
Nonlinear Dynamics and Systems Theory, 11 (2) (2011) 173–182

Quantum Dynamics of a Nonlinear Kicked Oscillator
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Abstract: The quantum dynamics of a nonlinear kicked oscillator is studied by a
recently proposed complex non-hermitian Hamiltonian technique. It is shown that
the probability density and the energy function display either a growing or a de-
caying exponential time dependence characteristic of absorption or dissipation. It is
furthermore shown that though a decrease in the kicking period increases the diffu-
sive motion leading to the ballistic spreading, increasing its value does not apparently
favour any localization. The anharmonicity also enhances the dissipative dynamics
but with time gives rise to energy crossings typical of a quantum chaos. The varia-
tion in the spatial periodicity of the delta-function kicking however exhibits a more
complex behaviour showing diffusive character to super-diffusion leading to ballistic
motion on the one side and the quantum localization on the other.
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1 Introduction

Recent years have witnessed a flurry of investigations in the area of quantum chaos and
dynamical quantum localization and in this context the quantum dynamics of area pre-
serving maps has attracted a particular attention [1, 2]. The kicked harmonic oscillator
is an example that belongs to this class and has been studied quite extensively in the
last two decades [3, 4, 5, 6]. The kicked harmonic oscillator however has generated some
renewed interest in recent times for it simulates some interesting low-dimensional sys-
tems like quantum wires, semiconductor superlattices [7] or trapped ions [8] periodically
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kicked by intense monochromatic short-time pulses like laser light. The effect of Gross–
Pitaevskii nonlinearity in the kicked oscillator has been recently studied by Artuso and
Rebuzzini [9] and they have shown that the qualitative features depend strongly on the
parameters of the system.

The dynamics of a kicked oscillator system can be determined by studying the gener-
alized master equation for the probability distribution or by calculating the propagator
and thereby constructing the time-dependent wave function using the propagator as the
kernel for the time development. Of course the probability density obtained from these
methods has to be consistent with the time-dependent Schrödinger equation. Several
techniques have been proposed in recent years to deal with the nonlinear differential
equations with varying degree of success and rigour. Kovalev et al. have developed the
method of oriental manifold to study the geometric properties of nonlinear differential
systems with control [10]. Stability of systems with linear and nonlinear perturbations
has been studied by Jeffrey J. DaCunha [11]. Practical stability and controllability for
a class of nonlinear discrete systems with time delay have been investigated by Su et al.
[12].

Recently Liboff and Porter [13] have proposed a novel technique to study the energy
absorption and dissipation in quantum systems by introducing a complex non-Hermitian
term in the Hamiltonian. The purpose of the present paper is to apply this technique to
study the dynamics of a kicked oscillator problem. Since the trapping potential of the
real ion traps or the ion-ion potential in a quantum wire may not be strictly harmonic,
we introduce the anharmonicity in the problem and study its effect on the oscillator
dynamics. We also include a spatial periodicity in the kicking term. It must however
be mentioned that the nonlinearity considered here is different from that studied in [9].
We consider the oscillator to be anharmonic, while in [9] the potential is nonlinear in the
wavefunction itself and therefore the problem of [9] requires a self-consistent solution.
Our problem will be important for a quantum wire like a carbon nanotube with an
anharmonic confining potential and periodically kicked by a laser wave. We find, as
expected from [13], that the probability density and the energy of a kicked nonlinear
oscillator exhibit as a function of time a growing or a decaying behaviour depending
on the sign of the coefficient that gives the kicking strength. We observe that as the
kicking period is decreased, the motion of the nonlinear oscillator becomes more and more
diffusive finally reaching the ballistic regime. However, interestingly enough, increasing
the kicking period does not apparently yield any localization. The anharmonicity is also
found to favour the dissipative dynamics and gives rise to crossing of the energy curves
characteristic of quantum chaos. We furthermore show that the spatial periodicity of
the kicking potential seems to be a very sensitive parameter the variation of which can
lead to a variety of features ranging from a ballistic motion through classical diffusion to
dynamical localization. In what follows we shall first briefly discuss the method of Liboff
and Porter [13] and then apply it to the problem of a nonlinear kicked oscillator.

2 General Formalism of Liboff and Porter

Consider a complex Hamiltonian of the form

H =
p2

2m
+ V (x) + i~α(x, t) = H0 + i~α(x, t), (1)
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where α(x, t) can be written as a product of the space-part and the time-part and the
unperturbed Hamiltonian satisfies the time-independent Schrödinger equation

H0un(x) = E(0)
n un(x). (2)

We can therefore write

[H0 + i~α(x, t)]un(x) = Enun(x) = [E(0)
n + i~α(x, t)]un(x). (3)

The time-dependent Schrödinger equation for the problem is given by

i~∂Ψ/∂t = HΨ = [H0 + i~α(x, t)]Ψ, (4)

where Ψ(t) can be formally written as

Ψ(t) = exp [− i
~

∫ t

0

dλH(λ)]Ψ(0), (5)

where Ψ(0) is the initial state function given by

Ψ(0) =
∑
n

anun. (6)

The expectation value of the Hamiltonian at t = 0 yields

< Ψ(0)|H|Ψ(0) >=
∑
n

|an|2E(0)
n = E0, (7)

where the expansion coefficients may be fixed from the knowledge of the initial configura-
tion of the state of the system. Substituting (6) in (5) and using the eigenvalue equation
(3), we get

Ψ(t) = eg(t)
∑
n

anune
− i

~E
(0)
n t, (8)

where

g(t) =

∫ t

0

dtα(t), (9)

so that the real part of the energy expectation value at time t (E(t)) is given by

E(t) = Re < Ψ(t)|H|Ψ(t) >= E0e
2
∫ t
0
dλα(λ). (10)

3 Kicked Harmonic Oscillator

We shall now employ this formalism to a kicked nonlinear oscillator for which we write

V (x) =
1

2
mω2x2 + λx4 (11)

and choose α(x, t) as

α(x, t) = −ε < cos(kx) >

N∑
s=1

δ(t− Ts), (12)
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where ε gives the measure of the δ-function kicking, k measures the spatial periodicity of
the kicking potential, T is the kicking period, N is the number of kicks and < cos(kx) >≡
κ is the expectation value of cos(kx) taken with respect to the eigenstate of the effective
harmonic oscillator. We assume that the initial state is prepared in the n-th excited state
of the linear oscillator and incorporate the quartic term using a mean-field approximation
so that the unperturbed potential can be written as an effective harmonic oscillator with
a new frequency

ω̃ = [ω2 +
2λ

m
< x2 >]1/2, (13)

where

< x2 >=

∫ ∞
−∞

u(0)n x2u(0)n dx. (14)

According to our initial configuration,

< x2 >= (n+
1

2
), (15)

and hence

ω̃ = [1 + 2λ(n+
1

2
)]1/2, (16)

where we have assumed m = ~ = ω = 1. A simple calculation shows that κ can be
obtained as

κ = e−β
2

Ln(β2), (17)

where β = (1/2ω̃)1/2k and Ln(x) is the Laguerre polynomial of order n and is given by

Ln(x) =

n∑
m=0

(−1)m
n!β2m

(m!)2(n−m)!
. (18)

The time-dependent energy E(t) is then finally obtained as

E(t) = E0P (t), (19)

where P (t) is the temporal probability that the system would be found in the state Ψ(t)
at time t and is given by

P (t) =< Ψ(t)|Ψ(t) >= e−2εκφ(t), (20)

where

φ(t) =

N∑
s=1

∫ t

0

δ(λ− sT )dλ. (21)

One can immediately see that φ(t) is equal to the number of s values for which s is
less than t/T . We would like to point out here that in [10] the value of φ(t) has been
determined erroneously. In fact the definition of φ(t) in [10] violates causality. We obtain

Pl[lT ≤ t < (l + 1)T ] = e−2εκl, (22)

where l = 0, 1, 2, . . . , and consequently the time-dependent energy of the n-th excited
state of the nonlinear oscillator reads

En[lT ≤ t < (l + 1)T ] = (n+
1

2
)e−2εκl. (23)
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4 Numerical Results and Discussion

In Figure 1, we show the behaviour of the energy of the first excited state as a function
of time. In (12), we have chosen the sign of the kicking term as negative in order that
the dynamics becomes dissipative. We show the energy dissipation with time for three
values of the kicking strength ε. One can observe that the delta-function kicking results
in instantaneous dissipations in the energy at the kicking times and remains constant
in between two successive kicks leading to a stair-case like structure. As the kicking
strength increases, the dissipation of course becomes more and more rapid.

Figure 1: The first excited state energy E as a function of time for three values of the kicking
strength ε.

In Figure 2 we compare the dissipation for the first two excited states (n = 1 and
n = 2) of the nonlinear oscillator. The dissipation behaviour of the second excited state is
almost similar to the first one, except that the decay rate is faster for the second excited
state than that for the first excited state. In Figure 3 we study the energy-time behaviour
for the first excited state for a few values of the nonlinearity parameter λ. We find that
the energy, as expected for the present system, is initially larger for a larger value of
λ but the decay is interestingly faster for larger λ-values. This leads to an interesting
crossing of the energies at a long enough time which may be attributed to a dynamics
akin to quantum chaos.

The variation of the dissipative dynamics as we change the kicking period T is studied
in Figure 4. It is clearly evident that the dissipation becomes more and more rapid as
the kicking period decreases so much so that for very low values of T , the dynamics is
essentially ballistic, while for very large values of T the energy spreading is more or less
diffusive. However we do not observe any localization here.

From (17) and (22) one can note that neither the temporal probability P (t) nor
the energy E(t) is a monotonically increasing or decreasing function of k. In fact the
dependence of E on k is quite interesting which we show in Figure 5 where we have plotted
the energy for the first two excited states as a function of k for three values of time t.
One can see that the first excited state energy has two maxima, lying symmetrically
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Figure 2: The decay of the energies of first two excited states n = 1 and n = 2 with time.

Figure 3: The dissipation of the first excited state with time for three values of the nonlinearity
parameter λ.
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Figure 4: The dissipation of the first excited state with time for four values of the kicking
period T .

Figure 5: The variation of the time-dependent energy of the first two excited states as a
function of the spatial periodicity k of the kicking potential for three values of time t.
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Figure 6: The variation of the energy of the first excited state as a function of time t for k = 0
and k = 10. The inset shows the behaviour for k = 2.5.

about k = 0 where it has a central minimum and the energy saturates to a constant
after k reaches some critical value. Interestingly, however, the locations of the maxima
and minima on the k-line do not change with time. For n = 2, however, two additional
(secondary) minima develop symmetrically on either side of k = 0 and the maxima get
shifted outward on both sides of k = 0, while the central minima still lie at k = 0.

The maxima-minima structure seems to have an interesting bearing on the dynamical
behaviour of the system and throws up a variety of possibilities for different ranges of
the k-values. For n = 1, with the parameter values we have chosen, the maxima occurs
at around k = ±2.5. The central minimum for all the cases however occur at k = 0 as
has already pointed out. This value of k = 0 gives dissipative dynamics in the ballistic
regime as shown in Figure 6. It is quite clear from Figure 5 that for large values of k the
system would exhibit localization. We have confirmed this behaviour by plotting E as a
function of t for k = 10 in Figure 6. Interestingly however, k = 2.5 for the ground state
corresponds to ballistic absorption. In the inset of Figure 6 we display this behaviour.

In Figure 7 we show in more detail the dissipative behaviour of the system for different
values of k. For the value of k close to 1.48, one can observe that the dynamics is more
or less diffusive and for lower values of k it becomes more and more super-diffusive and
finally reaches almost the ballistic limit, while for about k = 1.51, the system shows a
dynamical localization.

5 Conclusion

In conclusion, we have studied the dynamics of a nonlinear oscillator kicked by a time-
periodic δ-function potential that has a spatial periodicity of the cosine-form using a
complex nonhermitian Hamiltonian technique recently proposed by Liboff and Porter
[13]. We have observed that the system can exhibit exponential growth or decay depend-
ing on the sign of the kicking term and the value of the spatial periodicity parameter.
In particular, we have studied the case of dissipation and have shown that it increases
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Figure 7: The variation of the energy of the first excited state as a function of time t for
k = 1.0, k = 1.3, k = 1.48 and k = 1.51.

with increasing kicking strength. The dissipation however takes place instantaneously
with kicking and energy remains constant between two successive kicking leading to a
stair-case structure. As a function of the nonlinearity parameter, there occurs a crossing
of the energy curves that seems to characterize the onset of a quantum chaos. However,
the system never shows any indication of localization for any value of the kicking pe-
riod that we have considered. Rather it exhibits a more and more diffusive behaviour
as the kicking period decreases reaching finally the ballistic limit. Most interestingly,
the dynamics of the system seems to depend quite sensitively on the spatial periodic-
ity parameter, the variation of which gives rise to a variety of rich phenomena ranging
from diffusive to super-diffusive behaviour to ballistic spreading on the one side and to
dynamical quantum localization on the other.
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