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1 Introduction

Let X and Y be two real Banach spaces such that the embedding Y →֒ X is dense and
continuous. Consider the following quasilinear implicit integrodifferential equation in X

du(t)

dt
+A(t, u(t))u(t) = f(t, u(t), G(u)(t)), 0 < t ≤ T, u(0) = u0, (1)

where 0 < T < ∞, A(t, u) is a linear operator in X for each u in an open subset W of
X , G is a nonlinear Volterra integral operator defined from C(J,X) into C(J,X) where
J = [0, T ] and the nonlinear map f is defined from J ×W ×W into X . We follow the
approach of T. Kato [13, 16, 17] to establish the existence of a unique classical solution
to (1) under the assumptions (H1)-(H8) to be stated in the next section.
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Crandall and Souganidis [4] have used a different method to prove the existence,
uniqueness and continuous dependence of a continuously differentiable solution to the
quasilinear evolution equation

du(t)

dt
+A(u(t))u(t) = 0, 0 < t ≤ T, u(0) = u0,

under similar assumptions considered by T. Kato [16].
T. Kato [16] has proved two general theorems on the nonhomogeneous quasilinear

evolution equation

du(t)

dt
+A(t, u(t))u(t) = f(t, u(t)), 0 < t ≤ T, u(0) = u0, (2)

one on the existence and uniqueness, and the other on the continuous dependence of
a solution on the initial data. Also, he has shown that these theorems are applicable
to the different kinds of quasilinear differential equations such as Korteweg-de Vries
equation, Navier-Stokes equation and Euler equation, equations for compressible fluids,
magnetohydrodynamics equations, coupled Maxwell and Dirac equations etc. The results
in [16] are based on the theory of linear ‘hyperbolic’ equation which was developed in
[14, 15].

Murphy [19] constructed a family of approximate solutions to the homogeneous quasi-
linear evolution equation

du(t)

dt
+A(t, u(t))u(t) = 0, 0 < t ≤ T, u(0) = u0. (3)

He showed that the approximate solution converges to a “limit solution” and this “limit
solution” becomes a unique solution to (3) under certain additional assumptions. [12]
has extended the result in [19] to the nonhomogeneous equation (2) under slightly more
general conditions than those of [16].

In [2], Bahuguna had used the method of lines (also known as Rothe’s method) and
the techniques of Crandall and Souganidis [4] to prove the existence, uniqueness and
continuous dependence of a strong solution to the quasilinear explicit integrodifferential
equaton

du(t)

dt
+A(u(t))u(t) = K(u)(t) + f(t), 0 < t ≤ T, u(0) = u0,

in a Banach space X whose dual X∗ is assumed to be uniformly convex under the
additional assumption of compactness on the embedding of Y in X and where K is
the nonlinear Volterra operator. Using technique of [2], Bahuguna and Shukla [3] have
established similar results for the quasilinear implicit integrodifferential equation

du(t)

dt
+A(u(t))u(t) = f(t, u(t), G(u)(t)), 0 < t ≤ T, u(0) = u0,

in Banach spaces. Further, using same technique of papers [2] and [3], Dubey [5] has
established the similar result for the equation (1).

For the application of analytic semigroups to related quasilinear evolution equations
we refer to Amann [1], Lunardy [18] while for the applications of fixed point theorems
the reader may refer to Kartsatos [9, 10], Kartsatos and Parrott [11] and references cited
therein.
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Dubey [6] has established the local existence and uniqueness of a classical solution
of an abstract second order integrodifferential equation in a Banach space by using the
theory of analytic semigroups and contraction mapping theorem . The continuation of
classical solution, the maximal interval of the existence and the global existence of the
classical solution have been also studied. Pandey, Ujlayan and Bahuguna [8]considered
an abstract semilinear hyperbolic integrodifferential equation and used the theory of
resolvent operators to establish the existence and uniqueness of a mild solution under
local Lipschitz conditions on the nonlinear maps and an integrability condition on the
kernel. Under some additional conditions on the nonlinear maps they also proved the
existence of a classical solution.

The plan of the paper is as follows. In the second section, we collect some prelimi-
naries, notations and some results which easily follow from the hypotheses. In the third
section, first, we establish the existence of a unique local mild solution using contraction
mapping theorem and also the existence of a local classical solution to (1). Finally, in the
last section, we demonstrate one application of the results established in earlier sections.

2 Preliminaries

Let X and Y be as in the earlier section. The norm in any Banach space Z is denoted
by ‖.‖Z. B̄Z(r, z0) is the closure of the open ball BZ(r, z0) = {z ∈ Z | ‖z − z0‖Z < r}
with radius r and center at z0 in the Banach space Z. The space of all bounded linear
operators from a Banach space X to a Banach space Y is denoted by B(X,Y ) and
B(X,X) is written as B(X). Let J denote the interval [0, T ]. The space Cm(J, Z)
represents the space of all m-times continuously differentiable functions defined from J
into Z, m = 1, 2, ...; endowed with the supremum norm

‖u‖Cm(J,Z) =
∑

1≤i≤m

sup
t∈J

‖u(i)(t)‖, u ∈ Cm(J, Z),

where u(i) denotes the ith derivative of u with u(0) = u. LetW be a subset of X . A family
{A(t, w) : (t, w) ∈ J ×W}, of infinitesimal generators of C0-semigroups St,w(s), s ≥ 0 on
X is called stable if there exists real numbersM ≥ 1 and ω, known as stability constants,
such that

ρ(A(t, w)) ⊃ (ω,∞) for (t, w) ∈ J ×W,

where ρ(A(t, w)) is the resolvent set of A(t, w) and
∥

∥

∥

∥

∥

∥

k
∏

j=1

R(λ;A(tj , wj))

∥

∥

∥

∥

∥

∥

B(X)

≤M(λ− ω)−k for λ > ω

and every finite sequence

0 ≤ t1 ≤ t2 ≤ .... ≤ tk ≤ T, wj ∈W, 1 ≤ j ≤ k.

For a linear operator S in X , by the part S̃ of S in a subspace Y of X , we mean a linear
operator S̃ with domain D(S̃) = {x ∈ D(S) ∩ Y | Sx ∈ Y } and values S̃x = Sx for
x ∈ D(S̃).

Let St,w(s), s ≥ 0, be the C0-semigroup generated by A(t, w), (t, w) ∈ J ×W . A
subset Y of X called A(t, w)-admissible if Y is an invariant subspace of operator St,w(s),
s ≥ 0, and the restriction of St,w(s) to Y is a C0-semigroup in Y .



140 REETA S. DUBEY

For more details of the above mentioned notions, one may refer to the chapters 5 and
6 in Pazy [7]. On the family of operators {A(t, w) : (t, w) ∈ J ×W}, we make the same
assumptions (H̃1)-(H̃4) considered in §6.6.4 in Pazy [7] for the homogeneous quasilinear
evolution equation, as restated below.
(H1) The family {A(t, w) : (t, w) ∈ J ×W} is stable.
(H2) Y is A(t, w)-admissible for (t, w) ∈ J×W and the family {Ã(t, w) : (t, w) ∈ J×W}
of the parts of A(t, w) in Y is stable in Y .
(H3) For (t, w) ∈ J ×W , D(A(t, w)) ⊃ Y , A(t, w) is a bounded linear operator from Y
to X , and the map t 7→ A(t, w) is continuous in B(Y,X) with associated norm ‖.‖Y→X

for every w ∈ W .
(H4) There is a positive constant LA such that

‖A(t, w1)−A(t, w2)‖Y→X ≤ LA‖w1 − w2‖X

for every w1, w2 ∈W and 0 ≤ t ≤ T .
A two parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T , on X is

called an evolution system if the following two conditions are satisfied:
(i) U(s, s) = I and U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .
(ii) The map (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .
If u ∈ C(J,X) has values in W and the family {A(t, w) : (t, w) ∈ J ×W} of the

operators satisfies the assumptions(H1)-(H4) then there exists a unique evolution system
Uu(t, s) in X satisfying

(i) ‖Uu(t, s)‖X ≤Meω(t−s) (4)

for 0 ≤ s ≤ t ≤ T , where M and ω are the stability constants;

(ii)
∂+

∂t
Uu(t, s)w|t=s = A(s, u(s))w (5)

for w ∈ Y and 0 ≤ s ≤ T ;

(iii)
∂

∂s
Uu(t, s)w = −Uu(t, s)A(s, u(s))w (6)

for ω ∈ Y and 0 ≤ s ≤ T .
Further, there exists a positive constant C0 such that for every u, v ∈ C(J,X) with

values in W and for every y ∈ Y , we have

‖Uu(t, s)y − Uv(t, s)y‖X ≤ C0‖y‖Y

∫ t

s

‖u(τ)− v(τ)‖Xdτ. (7)

For details of the above mentioned results, one may refer to Theorem 6.4.3 and Lemma
6.4.4 in Pazy [7].

We further assume that
(H5) For every u ∈ C(J,X) satisfying u(t) ∈W for t ∈ J , we have

Uu(t, s)Y ⊂ Y, for t, s ∈ J and s ≤ t

and Uu(t, s) is strongly continuous in Y for s, t ∈ J and s ≤ t.
(H6) Closed convex subsets of Y are also closed in X .
(H7) The nonlinear map G : C(J,X) → C(J,X) satisfy the following:
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(a) For all u, v ∈ B̄C(J,X)(ũ0, r),

‖G(u)−G(v)‖C(J,X) ≤ µG(r)‖u − v‖C(J,X),

where µG(r) is a nonnegative nondecreasing function and ũ0 ∈ C(J,X) is defined by
ũ0 = u0 for all t ∈ J .

(b) The subspace C(J, Y ) of space C(J,X) is an invariant subspace of the map G,
i.e. the map G : C(J, Y ) → C(J, Y ) satisfies

‖G(u)(t)‖Y ≤ λG(r) for u ∈ B̄Y (u0, r),

where λG(r) is a nonnegative nondecreasing function. In particular, we may take operator
G as a Volterra operator defined by

G(u)(t) =

∫ t

0

a(t− s)k(s, u(s))ds,

where a is a real valued continuous function defined on J and k is defined on J × Y into
Y and ‖k(t, w)‖Y ≤ Ck for every (t, w) ∈ J × Y . Clearly, the map G satisfies (b).
(H8) The nonlinear map f : J ×W ×W → X satisfies

(a) For (t, u, v) ∈ J × (W ∩ Y )× (W ∩ Y ) and f(t, u, v) ∈ Y , we have

‖f(t, u, v)‖Y ≤ λf (r)

for all (t, u, v) ∈ J × W × W with ‖u‖Y + ‖v‖Y ≤ r, where λf (r) is a nonnegative
nondecreasing function.

(b) In both Z = X, Y , the map f satisfies the Lipschitz like condition

‖f(t1, u1, v1)− f(t2, u2, v2)‖Z ≤ µf (r)[|φ(t1)− φ(t2)|+ ‖u1 − u2‖Z + ‖v1 − v2‖Z ],

for all t1, t2 ∈ [0, T ] and all ui, vi ∈ B̄Y (u0, r), i = 1, 2, where φ is a real-valued continuous
function of bounded variation on [0, T ] and µf (r) is a nonnegative nondecreasing function.

By a mild solution to (1) on J = [0, T ], we mean a function u ∈ C(J,X) with values
in W satisfying the integral equation

u(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds, t ∈ J. (8)

By the Classical solution u to (1) on J = [0, T ], we mean a function u ∈ C(J,X) such
that u(t) ∈ Y ∩W for t ∈ (0, T ], u ∈ C1((0, T ], X) and satisfies (1) in X . If there exists
a T ′ with 0 < T ′ ≤ T and a function u ∈ C(J ′, X), where J ′ = [0, T ′] such that u is a
mild (classical) solution to (1) on J ′, then u is called a local mild (classical) solution to
(1).

3 Main Result

In this section, we prove the following result.

Theorem 3.1 Suppose that u0 ∈ Y and the family {A(t, w)} of linear operators for
t ∈ J = [0, T ] and w ∈ W = {y ∈ Y : ‖y − u0‖Y ≤ r}, for fixed r > 0, satisfy the
assumptions (H1)-(H6) and A(t, w)u0 ∈ Y satisfies

‖A(t, w)u0‖Y ≤ CA (9)
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for all (t, w) ∈ J ×W .
Further, suppose that the nonlinear maps G and f satisfy (H7) and (H8), respectively.

Then, there exists a unique local classical solution to (1).

Proof First, we establish the existence of a unique local mild solution to (1). We
note that from assumption (H5), it follows that

‖Uu(t, s)‖B(Y ) ≤ C1 (10)

for s ≤ t, s, t ∈ J and every u ∈ C(J,X) with values in W . We choose

T0 = min

{

T,
r

2CAC1
,

r

2C1λf (R1)
,
1

2P

}

, (11)

where
P = C0‖u0‖Y +MeωTµf (R1)(1 + µG(r)) + C0λf (R1)T

and
R1 = r + ‖u0‖Y + λG(r).

Let S be the subset of C(J0, X) defined by

S = {u ∈ C(J0, X) | u(0) = u0, and u(t) ∈W for t ∈ J0},

where J0 = [0, T0]. From (H6), it follows that S is a closed convex subset of C(J0, X).
Next, we define a mapping F : S → S by

Fu(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds (12)

and check that F is well defined. Clearly, Fu(0) = u0, Fu ∈ C(J0, X) and (H5) implies
that Fu(t) ∈ Y for t ∈ J0. It remains to show that ‖Fu(t)− u0‖Y ≤ r for t ∈ J0. Now,

Fu(t)− u0 = Uu(t, 0)u0 − u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds. (13)

Integrating (6) in X from 0 to t, we get

Uu(t, 0)u0 − u0 =

∫ t

0

Uu(t, τ)A(τ, u(τ))u0dτ. (14)

Using (9) and (10) in (14), we obtain

‖Uu(t, 0)u0 − u0‖Y ≤ C1CAT0 ≤
r

2
. (15)

Further, using (10) and (H8), we get
∥

∥

∥

∥

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds

∥

∥

∥

∥

Y

≤ C1λf (R1)T0 ≤
r

2
, (16)

since ‖u(s)‖Y + ‖G(u)(s)‖Y ≤ R1. Using (15) and (16) in (13), we see that F is well
defined. For u, v ∈ S, we have

Fu(t)− Fv(t) = (Uu(t, 0)− Uv(t, 0))u0

+

∫ t

0

[Uu(t, s)f(s, u(s), G(u)(s)) − Uv(t, s)f(s, v(s), G(v)(s))]ds

= T1 + T2, (17)
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where T1 and T2 represent the first and second terms on the right hand side of (17). We
use (7) to obtain ‖T1‖X ≤ C0‖u0‖Y T0‖u − v‖C(J0,X). Further, from (H7), (H8) and (7)
it follows that

‖T2‖X ≤

∥

∥

∥

∥

∫ t

0

Uu(t, s)[f(s, u(s), G(u)(s)) − f(s, v(s), G(v)(s))]ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

[Uu(t, s)− Uv(t, s)]f(s, v(s), G(v)(s))ds

∥

∥

∥

∥

X

≤ [MeωTµf (R1)(1 + µG(r)) + C0λf (R1)T ]T0‖u− v‖C(J0,X).

Also,

‖f(s, u(s), G(u)(s)) − f(s, v, (s), G(v)(s)‖X

≤ µf (R1)[‖u(s)− v(s)‖X + ‖G(v)(s)−G(u)(s)‖X ]

≤ µf (R1)[‖u− v‖C(J0,X) + ‖G(u)−G(v)‖C(J0,X)]

≤ µf (R1)(1 + µG(r))‖u − v‖C(J0,X).

Hence, from (17), we have

‖Fu− Fv‖C(J0,X) ≤ PT0‖u− v‖C(J0,X) ≤
1

2
‖u− v‖C(J0,X).

This shows that, F is a contraction map from S to S. Since S is closed in X , by the
contraction mapping theorem, F has a unique fixed point u ∈ S which is the local mild
solution to (1).

Now, we show that u ∈ C(J0, Y ). For s, t ∈ J0 with s ≤ t, we have

u(t)− u(s) = (Uu(t, 0)− Uu(s, 0))u0

+

∫ s

0

(Uu(t, η)− Uu(s, η))f(η, u(η), G(u)(η))dη

+

∫ t

s

Uu(t, η)f(η, u(η), G(u)(η))dη.

Since Uu(t, s) is strongly continuous in Y for s, t ∈ J and s ≤ t. So, for every ǫ > 0,
there exist δ1, δ2 > 0 such that

t, s ∈ J0 with |t− s| ≤ δ1 ⇒ ‖Uu(t, 0)− Uu(s, 0)‖B(Y ) ≤
ǫ

3‖u0‖Y

and

t, s ∈ J0 with |t− s| ≤ δ2 ⇒ ‖Uu(t, η)− Uu(s, η)‖B(Y ) ≤
ǫ

3λf (R1)T0
.

Let δ = min{δ1, δ2,
ǫ

3C1λf (R1)
}. Then, for s, t ∈ J0

|t− s| ≤ δ ⇒ ‖u(t)− u(s)‖Y ≤ ǫ.

Thus, u ∈ C(J0, Y ).
Consider the following linear evolution equation

dv(t)

dt
+B(t)v(t) = h(t), 0 < t ≤ T0, v(0) = u0, (18)
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where B(t) = A(t, u(t)) and h(t) = f(t, u(t), G(u)(t)) for t ∈ J0 and u being the unique
fixed point of F in S. We note that B(t) satisfies (H1)-(H3) of §5.5.3 in Pazy [7].

We have to prove that h ∈ C(J0, Y ). For s, t ∈ J0 (we assume without loss of
generality that s ≤ t), we have

‖h(t)− h(s)‖Y = ‖f(t, u(t), G(u)(t))− f(s, u(s), G(u)(s))‖Y

≤ µf (R1)[|φ(t) − φ(s)| + ‖u(t)− u(s)‖Y + ‖G(u)(t)−G(u)(s)‖Y ].

As φ is a continuous function of bounded variation on J , u ∈ C(J0, Y ) and G(u) ∈
C(J0, Y ) for u ∈ C(J0, Y ). So, for every ǫ > 0, there exist δ1 > 0, δ2 > 0 and δ3 > 0
such that

t, s ∈ J0 with |t− s| ≤ δ1 ⇒ |φ(t) − φ(s)| ≤
ǫ

3µf (R1)
,

t, s ∈ J0 with |t− s| ≤ δ2 ⇒ ‖u(t)− u(s)‖Y ≤
ǫ

3µf (R1)

and

t, s ∈ J0 with |t− s| ≤ δ3 ⇒ ‖G(u)(t)−G(u)(s)‖Y ≤
ǫ

3µf (R1)
.

Let δ = min{δ1, δ2, δ3}. Then, for s, t ∈ J0, we have: |t− s| ≤ δ ⇒ ‖h(t)− h(s)‖Y ≤ ǫ.
Thus, h ∈ C(J0, Y ). Theorem 5.5.2 in Pazy [7] implies that there exists a unique function
v ∈ C(J0, Y ) such that v ∈ C1(J0/{0}, X) satisfying (18) in X and v is given by

v(t) = Uu(t, 0)u0 +

∫ t

0

Uu(t, s)f(s, u(s), G(u)(s))ds, t ∈ J0,

where Uu(t, s), 0 ≤ s ≤ t ≤ T0 is the evolution system generated by the family
{A(t, u(t))}, t ∈ J0, of linear operators in X . The uniqueness of v implies that v ≡ u on
J0 and hence u is a unique local classical solution to (1). This completes the proof.

4 Application

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω. Consider the differential

operator

A(t, x, u;D)w = −

n
∑

i,j=1

∂

∂xi

(

aij(t, x, u(t, x))
∂w

∂xj

)

+ c(t, x, u(t, x))w,

where aij(t, x, u(t, x)) and c(t, x, u(t, x)) are real valued functions defined on I×Ω×R and
I = [0, T ], 0 < T <∞. We assume that aij ∈ C[I×Ω×W,R], whereW = C2l+1(I×Ω,R)
with 1/2 < l < 1, aij = aji, (1 ≤ i, j ≤ n) and there exists some δ > 0 such that

n
∑

i,j=1

aij(t, x, u(t, x))qiqj ≥ δ|q|2, q = (q1, ....., qn) ∈ R

holds for each (t, x, u(t, x)) ∈ I × Ω× R.
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Consider the partial integrodifferential equation

∂u(t, x)

∂t
+A(t, x, u;D)u(t, x) = f(t, x, u(t, x),K(u)(t, x)), (t, x) ∈ (0, T ]× Ω (19)

with boundary condition

u(t, x) = 0 for (t, x) ∈ (0, T ]× ∂Ω

and initial condition

u(0, x) = u0(x) for x ∈ Ω,

where

K(u)(t, x) =

∫ t

0

a(t− s)k(s, x, u(s, x),∇u(s, x))ds,

∇ = (D1, D2, ...., Dn), Di =
∂

∂xi
,

the function a is a real valued continuous function of bounded variation in R and the
function f(t, x, u, v) is also a real valued continuous function defined on I ×Ω×W ×W
and for every t0 > 0, r0 > 0 there exists L0 > 0 such that if ‖u1‖ ≤ r0, ‖u2‖ ≤ r0, then

‖f(t, x, u1, v1)− f(s, x, u2, v2‖ ≤ L0[|ψ(t)− ψ(s)|+ ‖u1 − u2‖+ ‖v1 − v2‖]

for x ∈ Ω, ui, vi ∈ W , i = 1, 2 and ψ is a real valued continuous function of bounded
variation. u : I × Ω → R is unknown function and u0 is its initial value.

Further, we assume that k : [0,∞) × Ω ×W ×W → R is continuous and for every
t0 > 0, r0 > 0 there exists M0 > 0 such that if ‖u‖ ≤ r0, ‖v‖ ≤ r0, then

‖k(t, x, u, ξ)− k(t, x, v, η)‖ ≤M0[‖u− v‖+ ‖ξ − η‖]

for all 0 ≤ t ≤ t0, x ∈ Ω and u, v, ξ, η ∈ W .
Let n

2l−1 < p <∞ and X = Lp(Ω) with the usual norm

‖u‖p =

[
∫

Ω

|u|pdx

]1/p

,

then integrodifferential equation (19) can be reformulated as abstract integrodifferential
equation (1) in Banach space X , where

A(t, u)w = A(t, x, u;D)w

with domain

D(A(t, u)) = {w ∈W 2
p (Ω) : w(t, x) = 0, (t, x) ∈ (0, T ]× ∂Ω}

and

f(t, u,G(u))(x) = f(t, x, u(t, x),K(u)(t, x)).

We note that the assumptions (H1)-(H8) are satisfied thus we may apply the result of
the earlier section to guarantee the existence of unique classical solution of (19).
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