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1 Introduction

There are several methods available to determine the long-term behavior of a system
that can be described by a set of nonlinear differential equations

ż = f(z). (1)

The most obvious method to investigate the behavior of a nonlinear system is to
numerically solve the differential equations subject to specified initial conditions. One
example would be the ordinary differential equations solvers in MATLAB [19]. Modern
computational capability makes the issue of computer processor and memory limita-
tions virtually irrelevant. However, numerical simulations can not always provide the
definitive label of stability. The solutions may be virtually identical for a system that is
slightly asymptotically stable, neutrally stable, or slightly unstable unless the simulation
is carried out for a very long time.

Stability theorems generally address stability about an equilibrium or about a known
solution. Stability in the sense of Lyapunov [17, 18] requires that, for motion about an
equilibrium, the system output be dependent upon the magnitude of the initial condi-
tions. Similar theorems loosen the requirement for stability about an equilibrium and
address stability about a known solution to the system [5].

The direct method of Lyapunov uses a Lyapunov function, υ(x) to directly assess
the stability of the differential equations in question without having to determine a
first variation [11, 15]. Furthermore, the converse of the theorem is also true. If the
equilibrium is stable, then the function υ(x) exists. However, there is no “prescription”
for determining an appropriate Lyapunov function. The function can be difficult to
determine, particularly for a complex system.

The strength of the nonlinearity of a system determines whether it is periodic, quasi-
periodic or chaotic. Poincaré introduced the concept of a phase-space where all possible
motions of a system are represented by a family of trajectories [7]. The degree to which a
system is chaotic is determined by the sensitivity of the trajectories to initial conditions or
perturbations, where small changes can cause widely diverging outcomes. The sensitivity
to initial conditions can be quantified by a Lyapunov exponent. In general, Lyapunov
exponents can not be found analytically and require the use of numerical methods [8].

A Poincaré Section maps the intersection of a dynamical orbit in state-space with a
one-dimension lower subspace (phase-space) that is transverse to the flow of the orbit.
While a Poincaré map can aid in determining stability [4, 10, 16], it is essentially a
schematic for presenting the results of a numerical simulation at discrete time periods. If
the period of a solution is many times the fundamental sample period used for the map,
it may require simulation for a long time before the repetition appears.

The existence of many linear analysis tools justifies the attempt to linearize the system
of (1). In general, a power series expansion about an equilibrium results in a reduced
equation known as the first variation or first approximation of (1) with respect to the
equilibrium condition [11]. The result is a constant coefficient linear system given by

ẋ = Ax. (2)

Classical linear analysis methods for determining the stability of this linear system are
well known [2, 6].

If the known solution used for linearization is nonautonomous, the matrix A is time
varying. In general, linear analysis methods can be applied to time-varying systems



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (2) (2011) 183–198 185

with some modification such as canonical transformations or substitution of dynamic
eigenvalues [13, 14, 23]. The stability of homogeneous linear equations with a time-
periodic A matrix can be assessed by applying methods such as Hill’s method of infinite
determinants [20, 22] or Floquet–Lyapunov theory [3, 11, 26]. Floquet theory can also
be used to determine if an inhomogeneous system has periodic solutions [3]. For time-
periodic systems with time-periodic forcing functions, the literature typically addresses
this form of steady-state behavior only [12, 24]. If the homogeneous equation exhibits
asymptotic stability then the forced oscillations tend toward a periodic steady-state [3,
11].

This paper presents an extension of Floquet theory to a system which has no equi-
librium or known solution. Equations are linearized about a time-periodic motion which
closely approximates the nonlinear behavior. The behavior is almost periodic (a dynam-
ical system that appears to almost retrace an orbit through phase space [1]). The result
is a time-periodic linear system driven by a time-periodic forcing excitation having the
same time period T , as the coefficients of A(t). The extension applies to the general case
and is not limited to asymptotic behavior. Based on Floquet multipliers, the stability
of the inhomogeneous system can be analyzed and performance metrics analogous to
classical control theory settling time can be determined. The theoretical development is
validated using a spinning pendulum.

2 Nonautonomous Inhomogeneous Systems from a Nonequilibrium

Reference

The autonomous nonlinear differential equations that describe the motion of interest are
given by

ż = f(z),

f(z) 6= 0,
(3)

which have no known solution or equilibrium to be used as a reference for analyzing
stability. Additionally, the solution is unknown except through numerical integration.
However, the motion is known to be almost periodic and, in some type of limit behavior,
periodic.

Lacking a traditional equilibrium or solution, the nominal periodic motion of the
system will be used as a reference condition zR, and a series expansion is performed

żR+δż = f(zR) +

[
∂f

∂z

]

R

δz,

żR 6= f(zR).

(4)

The reference condition is not a solution to (3) and cannot be eliminated from the
equations, resulting in a linear system containing a forcing excitation of the form

δż = A(t)δz + g(t),

A(t) =

[
∂f

∂z

]

R

,

g(t) = f(zR)− żR,

(5)
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with a time-varyingA matrix and a time-varying forcing excitation g. By selection of the
reference condition as time-periodic, the linear system of (5) has the following properties

A(t) = A(t+ T ),

g(t) = g(t+ T ),
(6)

where T is the period common to both the matrix A and the vector g.

3 Floquet Theory

Linear homogeneous differential equations with time-periodic coefficients given by

ẋ = A(t)x, (7)

where A is time-periodic
A(t) = A(t+ T ) (8)

and T is the time period can be assessed by applying Floquet–Lyapunov theory as given
in Theorem 3.1[20, 26].

Theorem 3.1 (Floquet–Lyapunov theorem). Any fundamental matrix X(t) of equa-
tion (7) with T -periodic coefficients is expressible in the form

X(t) = F(t)eKt, (9)

where F(t) is a nonsingular continuous T -periodic n×n matrix-function whose derivative
is an integrable piecewise-continuous function, and K is some constant matrix.

Given that F(t) is time-periodic, the stability of the trivial solution to (7) depends
entirely upon the eigenvalues of the matrix K. The eigenvalues of K are known as the
Floquet characteristic exponents, ε, and can be found by first determining the eigenvalues
of X(T ), known as the Floquet multipliers, σ. The matrix X(T ), called the monodromy
matrix, is the fundamental set of solutions to (7) when t = T and with initial condi-
tions of X(0) = I. The monodromy matrix can be determined numerically or through
other means such as a multiple parameter perturbation method [25]. The characteristic
exponents are then determined by

ǫ =
lnσ

T
. (10)

Table 1 summarizes properties of solutions corresponding to the properties of the
characteristic exponents and multipliers.

4 Extended Floquet Theory

Floquet theory does not address stability of the inhomogeneous system described by (5)
where the forcing excitation g(t) is present. However, the T -periodic nature of g(t) allows
for an extension to the theory. The solution to the inhomogeneous system of (5) can be
expressed in terms of X(T ) as follows [26]

z(t) = X(t)

[

x(0) +

∫ t

0

X(τ)−1g(τ)dτ

]

. (11)
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Property of

Solutions
Characteristic Exponents, ε Multipliers, σ

Lyapunov
Stability

Real parts nonpositive: zero or
pure imaginary ǫ (if present) are
semisimple eigenvalues of K

Inside or on unit circle. Latter
case corresponds to semisimple

eigenvalues of K
Asymptotic
Stability

Real parts negative Inside unit circle

Instability

At least one characteristic expo-
nent with positive real part or

a pure imaginary (or zero) expo-
nent that is not semisimple

At least one multipier either
outside the unit circle or on the
unit circle and not semisimple

Table 1: Properties of solutions of systems with periodic coefficients.

Given that, according to Floquet theory, the monodromy matrix satisfies the following
identity at time t = t+ T

X(t+ T ) ≡ X(t)X(T ), (12)

the following theorem for the solution to (11) after n time periods z(nT ) can be estab-
lished.

Theorem 4.1 The solution to (11) after n time periods, where n is an integer, is
given by

z(nT ) = X(T )nx(0) +
[
X(T )n + ...+X(T )2 +X(T )

]
∫ T

0

X(τ)−1g(τ)dτ . (13)

Proof At t = T , the solution to (11) becomes

z(T ) = X(T )

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ

]

. (14)

Extending (14) to two time periods 2T , yields

z(2T ) = X(2T )

[

x(0) +

∫ 2T

0

X(τ)−1g(τ)dτ

]

. (15)

Expanding the term inside the integer and applying the identity of (12) yield

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ 2T

T

X(τ)−1g(τ)dτ

]

. (16)

Applying the variable change U = τ − T , dU = dτ to equation (16) results in

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ T

0

X(U + T )−1g(U + T )dU

]

. (17)
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Once again applying the identity from (12) and substitution of the time-periodic pro-
perties of (6) we get

z(2T ) = X(T )2

[

x(0) +

∫ T

0

X(τ)−1g(τ)dτ +

∫ T

0

X(T )−1X(U)−1g(U)dU

]

. (18)

Finally, (18) can be reduced to

z(2T ) = X(T )2x(0) +
[
X(T )2 +X(T )

]
∫ T

0

X(τ)−1g(τ)dτ . (19)

Repeated application of the identity from (12) and substitution of (6) leads to a solution
to (11) after n time periods nT

z(nT ) = X(T )nx(0)
︸ ︷︷ ︸

Homogeneous

+
[
X(T )n + ...+X(T )2 +X(T )

]

︸ ︷︷ ︸

Summation

∫ T

0

X(τ)−1g(τ)dτ

︸ ︷︷ ︸

Integral, Λ

︸ ︷︷ ︸

Inhomogeneous

. (20)

Note that the behavior of (20) as n approaches to infinity can be predicted strictly
based on knowledge of the response during the first time period T . The steady-state
behavior can be evaluated by examining each term in (20) as n approaches infinity. The
homogeneous and inhomogeneous terms will be evaluated separately in the following
subsections.

4.1 Homogeneous behavior

The behavior as n increases to infinity of the homogeneous term in (20) is dependent
upon the Floquet multipliers of the monodromy matrix X(T ). The behavior is given in
Table 2 for various properties of the magnitude of the largest Floquet multiplier ρ[X(T )].

The Limits of Powers Theorem [21], given in Theorem 4.2, guarantees the existence
of limn→∞ X(T )n for Properties 1 and 2.

Theorem 4.2 (Limits of Powers Theorem). For X ∈ Ck×k, limn→∞ Xn exists if
and only if ρ[X] < 1 or ρ[X] = 1, where 1 is the only eigenvalue on the unit circle and
is semisimple.

When it exists limn→∞ Xn = the projector onto N(I−A) along R(I−A), where N
is the null space and R is the range space.

Property 2 is of particular interest. According to Floquet theory, as summarized in
Table 1, a system with the largest multiplier(s) identically equal to one (semisimple)
exhibits stability in the sense of Lyapunov, not asymptotic stability as in Property 1.
Therefore, the limn→∞ X(T )n exists but is not necessarily zero. The concept of Cesaro
summability [21], given in Theorem 4.3, yields additional information about the value of
the limit for Property 2.
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Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
X(T )n

1
ρ[X(T )] < 1
Semisimple

Converges to 0

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Converges to
G

3
ρ[X(T )] = 1

Multipliers, other than one, on the
unit circle are semisimple

Nonconvergent
Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues, not semisimple
Divergent

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Divergent

Table 2: Properties of the homogeneous term of z(nT ).

Theorem 4.3 (Cesaro summability).

For X ∈ Ck×k, X is Cesaro summable if and only if

ρ[X] < 1 or ρ[X] = 1 with each eigenvalue on the unit circle being semisimple.

When it exists the Cesaro limit

limn→∞

I+X+...+X
n−1

n
= G

is the projector onto N(I−A) along R(I−A), exactly the same as the ordinary limit
described above in the Limits of Powers Theorem, had it existed.

G 6= 0 if and only if 1 is an eigenvalue of X, in which case G is the spectral projector
associated with an eigenvalue of 1.

Note that the existence of the limn→∞ Xn implies that the Cesaro sum G exists and
they have the same value. However, the existence of G does not imply the existence of
limn→∞ Xn. The Cesaro sum also exists when the largest Floquet multiplier magnitude
is equal to one. In other words, the multiplier is not identically one, but has both real
and imaginary parts with magnitude equal to one. This is the case for Property 3. The
Cesaro sum G exists and G = 0, but limn→∞ X(T )n does not exist. The Cesaro sum
is essentially the mean value of X(T )n as n increases to infinity, indicting that X(T )n

oscillates with both positive and negative values around a mean of zero. Therefore, the
homogeneous portion of the solution to z(nT ) does not converge but remains bounded
and oscillates indefinitely. As predicted by Table 1, Property 3 also exhibits stability in
the sense of Lyapunov.

For Properties 4 and 5, the limn→∞ X(T )n does not exist and also the Cesaro Sum
does not exist. Therefore, the solution for z(nT ) diverges. This result is in accordance
with Floquet theory which predicts instability.
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The results shown in Table 2 are completely consistent with the behavior predicted
by Floquet theory in Table 1. This is not surprising as the homogeneous term of (20) is
the solution to the time-periodic system in (7) at discrete multiples of the time period
T .

4.2 Inhomogeneous behavior

The inhomogeneous term in (20) consists of the product of a summation and an integral
term. The integral term, Λ, is a definite integral over the time span of zero to T and is
therefore a constant vector. The convergent or divergent behavior of the inhomogeneous
term will be determined by the summation term and the Floquet multipliers of X(T ).
This result is given in Table 3.

For Floquet multipliers with magnitude less than one, as in Property 1, the conver-
gence characteristics of the summation [X(T )n + ... +X(T )2 +X(T )] are given by the
Neumann series [21], shown in Theorem 4.4.

Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
[X(T )n + ...+X(T )2 +X(T )]

1
ρ[X(T )] < 1
Semisimple

Converges to
[I−X(T )]−1[X(T )]

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Unbounded

3
ρ[X(T )] = 1

Multipliers, other than one, on the
unit circle are semisimple

Nonconvergent
Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues, not semisimple
Unbounded

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Unbounded

Table 3: Properties of the summation term of z(nT ).

Theorem 4.4 (Neumann series). For X ∈ Ck×k, the following statements are equiv-
alent:

the Neumann series I+X+X2 + . . . converges;

ρ[X] < 1;

limn→∞ Xn = 0;

In which case [I−X]−1 exists and
∑

∞

n=0
Xn = [I−X]−1.

Although limn→∞ Xn does exist for Property 2, according to Cesaro summability, the
limit is a non-zero constant G. In the limit, the summation term [X(T )n+ ...+X(T )2+
X(T )] becomes a diverging algebraic series increasing by G with each additional term.
Therefore, the summation term diverges.
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For Property 3 with semisimple Floquet multipliers on the unit circle but not iden-
tically one, the Cesaro sum G = 0. However, as mentioned in the previous section, the
limn→∞ X(T )n does not exist. X(T )n oscillates with both positive and negative values
around a mean of zero. Therefore, the summation term, oscillates around some constant
value.

For Properties 4 and 5, the summation term is unbounded.

4.3 Stability of the inhomogeneous system

Table 4 shows how the addition of a forcing term affects the steady-state solution of
the inhomogeneous system. With all Floquet multipliers of X(T ) less than one, as for

Property
ρ[X(T )]

Mag. of largest Floquet Multiplier
Floquet
x(nT )

Inhomogeneous
z(nT )

1
ρ[X(T )] < 1
Semisimple

Asymptotic
Stability

Bounded

2
ρ[X(T )] = 1

One is the only multiplier on the
unit circle and is semisimple

Lyapunov
Stability

Unbounded

3
ρ[X(T )] = 1

Multipliers, other than one, on
the unit circle are semisimple

Lyapunov
Stability

Bounded

4
ρ[X(T )] = 1

Multiple eigenvalues
not semisimple

Unstable Unbounded

5
ρ[X(T )] > 1

Multipliers outside the unit circle
Unstable Unbounded

Table 4: Homogeneous vs inhomogeneous properties of z(nT ).

Property 1, z(nT ) converges to a nonzero value instead of to zero (asymptotic stability)
for the homogeneous system. The solution converges to

lim
n to∞

z(nT ) = [I−X(T )]−1[X(T )] Λ. (21)

For Property 2, with Floquet multipliers of X(T ) identically equal to one (semisim-
ple), z(nT ) is driven from Lyapunov stable to unbounded with the addition of the forcing
excitation. The summation in the homogeneous term is unbounded, causing the solution
to diverge. The solution in the limit is given by

lim
n to∞

z(nT ) = x(0) +
[
X(T )n + ...+X(T )2 +X(T )

]
Λ. (22)

For Property 3, if the largest Floquet multiplier of X(T ) has magnitude equal to one,
is semisimple, but is not identically one, then the Lyapunov stable homogeneous system
remains bounded with the addition of the forcing term. Neither term in equation 20
converges to a limit, indicating oscillation within some finite bound. The basic behavior
of the system has not changed with the addition of a forcing term.
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For Properties 4 and 5, both the homogeneous and inhomogeneous terms of equation
20 diverge and z(nT ) is unbounded. The basic behavior of the system has not changed
with the addition of a forcing term.

To summarize, there are two instances where the addition of the forcing excitation
changes the fundamental behavior of the system. First, for Property 1, z(nT ) converges
to a nonzero steady-state instead of to zero for the homogeneous system. Second, for
Property 2, z(nT ) is driven from Lyapunov stable to unbounded with the addition of the
forcing excitation.

Lyapunov stability [17, 18] presupposes that motion is analyzed with respect to an
equilibrium or rest condition. As explained earlier, the system of interest has no equilib-
rium, and the nonlinear differential equations are linearized about a time-varying refer-
ence condition. Therefore, when evaluating the steady-state behavior of z(nT ) in Table
4, the results are with respect to the reference behavior zR(t). In relevant literature, a
forced time-periodic system with or without an equilibrium is termed stable or asymp-
totically stable according to the Floquet multipliers, and the steady-state behavior is
time-periodic [12, 24]. However, Lyapunov stability requires that the solution can be
made arbitrarily small by changing the value of the initial conditions. For Properties 1
and 3, the steady-state solution is not dependent only on the initial conditions. For this
reason, Table 3 utilizes the terms bounded or unbounded to refer to z(nT ) as opposed to
stable or unstable.

4.4 Transient behavior

A linear homogeneous differential equation given by

ẍ+Bẋ+ Cx = 0, (23)

where B and C are constants can be expressed as a set of first-order equations in the
form

ẋ = Ax, (24)

whereA is a constant coefficient matrix. In classical control theory, the transient behavior
can be determined by the eigenvalues λ of the A matrix if the eigenvalues are a complex
pair with real parts less than zero [2, 5, 6].

λ = σ ± jωd, σ < 0. (25)

If so, the solution to (23) is expressed as

x(t) = eσt(C1sinωdt+C2cosωdt) = Ceσt(sinωdt+ φ), (26)

where C, C1 and C2 are vector constants determined by the initial conditions x(0),

σ = −ζωn, and ωd = ωn

√

1− ζ2. The parameter ζ is the damping ratio of the second-
order system, ωn is the natural frequency and φ are phase angles. The exponential
term Ceσt defines a decaying envelope that determines the rate at which the sinusoidal
oscillations decrease to zero with time. A transient characteristic is the time constant

Tc =
1

σ
, (27)

which is the time at which the exponential decreases to 37 percent of the initial value.
A related characteristic is the settling time

Ts =
number of time constants

σ
(28)
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which is the time at which the exponential decreases to a desired absolute percent of the
initial value. For example, the settling time to within 2 percent is approximately 4 time
constants. The time constant and settling time are characteristics that can be extended
to the homogeneous portion of (20).

The assumption is made that the homogeneous portion of (20) is second-order with
complex-conjugate Floquet characteristic exponents with negative real parts (Floquet
multipliers will lie inside the unit circle). According to Table 2, X(T )n will converge to
zero. At each multiple of n, the matrix A(nT ) has the same constant value. Therefore,
the homogeneous solution, x(nT ) = X(T )nx(0) at each multiple of the time period
is identical to the solution of a constant coefficient system and x(nT ) will lie along a
damped sinusoid given by

x̃(t) = eσt(C1sinωdt+C2cosωdt) = Ceσt(sinωdt+ φ). (29)

Therefore, the homogeneous solution, x(nT ), will also converge within the exponential
envelope Ceσt. The classical control theory concepts of time constant and settling time
can be directly applied to the homogeneous portion of z(nT ). The number of integer
time periods to reach the required settling time is given by

ns =
number of time constants

σT
=

Ts

T
, (30)

where ns can be rounded to the next higher integer and guarantee that x(nT ) is equal
to (or less than) the required percent of its maximum value

x(nT )

C
≤ eσnsT . (31)

The inhomogeneous portion of z(t) can be shown to be time-periodic. Consider the
solution z(t+nT ), where 0 < t < T . The inhomogeneous part of the solution zi(t+nT )
is given by

zi(t+ nT ) = X(t+ nT )

∫ t+nT

0

X(τ)−1g(τ)dτ (32)

which can be written as

zi(t+ nT ) = X(t)X(nT )

[
∫ nT

0

X(τ)−1g(τ)dτ +

∫ t+nT

nT

X(τ)−1g(τ)dτ

]

. (33)

Using the definition of a Neumann series (Theorem 4.4) and a procedure similar to that
of Theorem 4.1, (33) converges to

zi(t+ nT ) = X(t)

[

[I−X(T )]−1[X(T )] Λ+

∫ t

0

X(τ)−1g(τ)dτ

]

. (34)

Assuming that (34) is time-periodic, then the equation is also a steady-state solution
given by

zss(t) = X(t)

[

[I−X(T )]−1[X(T )]Λ+

∫ t

0

X(τ)−1g(τ)dτ

]

. (35)

If the assumption is true then

zss(t) = zss(t+ T ) = X(t+ T )

[

[I−X(T )]−1[X(T )] Λ+

∫ t+T

0

X(τ)−1g(τ)dτ

]

. (36)
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Expanding the integral term yields

zss(t+ T ) =

X(t)X(T )

[

[I−X(T )]−1[X(T )] Λ+

∫ T

0

X(τ)−1g(τ)dτ +

∫ t+T

T

X(τ)−1g(τ)dτ

]

(37)

which, again using the procedure of Theorem 4.1, reduces back to

zss(t) = zss(t+ T ) = X(t)

[

[I−X(T )]−1[X(T )] Λ

∫ t

0

X(τ)−1g(τ)dτ

]

(38)

proving the assumption that zss(t) is time-periodic is true.

The steady-state solution can be determined by integration over a single time period.
Since the inhomogeneous portion of the solution to z(t) is time-periodic and, therefore,
contains no “transient” terms, the entire solution converges to the steady-state with the
settling time characteristics of the homogeneous system described above. As mentioned
earlier, given that the initial conditions are the initial vector of the periodic solution, the
entire solution is time-periodic [3, 11].

5 Spinning Pendulum Example

The system to be analyzed, as shown in Figure 1 is a mass attached to a fixed point by a
rigid tether. The pendulum is spinning in a gravitational field. The nonlinear equations
of motion are given by

Figure 1: Pendulum spinning in a constant gravity field.

θ̈ =
−g

L
sin θ. (39)

The reference condition chosen is the limiting behavior for g << L which is a constant-
rate spin

[
θ

θ̇0

]

R

=

[
θ0

θ0 + θ̇0t

]

. (40)
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The linearized equations of motion are given by
[

δ̇θ

δ̈θ

]

=

[
0 1

−g
L

cos θ 0

]

R

[
δθ

δ̇θ

]

+

[
0

−g
L

sin θ

]

R

, (41)

where g is the acceleration due to gravity and L is the length of the tether. The ratio
g/L is set to 0.1 for this example. The reference condition is θ0 = −100 deg and θ̇0 =
π/3 rad/s. The time period for both the parametric and the forced excitation is T =
2π/θ̇0 = 6 s.

The monodromy matrix X(T ) is found by numerical simulation of the homogeneous
portion of (41) with unity initial conditions for one time period. This results in the
following Floquet multipliers

σ = 0.918± 0.397i, |σ| = 1. (42)

The pendulum system has a pair of complex Floquet multipliers with magnitude equal
to one. Therefore the system exhibits Property 3 from Tables 2, 3 and 4. The homoge-
neous portion of the system is Lyapunov stable (see Table 2) as shown in Figure 2 where
δθ is plotted for 30 time periods. The inhomogeneous system response is nonconvergent
but bounded (see Table 3) by some finite value as shown in Figure 3. Figures 2 and 3
show both the result of a numerical simulation for 30 time periods of (41) and also the
response, z(nT ), calculated from (20) at each time period.

Figure 2: Homogeneous response to a small perturbation.

If a negative feedback controller with a proportional gain, Kp, and derivative gain,
Kd, is applied to the pendulum system, the linear system of (41) becomes

[
δ̇θ

δ̈θ

]

=

[
0 1

−g

L
cos θ −Kp −Kd

]

R

[
δθ

δ̇θ

]

+

[
0

−g

L
sin θ

]

R

. (43)

With gains of Kp = Kd = 0.06 and an initial condition of δθ = 0.3 rad, the Floquet
multipliers become

σ = 0.034± 0.835i, |σ| = 0.835, (44)
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Figure 3: Inhomogeneous response to a small perturbation.

which are now a complex pair that lie inside the unit circle. The homogeneous system
with negative feedback has become asymptotically stable as shown in Figure 4. As
shown in Figure 5, the inhomogeneous system response is bounded and asymptotically
approaches a time-periodic steady-state response.

Using (10) the corresponding Floquet characteristic exponents for (44) can be calcu-
lated

ǫ = −0.030± 0.255i (45)

resulting in a time constant, Tc = 33.3 s = 5.6 time periods and a settling time to 2
percent, Ts = 133.3 s = 22.2 time periods. The number of integer time periods for z(t) to
settle to 2 percent is therefore ns = 23. The homogeneous response in Figure 4 confirms
that these results show good agreement with the simulated output. The solution for z(t)
in Figure 5 shows the same settling time to the periodic steady-state.

6 Conclusions

When a near-periodic system is linearized about a time-periodic reference motion, the
result is a linear parametrically excited system with a periodic forcing function. The solu-
tion to the system has been derived at each integer time period which requires knowledge
of the system for the first time period only. The behavior of the homogeneous and inho-
mogeneous portions of the response can be predicted by using the Floquet characteristic
exponents or multipliers. By adding a forcing excitation, the general behavior predicted
by Floquet theory for the homogeneous system changed only for the case of semisim-
ple multipliers that are identically equal to one. The presence of the forcing excitation
caused the solution to diverge.

The classical control theory concept of settling time has been extended to the forced
parametrically excited system. The homogeneous solution at each linear time period is
the solution to a constant coefficient system which converges to zero at an exponential
rate which can be determined from the Floquet characteristic exponents. It has been
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Figure 4: Homogeneous response to a small perturbation (controlled system).

Figure 5: Inhomogeneous response to a small perturbation (controlled system).

shown that the entire inhomogeneous solution converges to a steady-state at the same
exponential rate.
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