen, the maxima occurs
at around k = ±2.5. The central minimum for all the cases however occur at k = 0 as
has already pointed out. This value of k = 0 gives dissipative dynamics in the ballistic
regime as shown in Figure 6. It is quite clear from Figure 5 that for large values of k the
system would exhibit localization. We have confirmed this behaviour by plotting E as a
function of t for k = 10 in Figure 6. Interestingly however, k = 2.5 for the ground state
corresponds to ballistic absorption. In the inset of Figure 6 we display this behaviour.

In Figure 7 we show in more detail the dissipative behaviour of the system for different
values of k. For the value of k close to 1.48, one can observe that the dynamics is more
or less diffusive and for lower values of k it becomes more and more super-diffusive and
finally reaches almost the ballistic limit, while for about k = 1.51, the system shows a
dynamical localization.

5 Conclusion

In conclusion, we have studied the dynamics of a nonlinear oscillator kicked by a time-
periodic δ-function potential that has a spatial periodicity of the cosine-form using a
complex nonhermitian Hamiltonian technique recently proposed by Liboff and Porter
[13]. We have observed that the system can exhibit exponential growth or decay depend-
ing on the sign of the kicking term and the value of the spatial periodicity parameter.
In particular, we have studied the case of dissipation and have shown that it increases
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Figure 7: The variation of the energy of the first excited state as a function of time t for
k = 1.0, k = 1.3, k = 1.48 and k = 1.51.

with increasing kicking strength. The dissipation however takes place instantaneously
with kicking and energy remains constant between two successive kicking leading to a
stair-case structure. As a function of the nonlinearity parameter, there occurs a crossing
of the energy curves that seems to characterize the onset of a quantum chaos. However,
the system never shows any indication of localization for any value of the kicking pe-
riod that we have considered. Rather it exhibits a more and more diffusive behaviour
as the kicking period decreases reaching finally the ballistic limit. Most interestingly,
the dynamics of the system seems to depend quite sensitively on the spatial periodic-
ity parameter, the variation of which gives rise to a variety of rich phenomena ranging
from diffusive to super-diffusive behaviour to ballistic spreading on the one side and to
dynamical quantum localization on the other.
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1 Introduction

There are several methods available to determine the long-term behavior of a system
that can be described by a set of nonlinear differential equations

ż = f(z). (1)

The most obvious method to investigate the behavior of a nonlinear system is to
numerically solve the differential equations subject to specified initial conditions. One
example would be the ordinary differential equations solvers in MATLAB [19]. Modern
computational capability makes the issue of computer processor and memory limita-
tions virtually irrelevant. However, numerical simulations can not always provide the
definitive label of stability. The solutions may be virtually identical for a system that is
slightly asymptotically stable, neutrally stable, or slightly unstable unless the simulation
is carried out for a very long time.

Stability theorems generally address stability about an equilibrium or about a known
solution. Stability in the sense of Lyapunov [17, 18] requires that, for motion about an
equilibrium, the system output be dependent upon the magnitude of the initial condi-
tions. Similar theorems loosen the requirement for stability about an equilibrium and
address stability about a known solution to the system [5].

The direct method of Lyapunov uses a Lyapunov function, υ(x) to directly assess
the stability of the differential equations in question without having to determine a
first variation [11, 15]. Furthermore, the converse of the theorem is also true. If the
equilibrium is stable, then the function υ(x) exists. However, there is no “prescription”
for determining an appropriate Lyapunov function. The function can be difficult to
determine, particularly for a complex system.

The strength of the nonlinearity of a system determines whether it is periodic, quasi-
periodic or chaotic. Poincaré introduced the concept of a phase-space where all possible
motions of a system are represented by a family of trajectories [7]. The degree to which a
system is chaotic is determined by the sensitivity of the trajectories to initial conditions or
perturbations, where small changes can cause widely diverging outcomes. The sensitivity
to initial conditions can be quantified by a Lyapunov exponent. In general, Lyapunov
exponents can not be found analytically and require the use of numerical methods [8].

A Poincaré Section maps the intersection of a dynamical orbit in state-space with a
one-dimension lower subspace (phase-space) that is transverse to the flow of the orbit.
While a Poincaré map can aid in determining stability [4, 10, 16], it is essentially a
schematic for presenting the results of a numerical simulation at discrete time periods. If
the period of a solution is many times the fundamental sample period used for the map,
it may require simulation for a long time before the repetition appears.

The existence of many linear analysis tools justifies the attempt to linearize the system
of (1). In general, a power series expansion about an equilibrium results in a reduced
equation known as the first variation or first approximation of (1) with respect to the
equilibrium condition [11]. The result is a constant coefficient linear system given by

ẋ = Ax. (2)

Classical linear analysis methods for determining the stability of this linear system are
well known [2, 6].

If the known solution used for linearization is nonautonomous, the matrix A is time
varying. In general, linear analysis methods can be applied to time-varying systems
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with some modification such as canonical transformations or substitution of dynamic
eigenvalues [13, 14, 23]. The stability of homogeneous linear equations with a time-
periodic A matrix can be assessed by applying methods such as Hill’s method of infinite
determinants [20, 22] or Floquet–Lyapunov theory [3, 11, 26]. Floquet theory can also
be used to determine if an inhomogeneous system has periodic solutions [3]. For time-
periodic systems with time-periodic forcing functions, the literature typically addresses
this form of steady-state behavior only [12, 24]. If the homogeneous equation exhibits
asymptotic stability then the forced oscillations tend toward a periodic steady-state [3,
11].

This paper presents an extension of Floquet theory to a system which has no equi-
librium or known solution. Equations are linearized about a time-periodic motion which
closely approximates the nonlinear behavior. The behavior is almost periodic (a dynam-
ical system that appears to almost retrace an orbit through phase space [1]). The result
is a time-periodic linear system driven by a time-periodic forcing excitation having the
same time period T , as the coefficients of A(t). The extension applies to the general case
and is not limited to asymptotic behavior. Based on Floquet multipliers, the stability
of the inhomogeneous system can be analyzed and performance metrics analogous to
classical control theory settling time can be determined. The theoretical development is
validated using a spinning pendulum.

2 Nonautonomous Inhomogeneous Systems from a Nonequilibrium

Reference

The autonomous nonlinear differential equations that describe the motion of interest are
given by

ż = f(z),

f(z) 6= 0,
(3)

which have no known solution or equilibrium to be used as a reference for analyzing
stability. Additionally, the solution is unknown except through numerical integration.
However, the motion is known to be almost periodic and, in some type of limit behavior,
periodic.

Lacking a traditional equilibrium or solution, the nominal periodic motion of the
system will be used as a reference condition zR, and a series expansion is performed

żR+δż = f(zR) +

[

∂f

∂z

]

R

δz,

żR 6= f(zR).

(4)

The reference condition is not a solution to (3) and cannot be eliminated from the
equations, resulting in a linear system containing a forcing excitation of the form

δż = A(t)δz + g(t),

A(t) =

[

∂f

∂z

]

R

,

g(t) = f(zR)− żR,

(5)
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with a time-varyingA matrix and a time-varying forcing excitation g. By selection of the
reference condition as time-periodic, the linear system of (5) has the following properties

A(t) = A(t+ T ),

g(t) = g(t+ T ),
(6)

where T is the period common to both the matrix A and the vector g.

3 Floquet Theory

Linear homogeneous differential equations with time-periodic coefficients given by

ẋ = A(t)x, (7)

where A is time-periodic
A(t) = A(t+ T ) (8)

and T is the time period can be assessed by applying Floquet–Lyapunov theory as given
in Theorem 3.1[20, 26].

Theorem 3.1 (Floquet–Lyapunov theorem). Any fundamental matrix X(t) of equa-
tion (7) with T -periodic coefficients is expressible in the form

X(t) = F(t)eKt, (9)

where F(t) is a nonsingular continuous T -periodic n×n matrix-function whose derivative
is an integrable piecewise-continuous function, and K is some constant matrix.

Given that F(t) is time-periodic, the stability of the trivial solution to (7) depends
entirely upon the eigenvalues of the matrix K. The eigenvalues of K are known as the
Floquet characteristic exponents, ε, and can be found by first determining the eigenvalues
of X(T ), known as the Floquet multipliers, σ. The matrix X(T ), called the monodromy
matrix, is the fundamental set of solutions to (7) when t = T and with initial condi-
tions of X(0) = I. The monodromy matrix can be determined numerically or through
other means such as a multiple parameter perturbation method [25]. The characteristic
exponents are then determined by

ǫ =
lnσ

T
. (10)

Table 1 summarizes properties of solutions corresponding to the properties of the
characteristic exponents and multipliers.

4 Extended Floquet Theory

Floquet theory does not address stability of the inhomogeneous system described by (5)
where the forcing excitation g(t) is present. However, the T -periodic nature of g(t) allows
for an extension to the theory. The solution to the inhomogeneous system of (5) can be
expressed in terms of X(T ) as follows [26]

z(t) = X(t)

[

x(0) +

∫ t

0

X(τ)−1g(τ)dτ

]

. (11)
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Property of

Solutions
Characteristic Exponents, ε Multipliers, σ

Lyapunov
Stability

Real parts nonpositive: zero or
pure imaginary ǫ (if present) are
semisimple eigenvalues of K

Inside or on unit circle. Latter
case corresponds to semisimple

eigenvalues of K
Asymptotic
Stability

Real parts negative Inside unit circle

Instability

At least one characteristic expo-
nent with positive real part or

a pure imaginary (or zero) expo-
nent that is not semisimple

At least one multipier either
outside the unit circle or on the
unit circle and not semisimple

Table 1: Properties of solutions of systems with periodic coefficients.

Given that, according to Floquet theory, the monodromy matrix satisfies the following
identity at time t = t+ T

X(t+ T ) ≡ X(t)X(T ), (12)

the following theorem for the solution to (11) after n time periods z(nT ) can be estab-
lished.

Theorem 4.1 The solution to (11) after n time periods, where n is an integer, is
given by

z(nT ) = X(T )nx(0) +
[

X(T )n + ...+X(T )2 +X(T )
]

∫ T

0

X(τ)−1g(τ)dτ . (13)

Proof At t = T , the solution to (11) becomes

z(T ) = X(T )

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ

]

. (14)

Extending (14) to two time periods 2T , yields

z(2T ) = X(2T )

[

x(0) +

∫ 2T

0

X(τ)−1g(τ)dτ

]

. (15)

Expanding the term inside the integer and applying the identity of (12) yield

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ 2T

T

X(τ)−1g(τ)dτ

]

. (16)

Applying the variable change U = τ − T , dU = dτ to equation (16) results in

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ T

0

X(U + T )−1g(U + T )dU

]

. (17)
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Once again applying the identity from (12) and substitution of the time-periodic pro-
perties of (6) we get

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ T

0

X(T )−1X(U)−1g(U)dU

]

. (18)

Finally, (18) can be reduced to

z(2T ) = X(T )2x(0) +
[

X(T )2 +X(T )
]

∫ T

0

X(τ)−1g(τ)dτ . (19)

Repeated application of the identity from (12) and substitution of (6) leads to a solution
to (11) after n time periods nT

z(nT ) = X(T )nx(0)
︸ ︷︷ ︸

Homogeneous

+
[

X(T )n + ...+X(T )2 +X(T )
]

︸ ︷︷ ︸

Summation

∫ T

0

X(τ)−1g(τ)dτ

︸ ︷︷ ︸

Integral, Λ

︸ ︷︷ ︸

Inhomogeneous

. (20)

Note that the behavior of (20) as n approaches to infinity can be predicted strictly
based on knowledge of the response during the first time period T . The steady-state
behavior can be evaluated by examining each term in (20) as n approaches infinity. The
homogeneous and inhomogeneous terms will be evaluated separately in the following
subsections.

4.1 Homogeneous behavior

The behavior as n increases to infinity of the homogeneous term in (20) is dependent
upon the Floquet multipliers of the monodromy matrix X(T ). The behavior is given in
Table 2 for various properties of the magnitude of the largest Floquet multiplier ρ[X(T )].

The Limits of Powers Theorem [21], given in Theorem 4.2, guarantees the existence
of limn→∞ X(T )n for Properties 1 and 2.

Theorem 4.2 (Limits of Powers Theorem). For X ∈ Ck×k, limn→∞ Xn exists if
and only if ρ[X] < 1 or ρ[X] = 1, where 1 is the only eigenvalue on the unit circle and
is semisimple.

When it exists limn→∞ Xn = the projector onto N(I−A) along R(I−A), where N
is the null space and R is the range space.

Property 2 is of particular interest. According to Floquet theory, as summarized in
Table 1, a system with the largest multiplier(s) identically equal to one (semisimple)
exhibits stability in the sense of Lyapunov, not asymptotic stability as in Property 1.
Therefore, the limn→∞ X(T )n exists but is not necessarily zero. The concept of Cesaro
summability [21], given in Theorem 4.3, yields additional information about the value of
the limit for Property 2.
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Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
X(T )n

1
ρ[X(T )] < 1
Semisimple

Converges to 0

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Converges to
G

3
ρ[X(T )] = 1

Multipliers, other than one, on the
unit circle are semisimple

Nonconvergent
Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues, not semisimple
Divergent

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Divergent

Table 2: Properties of the homogeneous term of z(nT ).

Theorem 4.3 (Cesaro summability).

For X ∈ Ck×k, X is Cesaro summable if and only if

ρ[X] < 1 or ρ[X] = 1 with each eigenvalue on the unit circle being semisimple.

When it exists the Cesaro limit

limn→∞
I+X+...+X

n−1

n
= G

is the projector onto N(I−A) along R(I−A), exactly the same as the ordinary limit
described above in the Limits of Powers Theorem, had it existed.

G 6= 0 if and only if 1 is an eigenvalue of X, in which case G is the spectral projector
associated with an eigenvalue of 1.

Note that the existence of the limn→∞ Xn implies that the Cesaro sum G exists and
they have the same value. However, the existence of G does not imply the existence of
limn→∞ Xn. The Cesaro sum also exists when the largest Floquet multiplier magnitude
is equal to one. In other words, the multiplier is not identically one, but has both real
and imaginary parts with magnitude equal to one. This is the case for Property 3. The
Cesaro sum G exists and G = 0, but limn→∞ X(T )n does not exist. The Cesaro sum
is essentially the mean value of X(T )n as n increases to infinity, indicting that X(T )n

oscillates with both positive and negative values around a mean of zero. Therefore, the
homogeneous portion of the solution to z(nT ) does not converge but remains bounded
and oscillates indefinitely. As predicted by Table 1, Property 3 also exhibits stability in
the sense of Lyapunov.

For Properties 4 and 5, the limn→∞ X(T )n does not exist and also the Cesaro Sum
does not exist. Therefore, the solution for z(nT ) diverges. This result is in accordance
with Floquet theory which predicts instability.
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The results shown in Table 2 are completely consistent with the behavior predicted
by Floquet theory in Table 1. This is not surprising as the homogeneous term of (20) is
the solution to the time-periodic system in (7) at discrete multiples of the time period
T .

4.2 Inhomogeneous behavior

The inhomogeneous term in (20) consists of the product of a summation and an integral
term. The integral term, Λ, is a definite integral over the time span of zero to T and is
therefore a constant vector. The convergent or divergent behavior of the inhomogeneous
term will be determined by the summation term and the Floquet multipliers of X(T ).
This result is given in Table 3.

For Floquet multipliers with magnitude less than one, as in Property 1, the conver-
gence characteristics of the summation [X(T )n + ... +X(T )2 +X(T )] are given by the
Neumann series [21], shown in Theorem 4.4.

Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
[X(T )n + ...+X(T )2 +X(T )]

1
ρ[X(T )] < 1
Semisimple

Converges to
[I−X(T )]−1[X(T )]

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Unbounded

3
ρ[X(T )] = 1

Multipliers, other than one, on the
unit circle are semisimple

Nonconvergent
Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues, not semisimple
Unbounded

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Unbounded

Table 3: Properties of the summation term of z(nT ).

Theorem 4.4 (Neumann series). For X ∈ Ck×k, the following statements are equiv-
alent:

the Neumann series I+X+X2 + . . . converges;

ρ[X] < 1;

limn→∞ Xn = 0;

In which case [I−X]−1 exists and
∑∞

n=0
Xn = [I−X]−1.

Although limn→∞ Xn does exist for Property 2, according to Cesaro summability, the
limit is a non-zero constant G. In the limit, the summation term [X(T )n+ ...+X(T )2+
X(T )] becomes a diverging algebraic series increasing by G with each additional term.
Therefore, the summation term diverges.
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For Property 3 with semisimple Floquet multipliers on the unit circle but not iden-
tically one, the Cesaro sum G = 0. However, as mentioned in the previous section, the
limn→∞ X(T )n does not exist. X(T )n oscillates with both positive and negative values
around a mean of zero. Therefore, the summation term, oscillates around some constant
value.

For Properties 4 and 5, the summation term is unbounded.

4.3 Stability of the inhomogeneous system

Table 4 shows how the addition of a forcing term affects the steady-state solution of
the inhomogeneous system. With all Floquet multipliers of X(T ) less than one, as for

Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
Floquet
x(nT )

Inhomogeneous
z(nT )

1
ρ[X(T )] < 1
Semisimple

Asymptotic
Stability

Bounded

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Lyapunov
Stability

Unbounded

3
ρ[X(T )] = 1

Multipliers, other than one, on
the unit circle are semisimple

Lyapunov
Stability

Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues
not semisimple

Unstable Unbounded

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Unstable Unbounded

Table 4: Homogeneous vs inhomogeneous properties of z(nT ).

Property 1, z(nT ) converges to a nonzero value instead of to zero (asymptotic stability)
for the homogeneous system. The solution converges to

lim
n to∞

z(nT ) = [I−X(T )]−1[X(T )] Λ. (21)

For Property 2, with Floquet multipliers of X(T ) identically equal to one (semisim-
ple), z(nT ) is driven from Lyapunov stable to unbounded with the addition of the forcing
excitation. The summation in the homogeneous term is unbounded, causing the solution
to diverge. The solution in the limit is given by

lim
n to∞

z(nT ) = x(0) +
[

X(T )n + ...+X(T )2 +X(T )
]

Λ. (22)

For Property 3, if the largest Floquet multiplier of X(T ) has magnitude equal to one,
is semisimple, but is not identically one, then the Lyapunov stable homogeneous system
remains bounded with the addition of the forcing term. Neither term in equation 20
converges to a limit, indicating oscillation within some finite bound. The basic behavior
of the system has not changed with the addition of a forcing term.
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For Properties 4 and 5, both the homogeneous and inhomogeneous terms of equation
20 diverge and z(nT ) is unbounded. The basic behavior of the system has not changed
with the addition of a forcing term.

To summarize, there are two instances where the addition of the forcing excitation
changes the fundamental behavior of the system. First, for Property 1, z(nT ) converges
to a nonzero steady-state instead of to zero for the homogeneous system. Second, for
Property 2, z(nT ) is driven from Lyapunov stable to unbounded with the addition of the
forcing excitation.

Lyapunov stability [17, 18] presupposes that motion is analyzed with respect to an
equilibrium or rest condition. As explained earlier, the system of interest has no equilib-
rium, and the nonlinear differential equations are linearized about a time-varying refer-
ence condition. Therefore, when evaluating the steady-state behavior of z(nT ) in Table
4, the results are with respect to the reference behavior zR(t). In relevant literature, a
forced time-periodic system with or without an equilibrium is termed stable or asymp-
totically stable according to the Floquet multipliers, and the steady-state behavior is
time-periodic [12, 24]. However, Lyapunov stability requires that the solution can be
made arbitrarily small by changing the value of the initial conditions. For Properties 1
and 3, the steady-state solution is not dependent only on the initial conditions. For this
reason, Table 3 utilizes the terms bounded or unbounded to refer to z(nT ) as opposed to
stable or unstable.

4.4 Transient behavior

A linear homogeneous differential equation given by

ẍ+Bẋ+ Cx = 0, (23)

where B and C are constants can be expressed as a set of first-order equations in the
form

ẋ = Ax, (24)

whereA is a constant coefficient matrix. In classical control theory, the transient behavior
can be determined by the eigenvalues λ of the A matrix if the eigenvalues are a complex
pair with real parts less than zero [2, 5, 6].

λ = σ ± jωd, σ < 0. (25)

If so, the solution to (23) is expressed as

x(t) = eσt(C1sinωdt+C2cosωdt) = Ceσt(sinωdt+ φ), (26)

where C, C1 and C2 are vector constants determined by the initial conditions x(0),

σ = −ζωn, and ωd = ωn

√

1− ζ2. The parameter ζ is the damping ratio of the second-
order system, ωn is the natural frequency and φ are phase angles. The exponential
term Ceσt defines a decaying envelope that determines the rate at which the sinusoidal
oscillations decrease to zero with time. A transient characteristic is the time constant

Tc =
1

σ
, (27)

which is the time at which the exponential decreases to 37 percent of the initial value.
A related characteristic is the settling time

Ts =
number of time constants

σ
(28)
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which is the time at which the exponential decreases to a desired absolute percent of the
initial value. For example, the settling time to within 2 percent is approximately 4 time
constants. The time constant and settling time are characteristics that can be extended
to the homogeneous portion of (20).

The assumption is made that the homogeneous portion of (20) is second-order with
complex-conjugate Floquet characteristic exponents with negative real parts (Floquet
multipliers will lie inside the unit circle). According to Table 2, X(T )n will converge to
zero. At each multiple of n, the matrix A(nT ) has the same constant value. Therefore,
the homogeneous solution, x(nT ) = X(T )nx(0) at each multiple of the time period
is identical to the solution of a constant coefficient system and x(nT ) will lie along a
damped sinusoid given by

x̃(t) = eσt(C1sinωdt+C2cosωdt) = Ceσt(sinωdt+ φ). (29)

Therefore, the homogeneous solution, x(nT ), will also converge within the exponential
envelope Ceσt. The classical control theory concepts of time constant and settling time
can be directly applied to the homogeneous portion of z(nT ). The number of integer
time periods to reach the required settling time is given by

ns =
number of time constants

σT
=

Ts

T
, (30)

where ns can be rounded to the next higher integer and guarantee that x(nT ) is equal
to (or less than) the required percent of its maximum value

x(nT )

C
≤ eσnsT . (31)

The inhomogeneous portion of z(t) can be shown to be time-periodic. Consider the
solution z(t+nT ), where 0 < t < T . The inhomogeneous part of the solution zi(t+nT )
is given by

zi(t+ nT ) = X(t+ nT )

∫ t+nT

0

X(τ)−1g(τ)dτ (32)

which can be written as

zi(t+ nT ) = X(t)X(nT )

[

∫ nT

0

X(τ)−1g(τ)dτ +

∫ t+nT

nT

X(τ)−1g(τ)dτ

]

. (33)

Using the definition of a Neumann series (Theorem 4.4) and a procedure similar to that
of Theorem 4.1, (33) converges to

zi(t+ nT ) = X(t)

[

[I−X(T )]−1[X(T )] Λ+

∫ t

0

X(τ)−1g(τ)dτ

]

. (34)

Assuming that (34) is time-periodic, then the equation is also a steady-state solution
given by

zss(t) = X(t)

[

[I−X(T )]−1[X(T )]Λ+

∫ t

0

X(τ)−1g(τ)dτ

]

. (35)

If the assumption is true then

zss(t) = zss(t+ T ) = X(t+ T )

[

[I−X(T )]−1[X(T )] Λ+

∫ t+T

0

X(τ)−1g(τ)dτ

]

. (36)
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Expanding the integral term yields

zss(t+ T ) =

X(t)X(T )

[

[I−X(T )]−1[X(T )] Λ+

∫ T

0

X(τ)−1g(τ)dτ +

∫ t+T

T

X(τ)−1g(τ)dτ

]

(37)

which, again using the procedure of Theorem 4.1, reduces back to

zss(t) = zss(t+ T ) = X(t)

[

[I−X(T )]−1[X(T )] Λ

∫ t

0

X(τ)−1g(τ)dτ

]

(38)

proving the assumption that zss(t) is time-periodic is true.

The steady-state solution can be determined by integration over a single time period.
Since the inhomogeneous portion of the solution to z(t) is time-periodic and, therefore,
contains no “transient” terms, the entire solution converges to the steady-state with the
settling time characteristics of the homogeneous system described above. As mentioned
earlier, given that the initial conditions are the initial vector of the periodic solution, the
entire solution is time-periodic [3, 11].

5 Spinning Pendulum Example

The system to be analyzed, as shown in Figure 1 is a mass attached to a fixed point by a
rigid tether. The pendulum is spinning in a gravitational field. The nonlinear equations
of motion are given by

Figure 1: Pendulum spinning in a constant gravity field.

θ̈ =
−g

L
sin θ. (39)

The reference condition chosen is the limiting behavior for g << L which is a constant-
rate spin

[

θ

θ̇0

]

R

=

[

θ0
θ0 + θ̇0t

]

. (40)
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The linearized equations of motion are given by
[

δ̇θ

δ̈θ

]

=

[

0 1
−g

L
cos θ 0

]

R

[

δθ

δ̇θ

]

+

[

0
−g

L
sin θ

]

R

, (41)

where g is the acceleration due to gravity and L is the length of the tether. The ratio
g/L is set to 0.1 for this example. The reference condition is θ0 = −100 deg and θ̇0 =
π/3 rad/s. The time period for both the parametric and the forced excitation is T =
2π/θ̇0 = 6 s.

The monodromy matrix X(T ) is found by numerical simulation of the homogeneous
portion of (41) with unity initial conditions for one time period. This results in the
following Floquet multipliers

σ = 0.918± 0.397i, |σ| = 1. (42)

The pendulum system has a pair of complex Floquet multipliers with magnitude equal
to one. Therefore the system exhibits Property 3 from Tables 2, 3 and 4. The homoge-
neous portion of the system is Lyapunov stable (see Table 2) as shown in Figure 2 where
δθ is plotted for 30 time periods. The inhomogeneous system response is nonconvergent
but bounded (see Table 3) by some finite value as shown in Figure 3. Figures 2 and 3
show both the result of a numerical simulation for 30 time periods of (41) and also the
response, z(nT ), calculated from (20) at each time period.

Figure 2: Homogeneous response to a small perturbation.

If a negative feedback controller with a proportional gain, Kp, and derivative gain,
Kd, is applied to the pendulum system, the linear system of (41) becomes

[

δ̇θ

δ̈θ

]

=

[

0 1
−g

L
cos θ −Kp −Kd

]

R

[

δθ

δ̇θ

]

+

[

0
−g

L
sin θ

]

R

. (43)

With gains of Kp = Kd = 0.06 and an initial condition of δθ = 0.3 rad, the Floquet
multipliers become

σ = 0.034± 0.835i, |σ| = 0.835, (44)
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Figure 3: Inhomogeneous response to a small perturbation.

which are now a complex pair that lie inside the unit circle. The homogeneous system
with negative feedback has become asymptotically stable as shown in Figure 4. As
shown in Figure 5, the inhomogeneous system response is bounded and asymptotically
approaches a time-periodic steady-state response.

Using (10) the corresponding Floquet characteristic exponents for (44) can be calcu-
lated

ǫ = −0.030± 0.255i (45)

resulting in a time constant, Tc = 33.3 s = 5.6 time periods and a settling time to 2
percent, Ts = 133.3 s = 22.2 time periods. The number of integer time periods for z(t) to
settle to 2 percent is therefore ns = 23. The homogeneous response in Figure 4 confirms
that these results show good agreement with the simulated output. The solution for z(t)
in Figure 5 shows the same settling time to the periodic steady-state.

6 Conclusions

When a near-periodic system is linearized about a time-periodic reference motion, the
result is a linear parametrically excited system with a periodic forcing function. The solu-
tion to the system has been derived at each integer time period which requires knowledge
of the system for the first time period only. The behavior of the homogeneous and inho-
mogeneous portions of the response can be predicted by using the Floquet characteristic
exponents or multipliers. By adding a forcing excitation, the general behavior predicted
by Floquet theory for the homogeneous system changed only for the case of semisim-
ple multipliers that are identically equal to one. The presence of the forcing excitation
caused the solution to diverge.

The classical control theory concept of settling time has been extended to the forced
parametrically excited system. The homogeneous solution at each linear time period is
the solution to a constant coefficient system which converges to zero at an exponential
rate which can be determined from the Floquet characteristic exponents. It has been
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Figure 4: Homogeneous response to a small perturbation (controlled system).

Figure 5: Inhomogeneous response to a small perturbation (controlled system).

shown that the entire inhomogeneous solution converges to a steady-state at the same
exponential rate.
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Abstract: This paper investigates the problem of passive delayed static output
feedback control for a class of fuzzy systems. The system is described by a state-
space Takagi–Sugeno (T-S) fuzzy model with additive delays and interval parameter
uncertainties. The aim is to design a fuzzy delayed static output feedback controller
which ensures the closed-loop system is passive for all admissible uncertainties. In
terms of linear matrix inequalities, a delay-dependent condition for the solvability of
the above passive control problem is presented. A simulation example is provided to
illustrate the effectiveness of the proposed design approach.

Keywords: passive control; static output feedback; additive delays; T-S fuzzy models;

interval parameter uncertainties.
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1 Introduction

It is known that Takagi-Sugeno (T-S) fuzzy model, which is described by IF-THEN rules,
provides an effective way to represent complex nonlinear systems in terms of fuzzy sets
linear sub-systems [1, 13]. Time delays are commonly encountered in various engineering
systems. Considerable attention has been paid to the stability analysis and synthesis
for T-S fuzzy systems with time delays [12, 16], these results can be classified into two
categories, namely, delay independent and delay dependent results. In most of these
works, the state vector has a single delay. In this paper, we consider a class of T-S
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fuzzy systems with additive time-varying delays with totally different properties. Such a
system model is suitable in the analysis of networked control systems [11].

Recently, passive control has attracted lots of attention among control community
[9, 14]. For example, some results on passive control for T-S fuzzy systems were obtained
for discrete- and continuous-time systems in [1] and [7], respectively. However, many
papers deal with state feedback controllers. In practical applications, state variables
may not be measured for many nonlinear systems. So it is meaningful to control a
system via output feedback controllers; static output feedback control strategy is simple
in controller structures, compared with dynamic output feedback control strategy. The
problem of static output feedback controller design for discrete-time T-S fuzzy systems
was considered in [2, 3], while for continuous-time T-S fuzzy systems, the static output
feedback controller design problem was investigated in [4]. It is worth mentioning that,
the delayed feedback control approach has attracted much attention over the past several
years [8]. One can get rid of the need for explicitly determining any information about
the underlying dynamics other than the period of the desired orbit, by using time delay
in the feedback loop [6, 10]. However, to the best of our knowledge, the problem of
passive delayed static output feedback control for continuous-time T-S fuzzy systems
with interval parameter uncertainties and additive delays has not been solved.

In this paper, we consider the passive delayed static output feedback control problem
for a class of fuzzy systems with uncertain parameters and delays. The purpose is to
design a full-order fuzzy delayed static output feedback controller such that the resulting
closed-loop system is passive irrespective of the parameter uncertainties. A sufficient
condition for the solvability of this problem is proposed and an explicit expression of a
desired static output feedback controller is also given.

Notation: Throughout this paper, for real symmetric matricesX and Y , the notation
X ≥ Y (respectively, X > Y ) means that the matrix X − Y is positive semidefinite
(respectively, positive definite). I and 0 denote the identity and the zero matrix with
appropriate dimensions. ∗ is used as an ellipsis for terms induced by symmetry. Matrices,
if not explicitly stated, are assumed to have compatible dimensions. Sym(X) denotes
the expression X +XT .

2 Main Results

The Takagi-Sugeno (T-S) fuzzy dynamic model is described by fuzzy IF-THEN rules,
which locally represent linear input-output relations of nonlinear systems. A continuous-
time T-S fuzzy model with additive delays and interval parameter uncertainties can be
described by
Plant Rule i: IF s1(t) is µi1 and . . . and sp(t) is µip, THEN

ẋ(t) = Aix(t) +Adix(t− τ1(t)− τ2(t)) +Biu(t) +D1iw(t), (1)

y(t) = Cix(t), (2)

z(t) = Eix(t) +D2iw(t) + E1iu(t), (3)

x(t) = φ(t) ∀t ∈ [−τ̄12, 0], i = 1, 2, . . . , r, (4)

where µij is the fuzzy set and r is the number of IF-THEN rules; s1(t), . . ., sp(t) are the
premise variables. Throughout this paper, it is assumed that the premise variables do
not depend on control variables; x(t) ∈ R

n is the state; u(t) ∈ R
m is the control input;

y(t) ∈ R
s is the measured output; z(t) ∈ R

q is the controlled output; w(t) ∈ R
p is the
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noise signal; τ(t) is the time delays in state either constant or time varying satisfying
0 ≤ τi(t) ≤ τ̄i, 0 ≤ τ̇i(t) ≤ di, i = 1, 2, where τ̄i and di are constants. For simplicity, set

τ̄12 = τ̄1 + τ̄2, d12 = d1 + d2.

For all 1 ≤ p, q ≤ n, 1 ≤ k ≤ nB with Ai = [apqi ], Ai = [apqi ], Adi = [apqdi ], Adi =

[apqdi ], Bi = [bpki ], Bi = [b
pk

i ], we define the following interval uncertain matrix sets:

Ai = {[apqi ]n×n : apqi ≤ apqi ≤ apqi , 1 ≤ p, q ≤ n},

Adi = {[apqdi ]n×n : apqdi ≤ apqdi ≤ apqdi , 1 ≤ p, q ≤ n},

Bi = {[bpki ]n×n : bpki ≤ bpki ≤ b
pk

i , 1 ≤ p ≤ n, 1 ≤ k ≤ nB},

and let Ai ∈ Ai, Adi ∈ Adi, Bi ∈ Bi, for i = 1, 2, . . . , r.
Now, let

A0i =
1

2
(Ai +Ai), ∆Ai =

1

2
(Ai −Ai), Ad0i =

1

2
(Adi +Adi),

∆Adi =
1

2
(Adi −Adi), B0i =

1

2
(Bi +Bi), ∆Bi =

1

2
(Bi −Bi).

Then Ai, Adi and Bi in (1) can be rewritten as

Ai = A0i +

n
∑

p,q=1

ep
∣

∣gpqai

∣

∣ eTq , Adi = Ad0i +

n
∑

p,q=1

ep
∣

∣gpqadi

∣

∣ eTq ,

Bi = B0i +

n
∑

p=1

nB
∑

k=1

ep

∣

∣

∣
gpkbi

∣

∣

∣
eTk ,

where
∑n

p,q=1 ep
∣

∣gpqai

∣

∣ eTq ,
∑n

p,q=1 ep
∣

∣gpqadi

∣

∣ eTq , and
∑n

p=1

∑nB

k=1 ep

∣

∣

∣
gpkbi

∣

∣

∣
eTk denote the in-

terval parameter uncertainties; ep, eq ∈ Rn and ek ∈ RnB are the column vectors with

pth, qth, kth element to be 1 and others to be 0; gpqai
, gpqadi

, and gpkbi are variant parameters

satisfying
∣

∣gpqai

∣

∣ ≤ ∆apqi ,
∣

∣gpqadi

∣

∣ ≤ ∆apqdi , and
∣

∣

∣
gpkbi

∣

∣

∣
≤ ∆bpki , respectively.

Then the final output of the fuzzy system is inferred as follows:

ẋ(t) =

r
∑

i=1

hi(s(t))[Aix(t) +Adix(t− τ1(t)− τ2(t)) +Biu(t) +D1iw(t)], (5)

y(t) =

r
∑

i=1

hi(s(t))[Cix(t)], (6)

z(t) =

r
∑

i=1

hi(s(t))[Eix(t) +D3iw(t) + E1iu(t)], (7)

where

hi(s(t)) =
̟i(s(t))

∑r

i=1 ̟i(s(t))
, ̟i(s(t)) =

p
∏

j=1

µij(sj(t)),

s(t) = [s1(t) s2(t) · · · sp(t)],
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in which µij(sj(t)) is the grade of membership of sj(t) in µij . Then, it can be seen that

hi(s(t)) ≥ 0, i = 1, · · · , r,
r

∑

i=1

hi(s(t)) = 1, ∀t. (8)

Now, by the parallel distributed compensation, we consider the following full-order fuzzy
delayed static output feedback controller for the fuzzy system (5)–(7):

u(t) =

r
∑

i=1

hi(s(t))[Kiy(t− τ)], (9)

where Ki is matrix to be determined later and τ is a given scalar.
From (5)–(7) and (9), the closed-loop system can be obtained as

ẋ(t) =

r
∑

i=1

r
∑

j=1

r
∑

l=1

hi(s(t))hj(s(t))hl(s(t))[Aix(t) +BiKjClx(t− τ)

+Adix(t− τ1(t)− τ2(t)) +D1iw(t)], (10)

z(t) =

r
∑

i=1

r
∑

j=1

r
∑

l=1

hi(s(t))hj(s(t))[Eix(t) + E1iKjClx(t − τ) +D3iw(t)]. (11)

As a performance measure for T-S fuzzy system (10)–(11), the definition of passivity is
as follows:

Definition 2.1 [5] The system (10)–(11) is called passive if there exists a scalar γ ≥ 0
such that

2

∫ t

0

ω(t)T z(t)dt ≥ −γ

∫ t

0

ω(s)Tω(s)ds (12)

for all t ≥ 0 and for all solutions of (10)–(11) with x0 = 0, where γ is some constant
which depends on the initial condition of the system.

2.1 Passivity analysis

We first give the following results which will be used in the proof of our main results.

Lemma 2.1 [15] Given matrices X = X T , D, Z and R = RT > 0 of appropriate
dimensions, we have

X +DFZ + ZTFTDT < 0

for all F satisfying FTF ≤ R if and only if there exists a scalar ǫ > 0 such that

X+ǫDDT + ǫ−1ZTRZ < 0.

Theorem 2.1 Consider the closed-loop fuzzy system in (5)–(7) with interval pa-
rameter uncertainties and additive delays. Suppose that the controller gain matrices
in (9) are known. Given positive scalars γ, d1, d12, τ̄1, τ̄2 and τ̄12, if there ex-
ist matrices P > 0, Q > 0, Ri > 0, Zi > 0, Mi > 0, S, and positive scalars
ε1ijpq , ε2ijpq , ε3ijpq , ε4ijpq , ε5ijpk, ε6ijpk , for p, q = 1, . . . , n and k = 1, . . . , nB, such
that the following linear matrix inequalities (LMIs) hold:
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Ψiil < 0, i, l = 1, . . . , r, (13)

Ψijl +Ψjil < 0, 1 ≤ i < j ≤ r, l = 1, . . . , r, (14)

Mk < Zk, k = 1, 2, 3, (15)

where

Ψijl =

















Ωijl Ωs Ωs ∆pq
ai
Ωe ∆pq

adi
Ωe ∆pk

bi
Ωe

∗ −Ωε1ij − Ωε2ij 0 0 0 0
∗ ∗ −Ωε5ijB 0 0 0
∗ ∗ ∗ −Ωε3ij 0 0
∗ ∗ ∗ ∗ −Ωε4ij 0
∗ ∗ ∗ ∗ ∗ −Ωε6ijB

















,

Ωijl = Φ0ijl +

n
∑

p,q=1

[

(ε1ijpq∆
pq2

ai
+ ε3ijpq)W

T
eq1Weq1 + (ε2ijpq∆

pq2

adi
+ ε4ijpq)W

T
eq2Weq2

]

+

n
∑

p=1

nB
∑

k=1

(

ε5ijpk∆
pk2

bi
+ ε6ijpk

)

WT
ek1Wek1,

Weq1 =
[

eTq 01,(m+3)n

]

, Wek1 =
[

01,n eTkKjCl 01,(m+2)n

]

,

Weq2 =
[

01,3n eTq 01,mn

]

,Ωs =
[

S̄e1 · · · S̄en
]

,

Ωe =
[

ē1S
T · · · ēnS

T
]

, ēpS =
[

01,mn eTp S
T 01,3n

]

,

S̄ep =

[

Sep
0(m+3)n,1

]

, Ωεnij =







εnij11 0 0

∗
. . . 0

∗ ∗ εnijnn






,

ΩεmijB =







εmij11 0 0

∗
. . . 0

∗ ∗ εmijnnB






,Φ0ijl =





Σ01ijl Σ02ijl Σ4

∗ Σ03i Σ5

∗ ∗ −Σ6



 ,

Σ01ijl =





QA0i SB0iKjCl + LT
12 + LT

32 L21 − L11 + LT
13 + LT

33

∗ −Q L22 − L12

∗ ∗ (d1 − 1)R1 +R2 + Sym{L23 − L13}



 ,

Σ02ijl =





SAd0i + L̂21 SD1i − ET
i + LT

15 + LT
35 P − S +AT

0iS
T + LT

16 + LT
36

−L22 − L32 −CT
l K

T
j E

T
1i CT

l K
T
j B

T
0iS

T

L̂23 LT
25 − LT

15 LT
26 − LT

16



 ,

Σ03i =









(d12 − 1)(R2 +R3)
+Sym{−L24 − L34} −LT

25 − LT
35 AT

d0iS
T − LT

26 − LT
36

∗ −D3i −DT
3i − γ DT

1iS
T

∗ ∗ Ẑs









,
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Σ4 =





τ̄1L11 τ̄2L21 τ̄12L31

τ̄1L12 τ̄2L22 τ̄12L32

τ̄1L13 τ̄2L23 τ̄12L33



 , Σ5 =





τ̄1L14 τ̄2L24 τ̄12L34

τ̄1L15 τ̄2L25 τ̄12L35

τ̄1L16 τ̄2L26 τ̄12L36



 ,

Σ6 = diag(τ̄1M1, τ̄2M2, τ̄12M3),

QA0i = SA0i +AT
0iS

T +Q+R1 +R3 + Sym{L11 + L31},

L̂21 = −L21 − L31 + LT
14 + LT

34, L̂23 = −L23 − L33 + LT
24 − LT

14,

Ẑs = τ̄1Z1 + τ̄2Z2 + τ̄12Z3 − S − ST .

Then the closed-loop system (10)–(11) is passive.

Proof For system (10)-(11), we define the following Lyapunov functional candidate:

V (t) = x(t)TPx(t) + V1(t) + V2(t) + V3(t), (16)

where

V1(t) =

∫ t

t−τ

x(s)TQx(s)ds,

V2(t) =

∫ t

t−τ1(t)

x(s)TR1x(s)ds+

∫ t−τ1(t)

t−τ1(t)−τ2(t)

x(s)TR2x(s)ds

+

∫ t

t−τ1(t)−τ2(t)

x(s)TR3x(s)ds,

V3(t) =

∫ t

t−τ̄1

dθ

∫ t

θ

ẋ(s)TZ1ẋ(s)ds+

∫ t−τ̄1

t−τ̄12

dθ

∫ t

θ

ẋ(s)TZ2ẋ(s)ds

+

∫ t

t−τ̄12

dθ

∫ t

θ

ẋ(s)TZ3ẋ(s)ds.

The time derivative of V (t) is given by

V̇ (t) = 2x(t)TP ẋ(t) + V̇1(t) + V̇2(t) + V̇3(t),

where

V̇1(t) = x(t)TQx(t)− x(t− τ)TQx(t− τ), (17)

V̇2(t) = x(t)T (R1 +R3)x(t) − (1− τ̇1(t))x(t − τ1(t))
T (R1 −R2)x(t− τ1(t))

−(1− τ̇1(t)− τ̇2(t))x(t − τ1(t)− τ2(t))
T (R2 +R3)x(t − τ1(t)− τ2(t))

≤ x(t)T (R1 +R3)x(t) − x(t− τ1(t))
T [(1− d1)R1 −R2]x(t− τ1(t))

−(1− d12)x(t− τ1(t)− τ2(t))
T (R2 +R3)x(t− τ1(t)− τ2(t)), (18)

V̇3(t) = ẋ(t)T (τ̄1Z1 + τ̄2Z2 + τ̄12Z3)ẋ(t)−

∫ t

t−τ̄1

ẋ(s)TZ1ẋ(s)ds

−

∫ t−τ̄1

t−τ̄12

ẋ(s)TZ2ẋ(s)ds−

∫ t

t−τ̄12

ẋ(s)TZ3ẋ(s)ds

≤ ẋ(t)T (τ̄1Z1 + τ̄2Z2 + τ̄12Z3)ẋ(t)−

∫ t

t−τ1(t)

ẋ(s)TZ1ẋ(s)ds

−

∫ t−τ1(t)

t−τ1(t)−τ2(t)

ẋ(s)TZ2ẋ(s)ds−

∫ t

t−τ1(t)−τ2(t)

ẋ(s)TZ3ẋ(s)ds. (19)
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By the Newton–Leibniz formula, for any appropriately dimensioned matrices Li, i =
1, 2, 3, we have the following equations

Λ1 = 2ξ(t)TL1[x(t) − x(t− τ1(t)) −

∫ t

t−τ1(t)

ẋ(s)ds] = 0, (20)

Λ2 = 2ξ(t)TL2[x(t− τ1(t))− x(t− τ1(t)− τ2(t)) −

∫ t−τ1(t)

t−τ1(t)−τ2(t)

ẋ(s)ds] = 0, (21)

Λ3 = 2ξ(t)TL3[x(t) − x(t− τ1(t)− τ2(t))−

∫ t

t−τ1(t)−τ2(t)

ẋ(s)ds] = 0, (22)

where

ξ(t) = [x(t)T x(t− τ)T x(t− τ1(t))
T x(t− τ12(t))

T w(t)T ẋ(t)T ]T ,

On the other hand, for matrices Zj = ZT
j , j = 1, 2, 3, Mi = MT

i , i = 1, 2, 3, which
satisfy

M1 < Z1, M2 < Z2, M3 < Z3,

one can get the following inequalities:

Υ1 = τ1(t)ξ(t)
TL1M

−1
1 LT

1 ξ(t)−

∫ t

t−τ1(t)

ξ(t)TL1Z
−1
1 LT

1 ξ(t)ds > 0, (23)

Υ2 = τ1(t)ξ(t)
TL1M

−1
1 LT

1 ξ(t)−

∫ t

t−τ1(t)

ξ(t)TL1Z
−1
1 LT

1 ξ(t)ds > 0, (24)

Υ3 = τ1(t)ξ(t)
TL1M

−1
1 LT

1 ξ(t)−

∫ t

t−τ1(t)

ξ(t)TL1Z
−1
1 LT

1 ξ(t)ds > 0. (25)

It then follows from (17)-(25) that

V̇ (t) ≤

r
∑

i=1

r
∑

j=1

r
∑

l=1

hi(s(t))hj(s(t))hl(s(t)){ξ
T (t)Θijlξ(t) + τ̄1ξ

T (t)L1M
−1
1 LT

1 ξ(t)

+τ̄2ξ
T (t)L2M

−1
2 LT

2 ξ(t) + τ̄12ξ
T (t)L3M

−1
3 LT

3 ξ(t)

−

∫ t

t−τ1(t)

[ξT (t)L1 + ẋ(s)TZ1]Z
−1
1 [LT

1 ξ(t) + Z1ẋ(s)]ds

−

∫ t−τ1(t)

t−τ12(t)

[ξT (t)L2 + ẋ(s)TZ2]Z
−1
2 [LT

2 ξ(t) + Z2ẋ(s)]ds

−

∫ t

t−τ12(t)

[ξT (t)L3 + ẋ(s)TZ3]Z
−1
3 [LT

3 ξ(t) + Z3ẋ(s)]ds, (26)
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where

Θijl =

[

Σ1ijl Σ2ijl

∗ Σ3i

]

, S̄ = [ST 0 · · · 0 ST ]T ,

Σ1ijl =





QAi SBiKjCl + LT
12 + LT

32 L21 − L11 + LT
13 + LT

33

∗ −Q L22 − L12

∗ ∗ (d1 − 1)R1 +R2 + Sym{L23 − L13}



 ,

Σ2ijl =





SAdi + L̂21 SD1i + LT
15 + LT

35 P − S +AT
i S

T + LT
16 + LT

36

−L22 − L32 0 CT
l K

T
j B

T
i S

T

L̂23 LT
25 − LT

15 LT
26 − LT

16



 ,

Σ3i =









(d12 − 1)(R2 +R3)
+Sym{−L24 − L34} −LT

25 − LT
35 AT

diS
T − LT

26 − LT
36

∗ 0 DT
1iS

T

∗ ∗ Ẑs









.

Since Zj > 0, j = 1, 2, 3, the last three terms in (26) are all less than 0. From this, one
can obtain

V̇ (t)− 2z(t)Tω(t)− γω(t)Tω(t)

≤

r
∑

i=1

r
∑

j=1

r
∑

l=1

hi(s(t))hj(s(t))hl(s(t)){ξ
T (t)Φijlξ(t)}, (27)

where

Φijl =





Σ1ijl Σ̂2ijl Σ4

∗ Σ̂2ijl Σ5

∗ ∗ −Σ6



 ,

Σ̂2ijl =





SAdi + L̂21 SD1i − ET
i + LT

15 + LT
35 P − S +AT

i S
T + LT

16 + LT
36

−L22 − L32 −CT
l K

T
j E

T
1i CT

l K
T
j B

T
i S

T

L̂23 LT
25 − LT

15 LT
26 − LT

16



 ,

Σ̂3i =









(d12 − 1)(R2 +R3)
+Sym{−L24 − L34} −LT

25 − LT
35 AT

diS
T − LT

26 − LT
36

∗ −D3i −DT
3i − γ DT

1iS
T

∗ ∗ +Ẑs









.

Replacing Ai, Adi, Bi, in Φijl of the inequality in (27) with Ai =
A0i +

∑n

p,q=1 ep
∣

∣gpqai

∣

∣ eTq , Adi = Ad0i +
∑n

p,q=1 ep
∣

∣gpqadi

∣

∣ eTq , and Bi = B0i +
∑n

p=1

∑nB

k=1 ep

∣

∣

∣
gpkbi

∣

∣

∣
eTk , respectively, we have

V̇ (t)− 2z(t)Tω(t)− γω(t)Tω(t)

≤
r

∑

i=1

r
∑

j=1

r
∑

l=1

hi(s(t))hj(s(t))hl(s(t)){ξ
T (t)Ψijlξ(t)}

=

r
∑

i=1

r
∑

l=1

h2
i (s(t))hl(s(t))ξ

T (t)Ψiilξ(t)

+2

r
∑

i=1,i<j

r
∑

l=1

hi(s(t))hj(s(t))hl(s(t))ξ(t)
T Ψijl +Ψjil

2
ξ(t).
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From (13) and (14), we can obtain that Ψiil < 0, Ψijl +Ψjil < 0. Then we can get (12).
This completes the proof. �

2.2 Delayed static output-feedback controller design

Now, we are in a position to present a solution to the passive delayed static output
feedback controller design problem.

Theorem 2.2 Consider the closed-loop fuzzy system in (5)–(7) with interval param-
eter uncertainties and additive delays. Given positive scalars d1, d12, τ̄1, τ̄2 and τ̄12, and
let γ > 0 be a prescribed constant scalar. The passive control problem is solvable if there
exist matrices P̃ > 0, Q̃ > 0, R̃i > 0, Z̃i > 0, M̃i > 0, X, and positive scalars
ε̂1ijpq , ε̂2ijpq , ε̂3ijpq , ε̂4ijpq , ε̂5ijpk, ε̂6ijpk, for p, q = 1, . . . , n and k = 1, . . . , nB, such
that the following LMIs hold:

Jiil < 0, i, l = 1, . . . , r, (28)

Jijl + Jjil < 0, 1 ≤ i < j ≤ r, l = 1, . . . r, (29)

M̃k < Z̃k, k = 1, 2, 3, (30)

where

Jijl =























Hijl Ωeq1 Ωeq2 ŴT
eq1 ŴT

eq2 Ωek1 ŴT
ek1

∗ −Ω̂ε1ij 0 0 0 0 0

∗ ∗ −Ω̂ε2ij 0 0 0 0

∗ ∗ ∗ −Ω̂ε3ij 0 0 0

∗ ∗ ∗ ∗ −Ω̂ε4ij 0 0

∗ ∗ ∗ ∗ ∗ −Ω̂ε5ijB 0

∗ ∗ ∗ ∗ ∗ ∗ −Ω̂ε6ijB























,

Hijl = F0ijl +

n
∑

p,q=1

[

(ε̂1ijpq + ε̂2ijpq)ēpē
T
p + (ε3ijpq∆

pq2

ai
+ ε4ijpq∆

pq2

adi
)êTp êp

]

+

n
∑

p=1

nB
∑

k=1

(

ε5ijpk ēpē
T
p + ε6ijpk∆

pk2

bi
êTp êp

)

,

Ŵeq1 =
[

eTq X 01,(m+3)n

]

, Ŵek1 =
[

01,n eTkNjCl 01,(m+2)n

]

,

Ŵeq2 =
[

01,3n eTq X 01,mn

]

,Ωeq1 =
[

∆11
ai
ŴT

eq1 · · · ∆nn
ai

ŴT
eq1

]

,

Ωeq2 =
[

∆11
adi

ŴT
eq2 · · · ∆nn

adi
ŴT

eq2

]

, Ωek1 =
[

∆11
bi
ŴT

ek1 · · · ∆nn
bi

ŴT
ek1

]

,

ēp =

[

ep
0(m+3)n,1

]

, êp =
[

01,mn eTp 01,3n
]

,

Ω̂εnij =







ε̂nij11 0 0

∗
. . . 0

∗ ∗ ε̂nijnn






, Ω̂εmijB =







ε̂mij11 0 0

∗
. . . 0

∗ ∗ ε̂mijnnB






,

F0ijl =





G01ijl G02ijl G4

∗ G03i G5

∗ ∗ −G6



 ,
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G01ijl =





Q̃A0i B0iNjCl + L̃T
12 + L̃T

32 L̃21 − L̃11 + L̃T
13 + L̃T

33

∗ −Q̃ L̃22 − L̃12

∗ ∗ (d1 − 1)R̃1 + R̃2 + Sym{L̃23 − L̃13}



 ,

G02ijl =





Ad0iX + ~L21 D1i −XTET
i + L̃T

15 + L̃T
35 P̃ −X +XTAT

0i + L̃T
16 + L̃T

36

−L̃22 − L̃32 −CT
l N

T
j ET

1i CT
l N

T
j BT

0i
~L23 L̃T

25 − L̃T
15 L̃T

26 − L̃T
16



 ,

G03i =









(d12 − 1)(R̃2 + R̃3)

+Sym{−L̃24 − L̃34} −L̃T
25 − L̃T

35 XTAT
d0i − L̃T

26 − L̃T
36

∗ −D3i −DT
3i − γ DT

1i

∗ ∗ ~Zx









,

G4 =





τ̄1L11 τ̄2L21 τ̄12L31

τ̄1L12 τ̄2L22 τ̄12L32

τ̄1L13 τ̄2L23 τ̄12L33



 , G5 =





τ̄1L̃14 τ̄2L̃24 τ̄12L̃34

τ̄1L̃15 τ̄2L̃25 τ̄12L̃35

τ̄1L̃16 τ̄2L̃26 τ̄12L̃36



 ,

G6 = diag(τ̄1M̃1, τ̄2M̃2, τ̄12M̃3),

Q̃A0i = A0iX +XTAT
0i + Q̃+ R̃1 + R̃3 + Sym{L̃11 + L̃31},

~L21 = −L̃21 − L̃31 + L̃T
14 + L̃T

34,

~L23 = −L̃23 − L̃33 + L̃T
24 − L̃T

14,

~Zx = τ̄1Z̃1 + τ̄2Z̃2 + τ̄12Z̃3 −X −XT ,

and the following equality constraint satisfied

MCl = ClX. (31)

Furthermore, a desired passive delayed static output feedback controller is given in the
form (9) with parameters as follows:

Ki = NiM
−1, 1 ≤ i ≤ r. (32)

Proof Suppose there exist matrices Q̃, P̃ , R̃i, Z̃j, M̃i, i, j = 1, 2, 3, andX satisfying
(28)-(31). Applying the Schur complement formula to (28) results in

F0ijl +

n
∑

p,q=1

[

(ε̂1ijpq + ε̂2ijpq)ēpē
T
p + (ε3ijpq∆

pq2

ai
+ ε4ijpq∆

pq2

adi
)êTp êp

+ŴT
eq1Ω̂

−1
ε1ij∆

pq2

ai
Ŵeq1 + ŴT

eq2Ω̂
−1
ε2ij∆

pq2

adi
Ŵeq2 + ŴT

eq1Ω̂
−1
ε3ijŴeq1 + ŴT

eq2Ω̂
−1
ε4ijŴeq2

]

+

n
∑

p=1

nB
∑

k=1

(ε5ijpk ēpē
T
p + ε6ijpk∆

pk2

bi
êTp êp + ŴT

ek1Ω̂
−1
ε5ijB∆

pk2

bi
Ŵek1

+ŴT
ek1Ω̂

−1
ε6ijBŴek1) < 0,

then, by Lemma 2.1, it is easy to have

F0ijl + sym{

n
∑

p,q=1

[ēp | fpq
Ai

| Ŵeq1 + ēp | fpq
Adi

| Ŵeq2 + ŴT
eq1 | fpq

Ai
|T êp

+ ŴT
eq2 | fpq

Adi
|T êp] +

n
∑

p=1

nB
∑

k=1

[ēp | fpk
Bi

| Ŵek1 + ŴT
ek1 | fpk

Bi
|T êp]} < 0.
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Replacing Ai = A0i +
∑n

p,q=1 ep
∣

∣gpqai

∣

∣ eTq , Adi = Ad0i +
∑n

p,q=1 ep
∣

∣gpqadi

∣

∣ eTq , and Bi =

B0i+
∑n

p=1

∑nB

k=1 ep

∣

∣

∣
gpkbi

∣

∣

∣
eTk , in the proceeding inequality with Ai, Adi, Bi, respectively,

we can get





G1ijl G2ijl G4

∗ G3i G5

∗ ∗ −G6



 < 0, (33)

where

G1ijl =





Q̃Ai BiNjCl + L̃T
12 + L̃T

32 L̃21 − L̃11 + L̃T
13 + L̃T

33

∗ −Q̃ L̃22 − L̃12

∗ ∗ (d1 − 1)R̃1 + R̃2 + Sym{L̃23 − L̃13}



 ,

G2ijl =





AdiX + ~L21 D1i −XTET
i + L̃T

15 + L̃T
35 P̃ −X +XTAT

i + L̃T
16 + L̃T

36

−L̃22 − L̃32 −CT
l N

T
j ET

1i CT
l N

T
j BT

0i
~L23 L̃T

25 − L̃T
15 L̃T

26 − L̃T
16



 ,

G3i =









(d12 − 1)(R̃2 + R̃3)

+Sym{−L̃24 − L̃34} −L̃T
25 − L̃T

35 XTAT
di − L̃T

26 − L̃T
36

∗ −D3i −DT
3i − γ DT

1i

∗ ∗ ~Zx









.

Suppose there exits a nonsingular matrix S satisfying

S = X−T .

Without loss of generality, we can define

L̃1j = XTL1jX, L̃2j = XTL2jX, L̃3j = XTL3jX, j = 1, 2, 3, 4, 6,

Q̃ = XTQX, P̃ = XTPX, R̃i = XTRiX, Z̃j = XTZjX, M̃i = XTMiX,

L̃i5 = Li5X, i, j = 1, 2, 3.

Now pre- and post- multiplying the LMIs in (33) by diag(S, S, S, S, I, S, · · · , S) and
diag(ST , ST , ST , ST , I, ST , · · · , ST ), respectively, then we have Φijl < 0, which, by
Schur complement can be converted to Ψijl < 0. Following the similar procedure, we can
get Ψijl + Ψjil < 0 from the inequality in (29). Pre- and post- multiplying the LMI in
(30) with S and ST , we can get (15). Thus, we obtain (13)-(15) in Theorem 2.1. Finally,
by Theorem 2.1, the closed-loop system in (10)-(11) is passive. The proof is completed.
�

Remark 2.1 It is observed from Theorem 2.2 that the static output feedback con-
troller design is the feasibility problem of LMIs (28)-(30) with equality constraint (31).
However, this kind of problem has been solved in [19] via genetic algorithms and in [18]
via the LMI-based algorithms, which can be easily implemented with polynomial running
time. Hence, in this paper, we will convert the equality constraint problem to the LMI
problem [4].

3 An Illustrative Example

In this section, we provide an example to illustrate the passive delayed static output
feedback controller design approach developed in this paper.
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The uncertain Takagi–Sugeno (T-S) fuzzy system considered in this example is with
two rules with the following parameters:

A01 =

[

−5 0.2
0 0.01

]

, Ad01 =

[

−0.1 0
0.1 −0.1

]

, B01 =

[

1 3
2 1

]

,

C1 =

[

0.2 0.1
0.1 1

]

, D11 =

[

0.3
0.3

]

, D31 = 0.2, E1 =
[

−0.4 0.1
]

,

E11 =
[

0.1 0.2
]

, A02 =

[

−6 0
0.1 0.05

]

, Ad02 =

[

−0.2 0.1
0.1 −0.2

]

,

B02 =

[

1 4
2 4

]

, C2 = C1, D12 = D11, D32 = 0.3, E2 =
[

0.1 0.4
]

,

E12 =
[

0.2 0.1
]

, ∆apqi = 0.001I, ∆apqdi = 0.002I, ∆bpki = 0.001I.

The membership functions are chosen as:

h1(x1(t)) =







1
3 ,
2
3 + 1

3x1,
1,

for x1 < −1,
for |x1| ≤ 1,
for x1 > 1.

h2(x1(t)) = 1− h1(x1(t)).

In this example, given τ = 0.1, τ̄1 = 0.4, we have the maximum of τ̄2 = 3; while given
τ = 0.1, τ̄2 = 0.1, we have the maximum of τ̄1 = 3.

In order to design a fuzzy passive static output feedback controller for the T-S model,
we first choose

τ = 0.1, τ̄1 = 0.1, τ̄2 = 0.1, d1 = 0.4, d12 = 0.8, γ = 0.5

and the initial condition is x(0) =
[

0.1 −0.8
]T

, the disturbance input w(t) is assumed
to be

w(t) =
1

t+ 0.1
, t ≥ 0.

Then, solving the LMIs in (28)–(30) and (31), we obtain the solution as follows:

N1 =

[

0.1060 −0.0538
−0.0488 0.0746

]

, N2 =

[

0.4842 −0.2166
−0.1829 0.1025

]

,

and the fuzzy delayed static output feedback controller gains are given by

K1 =

[

2.2558 −0.3342
−0.6589 0.2232

]

, K2 =

[

10.8439 −2.4939
−3.9293 0.9533

]

.

With the static output feedback fuzzy controller, the simulation result of the state re-
sponse of the nonlinear system are given in Figure 1. From the simulation result, it can
be seen the designed fuzzy output feedback controller is effective.

4 Conclusion

The problem of passive delayed static output feedback control for uncertain Takagi–
Sugeno fuzzy systems with interval parameters and additive delays has been studied. In
terms of linear matrix inequalities, a sufficient delay-dependent condition for the existence
of a full-order fuzzy delayed static output feedback controller, which guarantees the
closed-loop system is passive, has been obtained. An example has been provided to show
the effectiveness of the proposed method.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (2) (2011) 199–212 211

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(s)

x(
t)

 

 

Figure 1: State response x1(t) (—) and x2(t) (· · · ).
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Abstract: The existence and uniqueness of solutions of nonlinear multi-variables
fractional differential equations have been investigated. Using Schauder fixed points
theorems and Global contraction mapping theory, we obtain two results concerning
the existence and uniqueness of solutions respectively. Moreover, our results are more
general than in [8].

Keywords: existence and uniqueness; nonlinear multi-variables fractional differen-

tial equations; Schauder fixed points theorems.
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1 Introduction

In recent years, interest has increased concerning the fractional differential equations
[5, 13, 26]. Most of works are devoted to the solvability of linear fractional equations in
terms of special functions [1, 7] and to problems of analyticity in the complex domain [6].
There are also some studies on the solution of nonlinear differential equations [8]–[11] and
[20]. D. Delbosco argues nonlinear fractional equation [11]. E. Ahmed has investigated
the fractional-order Lotka–Volterra predator-prey system [20]. Very few contributions
exist, as far as we know, concerning nonlinear multi-variables fractional equations of the
form

∗ Corresponding author: mailto:zdyjm@163.com

c© 2011 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 213

mailto: zdyjm@163.com
http://e-ndst.kiev.ua


214 J.M. YU, Y.W. LUO, S.B. ZHOU AND X.R. LIN































0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

where 0 < si < 1 , and i = 1, · · · , n and 0D
si
t is the standard Riemann–Liouville

fractional derivative, considered in R
+ or in an interval (0, a), with a > 0.

Fractional-order calculus will play an important role in mechatronic and biological
systems. It has been found that the behavior of many physical systems can be properly
described by using the fractional order system theory. For example, heat conduction,
dielectric polarization, electrode-electrolyte polarization, electromagnetic waves, visco-
elastic systems, quantum evolution of complex systems, quantitative finance and diffusion
wave are among the known dynamical systems that were modeled using fractional order
equations. In fact, real world processes generally or most likely are nonlinear multi-
variable fractional order systems. In the last 6 years, considerable attention has also
been paid to obtain analytical existence conditions for nonlinear fractional order systems
[27]. Our aim is to analyze uniqueness conditions further more. The paper is organized
as follows. In Section 2 we recall the definitions of fractional integral and derivative and
related basic properties used in the text. Section 3 contains results for solutions which
are continuous at the origin. Conclusions are given in Section 4.

2 Definitions and Preliminary Results

The definitions and the results of the fractional calculus reported below are not exhaustive
but rather oriented to the subject of this paper. For the proofs, which are omitted, we
refer the reader to Miller and Ross [7] or other texts on basic fractional calculus.

Definition 2.1 The uniform formula of a fractional integral with α ∈ (0, 1) is defined
as

0D
−α
t f (t) =

1

Γ (α)

∫ t

0

(t− τ )α−1 f (τ) dτ,

where f (t) : R+ −→ R, is an arbitrary integrable function, 0D
−α
t is the fractional integral

of order α on [0, t], t > 0 and Γ(·) denotes the Gamma function. For an arbitrary real
number, the Riemann–Liouville fractional derivative is defined as

0D
p
t f (t) = d[p]+1

dt[p]+1

[

0D
−[p]−p+1
t f (t)

]

.

The following properties are some of the main ones of the fractional derivatives and
integrals [12, 18, 20].

Property 1. 0D
p
t t

υ = Γ(1+υ)
T(1+υ−p) t

υ−p, where p ∈R, υ > −1.

Property 2. 0D
p
t (0D

q
t f (t)) = 0D

p+q
t f (t), where p < 0, q < 0.

Property 3. 0D
p
t

(

0D
−p
t f (t)

)

= f (t), where p ∈R2, t > 0.
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Property 4. 0D
−α
t f (0) = 0, where f ∈ C [0, a], α ∈ (0, 1).

Property 5. 0D
p
t f (t) = 0, where f ∈ C (R+) ∩ L1 (R+), α ∈ (0, 1), then f (x) =

cxp−1, c ∈ R.

Proposition 2.1 Assume that f ∈ C (R+) ∩ L1 (R+) with a fractional derivative
order 0 < α < 1 that belongs C (R+) ∩ L1 (R+). Then

aD
−α
t (aD

α
t f (t)) = f (t) + cxα−1

for some c ∈ R.

When the function f (t) is in C (R+), then c = 0.

In all the definitions and results of this section the set R+ can be substituted by the
intervals (0, a) or (0, a] , a > 0. For simplicity, in the next sections we shall often limit
arguments to the choice a = 1. A more precise analysis of the operators 0D

−α
t , 0D

α
t can

be given in the frame of the spaces Cr (R
+), r > 0, of all functions f ∈ C

(

R
+
0

)

such that

xr f ∈ C
(

R
+
0

)

.

Let 0 < α < 1 ; if f ∈ C
(

R
+
0

)

with r < α, then 0D
−α
t f ∈ C

(

R
+
0

)

with 0D
−α
t f(0) = 0.

If f ∈ Cα (R+), then 0D
−α
t f is bounded at the origin if f ∈ C

(

R
+
0

)

. With α < r < 1,

then we may expect 0D
−α
t f to be unbounded at the origin. Concerning Proposition 2.1,

the last part can now be stated more precisely. If f ∈ Cr

(

R
+
0

)

with r < 1 − α and

0D
α
t f ∈ C (R+) ∩ L1 (R+), then 0D

−α
t (0D

α
t f (t)) = f (t).

3 Existence and Uniqueness

Consider the fractional differential equations































0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(1)

where 0 < si < 1, and i = 1, · · · , n and fi : [0, a] × R → R, 0 < a < +∞ are given
functions, continuous in (0, a)× R.

We introduce the following definition of a solution for (1).

Definition 3.1 Let C∗ [0, a] be the class of continuous column vector U (t) =
(u1 (t) , u2 (t) , · · ·un (t)) whose components u1 (t) , u2 (t) , · · ·un (t) ∈ C [0, a] the class
of continuous functions on the interval [0, a] . The norm of U ∈ C∗ [0, a] is given by

‖U‖ = max
1≤i≤n

{

sup
0≤x≤a

u (x)

}

.

Definition 3.2 By a solution of the fractional differential equations (1) we mean a
column vector U ∈ C∗ [0, a]. This vector satisfies (1).
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Remark 3.1 We may apply the results of Section 2, in particular Proposition 2.1
and the subsequent remarks, to reduce(1) to integral equations. In fact, if U (t) =
(u1 (t) , u2 (t) , · · ·un (t)) ∈ C∗ [0, a] or more generally U ∈ C∗

r [0, a] , with r < 1 − s
,where s = min

1≤i≤n
{si} , and further assumptions guarantee fi (t, u1 (t) , u2 (t) , · · ·un (t)) ∈

C [0, a] ∩ L1 [0, a] , then equations (1) are equivalent to the integral equations






























u1 (t) = 0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
ui (t) = 0D

−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
un (t) = 0D

−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t)) .

(2)

Such a reduction will be systematically used in this section. We first present Schauder
fixed point theorem. It can be easily proved [25].

Theorem 3.1 Let E be a closed bounded convex subset of a normed space X. If
f : E → E is a compact map such that f (E) is contained in E, then there is an x in E
such that f (x) = x.

Then, we give a local existence theorem.

Theorem 3.2 Let 0 < si < 1, i = 1, · · · , n,s = min
1≤i≤n

{si}, 0 ≤ σ < s < 1 and

fi (t, u1 (t) , u2 (t) , · · · , un (t)) ∈ C (0, 1] . Assume that tσfi (t, u1 (t) , u2 (t) , · · · , un (t)) ∈
C (0, 1] tσfi (t, u1 (t) , u2 (t) , · · ·un (t)) ∈ C (0, 1] . Then the fractional differential equa-
tions































0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(3)

have a least continuous solution U ∈ C∗ [0, 1], for a suitable δ ≤ 1.

Proof According to Remark 3.1, we are reduced to consider the following nonlinear
integral equations































u1 (t) = 0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
ui (t) = 0D

−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
un (t) = 0D

−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t)) .

Let T : C∗ [0, 1] → C∗ [0, 1] be the operator defined as

(TU) (t) =

















0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t))

















T

.
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We claim that the operator T is compact. Indeed, the operator is the composition of
two simple operators in this way

T = A ◦N,

where

(NU) (t) =

















tσf1 (t, U (t))
...

tσfi (t, U (t))
...

tσfn (t, U (t))

















T

is a continuous and bounded operator (Nemytskii operator) and

(AV ) (t) =



















1
Γ(s1)

∫ t

0 (t− τ )
s1−1

τ−σv1 (τ, U (τ)) dτ
...

1
Γ(si)

∫ t

0
(t− τ )

si−1
τ−σvi (τ, U (τ)) d
...

1
Γ(sn)

∫ t

0
(t− τ )

sn−1
τ−σvn (τ, U (τ)) d



















T

is a compact operator, since s− σ > 0 as for example in [5].
Moreover, from Section 2, we have for 0 < t ≤ δ ≤ 1.

(AV ) (t) ≺

















|Av1 (t, U (t))|
...

|Avi (t, U (t))|
...

|Avn (t, U (t))|

















T

≺

























sup
0≤t≤δ

|v1 (t, U (t))| 1
Γ(s1)

∫ t

0
(t− τ )

s1−1
τ−σv1 (τ, U (τ)) dτ

...

sup
0≤t≤δ

|vi (t, U (t))| 1
Γ(si)

∫ t

0
(t− τ )si−1τ−σvi (τ, U (τ)) dτ

...

sup
0≤t≤δ

|vn (t, U (t))| 1
Γ(sn)

∫ t

0 (t− τ )
sn−1

τ−σvn (τ, U (τ)) dτ

























T

≺

























Γ(1−σ)
Γ(1−σ+s1)

δs1−σ sup
0≤t≤δ

|v1 (t, U (t))|

...
Γ(1−σ)

Γ(1−σ+si)
δsi−σ sup

0≤t≤δ

|vi (t, U (t))|

...
Γ(1−σ)

Γ(1−σ+sn)
δsn−σ sup

0≤t≤δ

|vn (t, U (t))| τ

























T

.
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Let

ε = max
1≤i≤n

{

Γ(1−σ)
Γ(1−σ+si)

δsi−σ
}

,

therefore, taking the norms in C∗ [0, δ],

‖AV ‖ ≤ ε ‖V ‖,

where we may assume ε > 0 as small as we want by shrinking δ > 0.
Now fix Br as a domain of the operator T, where Br = {V ∈ C∗ [0, δ] : ‖V ‖ < r},

which is a convex, bounded, and closed subset of the Banach space C∗ [0, δ].
For δ sufficiently small, we have T (Br) ⊆ Br The Schauder fixed point theorem as-

sures that operator T has at least one fixed point and then (3) has at least one continuous
solution. U defined on C∗ [0, δ], where δ ≤ 1.

Example 3.1 Observe that we cannot expect uniqueness for such solutions, in gen-
eral. Consider for example the equations

{

0D
1/2
t u1 = 3T(3/4)

Γ(1/4) u
1/2
2 ,

0D
1/4
t u2 = 2T(1/2)

Γ(1/4) u
1/3
1 ,

which admit the two solutions (0, 0) and
(

x3/4, x1/2
)

.
The following theorem shows that uniqueness and global existence can be obtained

under an uniform Lipschitz-type assumption.

Theorem 3.3 Let 0 < si < 1, i = 1, · · · , n, s = min
1≤i≤n

{si}, 0 ≤ σ < s < 1 and

F (t, U) = (f1 (t, U) , f2 (t) , · · · fn (t)) ∈ C∗
σ [0, 1] . Assume further

‖F (t, U)− F (t, V )‖ ≤
L

tσ
‖U − V ‖ (4)

for some positive constant L independent of U, V ∈ R
n, t ∈ (0, 1] . Then the fractional

differential equations (3) have a unique solution U ∈ C∗ [0, 1].

Proof As in the proof of Theorem 3.3, we are reduced to studying the operator

(TU) (t) =

















0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t))

















T

which is well defined and continuous as a map T : C∗ [0, 1] → C∗ [0, 1], in the view of the
assumption of continuity on tσfi (t). Let us define the k iterates of the operator T as is
standard

T 1 = T, TK = T ◦ TK−1.
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It will be sufficient to prove that TK is a contraction operator for K being sufficiently
larger. Actually, we have for U, V ∈ C∗ [0, 1].

∥

∥T kU (t)− T kV (t)
∥

∥ ≤
(HL)K

Γ (k (s∗ − σ) + 1)
xk(s∗−σ) ‖U − V ‖ , (5)

where the constant H depends only on s∗ ∈ {si} and σ, in fact

TU (t)−TV (t) =

















0D
−s1
t (f1 (t, U)− v1 (t, U))

...

0D
−si
t (fi (t, U)− vi (t, U))

...

0D
−sn
t (fn (t, U)− vn (t, U))

















T

≺





















Γ(1−σ)
Γ(1−σ+s1)

xs1−σ ‖U − V ‖
...

Γ(1−σ)
Γ(1−σ+si)

xsi−σ ‖U − V ‖
...

Γ(1−σ)
Γ(1−σ+sn)x

sn−σ ‖U − V ‖





















T

.

Let
Γ (1− σ)

Γ (1− σ + s∗)
xs∗−σ = max

1≤i≤n

{

sup
0≤x≤1

∣

∣

∣

∣

Γ (1− σ)

Γ (1− σ + si)
xsi−σ

∣

∣

∣

∣

}

,

therefore (5) is proved for k = 1, if H ≥ Γ (1− σ). Assuming by induction that(5) is
valid for k, we obtain similarly

T k+1U (t)− T k+1V (t)

≺





















(HL)K

Γ(k(s∗−σ)+1)T(s1)
‖U − V ‖

∫ t

a
(t− τ )

s1 τk(s1−σ)−σdτ
...

(HL)K

Γ(k(s∗−σ)+1)Γ(si)
‖U − V ‖

∫ t

a
(t− τ )

si τk(si−σ)−σdτ
...

(HL)K

Γ(k(s∗−σ)+1)T(sn)
‖U − V ‖

∫ t

a
(t− τ )sn τk(sn−σ)−σdτ





















T

≺





















Γ(k(s1−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(s1−σ)+1) ‖U − V ‖ t(k+1)(s1−σ)

...
Γ(k(si−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(si−σ)+1) ‖U − V ‖ t(k+1)(si−σ)

...
Γ(k(sn−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(sn−σ)+1) ‖U − V ‖ t(k+1)(sn−σ)





















T

and then (5) is proved for k + 1, if H is given by

H = max
k

Hk, Hk = max
1≤i≤n

{

Γ (k (si − σ)− σ)

T (k (si − σ) + 1)

}

. (6)

Note that (6) defines actually a finite H , since Hk ≤ 1, for k ≥ (1 + σ)/(s− σ),

Taking k sufficiently large in (6), we have, say, (HL)
k
/

Γ (k (s∗ − σ) + 1) ≤ 1/2. and

therefore
∥

∥T kU (t)− T kV (t)
∥

∥ ≤ 1
2 ‖U − V ‖ which gives the proof.

Similarly, the existence and uniqueness for initial value problem of nonlinear multi-
variables fractional differential equations also can be proved. In particular, for one-
dimensional case 0D

s
tu (t) = f (t, u), we obtain identical results in [8].
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Example 3.2 Consider for example the equations

{

0D
1/2
t u1 = u2,

0D
1/4
t u2 = u1,

which admit a unique solution (0, 0), defined on [0, 1]. Since it suffices (4) for L = 2, σ =
1/5.

Example 3.3 Consider he following general nonlinear system

aD
α
t y(t) +N(y(t)) = g(t), t ∈ [0, 1] ,

where N represents a nonlinear operator with N(0) = 0, g(t) is a function with respect
to t.

For L = max
y

(N ′(y)), σ = 0, where F (t, U) = g(t)−N(U), we have

‖F (t, U)− F (t, V )‖ = |N(U)−N(V )| ≤
L

tσ
‖U − V ‖ ,

i.e. the system admits a unique solution (0, 0) defined on [0, 1].

4 Conclusion

In this paper, we prove existence and uniqueness theorems for some classes of nonlinear
multi-variables fractional differential equations. It extends the original results for frac-
tional differential equations and provides convenience for our further work on nonlinear
multi-variable fractional equations.

Acknowledgment

This work was supported in part by the Natural Science Foundation of Chongqing
(CSTC) under Grant No. 2009BB3280, and the National Natural Science Foundation of
China under Grant No. 60873200.

References

[1] Campos, L. M. C. M. On the solution of some simple fractional differential equations
International J. Math. Science. 13 (1990) 481–496.

[2] Courant, R. and Hilbert, D. Methods of Mathematical Physics. Interscience, London, 1962.

[3] Delbosco, D. Fractional calculus and function spaces. J. Frac. Cal. 6 (1994) 45–53.

[4] Duvaut, G. and Lions, J. L. Les inequations en mecanique et en physique. Dunod, Paris,
1972.

[5] Krasnosel’skii, M. A. Topological Methods in the Theory of Nonlinear Integral Equations.
Pergamon, Oxford, 1964.

[6] Ling, Y. and Ding, S. FA class of analytic functions defined by fractional derivation. J.
Math. Anal. and Appl. 186 (1994) 504–513.

[7] Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Dif-

ferential Equations. Wiley, New York, 1993.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (2) (2011) 213–221 221

[8] Dubey, Reeta S. Existence of the Unique Solution to Abstract Second Order Semilinear
Integrodifferential Equations. Nonlinear Dynamics and Systems Theory 10 (4) (2010) 375–
386.

[9] Desale, B. S. and Sharma, V. Special Solutions to Rotating Stratified Boussinesq Equations.
Nonlinear Dynamics and Systems Theory 10 (1) (2010) 29–38.

[10] Tun, C. The Boundedness of Solutions to Nonlinear Third Order Differential Equations.
Nonlinear Dynamics and Systems Theory 10 (1) (2010) 97–102.

[11] Delbosco, D. and Rodino, L. Existence and Uniqueness for a Nonlinear Fractional Differ-
ential Equation. Journal of Mathematical Analysis and Applications 204 (1996) 609–625.

[12] El-Mesiry, E.M., El-Sayed, A.M.A. and El-Saka, H.A.A. Numerical methods for multi-
term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 160 (2005)
683–699.

[13] El-Sayed, A.M.A. Fractional differential-difference equations. J. Fract. Calc. 10 (1996) 101–
106.

[14] El-Sayed, A.M.A. Nonlinear functional differential equations of arbitrary orders. Nonlinear

Anal. 33 (1998) 181–186.

[15] El-Sayed, A.M.A. and Gaafar, F.M. Fractional order differential equations with memory
and fractional-order relaxation oscillation model. Pure Math. Appl. 12 (2001) ???–???.

[16] El-Sayed, A.M.A., El-Mesiry, E.M. and El-Saka, H.A.A. Numerical solution for multi-term
fractional (arbitrary) orders differential equations. Appl. Math. Comput. 23 (2004) 33–54.

[17] El-Sayed, A.M.A., Gaafar, F.M. and Hashem, H.H. On the maximal and minimal solutions
of arbitrary orders nonlinear functional integral and differential equations. Math. Sci. Res.

J. 8 (2004) 336–348.

[18] Gorenflo, R. and Mainardi, F. Fractional calculus: Integral and differential equations of frac-
tional order. In: Fractals and Fractional Calculus in Continuum Mechanics. (A. Carpinteri
and F. Mainardi, Eds.), 1997, 223–276.

[19] Yan Li. Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica

45 (2009) 1965–1969.

[20] Ahmed, E. Equilibrium points, stability and numerical solutions of fractional-order
predator-prey and rabies models. J. Math. Anal. Appl. 325 (2007) 542–553.
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