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Abstract: The existence and uniqueness of solutions of nonlinear multi-variables
fractional differential equations have been investigated. Using Schauder fixed points
theorems and Global contraction mapping theory, we obtain two results concerning
the existence and uniqueness of solutions respectively. Moreover, our results are more
general than in [8].
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1 Introduction

In recent years, interest has increased concerning the fractional differential equations
[5, 13, 26]. Most of works are devoted to the solvability of linear fractional equations in
terms of special functions [1, 7] and to problems of analyticity in the complex domain [6].
There are also some studies on the solution of nonlinear differential equations [8]–[11] and
[20]. D. Delbosco argues nonlinear fractional equation [11]. E. Ahmed has investigated
the fractional-order Lotka–Volterra predator-prey system [20]. Very few contributions
exist, as far as we know, concerning nonlinear multi-variables fractional equations of the
form
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
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











0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

where 0 < si < 1 , and i = 1, · · · , n and 0D
si
t is the standard Riemann–Liouville

fractional derivative, considered in R
+ or in an interval (0, a), with a > 0.

Fractional-order calculus will play an important role in mechatronic and biological
systems. It has been found that the behavior of many physical systems can be properly
described by using the fractional order system theory. For example, heat conduction,
dielectric polarization, electrode-electrolyte polarization, electromagnetic waves, visco-
elastic systems, quantum evolution of complex systems, quantitative finance and diffusion
wave are among the known dynamical systems that were modeled using fractional order
equations. In fact, real world processes generally or most likely are nonlinear multi-
variable fractional order systems. In the last 6 years, considerable attention has also
been paid to obtain analytical existence conditions for nonlinear fractional order systems
[27]. Our aim is to analyze uniqueness conditions further more. The paper is organized
as follows. In Section 2 we recall the definitions of fractional integral and derivative and
related basic properties used in the text. Section 3 contains results for solutions which
are continuous at the origin. Conclusions are given in Section 4.

2 Definitions and Preliminary Results

The definitions and the results of the fractional calculus reported below are not exhaustive
but rather oriented to the subject of this paper. For the proofs, which are omitted, we
refer the reader to Miller and Ross [7] or other texts on basic fractional calculus.

Definition 2.1 The uniform formula of a fractional integral with α ∈ (0, 1) is defined
as

0D
−α
t f (t) =

1

Γ (α)

∫ t

0

(t− τ )α−1
f (τ) dτ,

where f (t) : R+ −→ R, is an arbitrary integrable function, 0D
−α
t is the fractional integral

of order α on [0, t], t > 0 and Γ(·) denotes the Gamma function. For an arbitrary real
number, the Riemann–Liouville fractional derivative is defined as

0D
p
t f (t) = d[p]+1

dt[p]+1

[

0D
−[p]−p+1
t f (t)

]

.

The following properties are some of the main ones of the fractional derivatives and
integrals [12, 18, 20].

Property 1. 0D
p
t t

υ = Γ(1+υ)
T(1+υ−p) t

υ−p, where p ∈R, υ > −1.

Property 2. 0D
p
t (0D

q
t f (t)) = 0D

p+q
t f (t), where p < 0, q < 0.

Property 3. 0D
p
t

(

0D
−p
t f (t)

)

= f (t), where p ∈R2, t > 0.
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Property 4. 0D
−α
t f (0) = 0, where f ∈ C [0, a], α ∈ (0, 1).

Property 5. 0D
p
t f (t) = 0, where f ∈ C (R+) ∩ L1 (R+), α ∈ (0, 1), then f (x) =

cxp−1, c ∈ R.

Proposition 2.1 Assume that f ∈ C (R+) ∩ L1 (R+) with a fractional derivative
order 0 < α < 1 that belongs C (R+) ∩ L1 (R+). Then

aD
−α
t (aD

α
t f (t)) = f (t) + cxα−1

for some c ∈ R.

When the function f (t) is in C (R+), then c = 0.

In all the definitions and results of this section the set R+ can be substituted by the
intervals (0, a) or (0, a] , a > 0. For simplicity, in the next sections we shall often limit
arguments to the choice a = 1. A more precise analysis of the operators 0D

−α
t , 0D

α
t can

be given in the frame of the spaces Cr (R
+), r > 0, of all functions f ∈ C

(

R
+
0

)

such that

xr f ∈ C
(

R
+
0

)

.

Let 0 < α < 1 ; if f ∈ C
(

R
+
0

)

with r < α, then 0D
−α
t f ∈ C

(

R
+
0

)

with 0D
−α
t f(0) = 0.

If f ∈ Cα (R+), then 0D
−α
t f is bounded at the origin if f ∈ C

(

R
+
0

)

. With α < r < 1,

then we may expect 0D
−α
t f to be unbounded at the origin. Concerning Proposition 2.1,

the last part can now be stated more precisely. If f ∈ Cr

(

R
+
0

)

with r < 1 − α and

0D
α
t f ∈ C (R+) ∩ L1 (R+), then 0D

−α
t (0D

α
t f (t)) = f (t).

3 Existence and Uniqueness

Consider the fractional differential equations































0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(1)

where 0 < si < 1, and i = 1, · · · , n and fi : [0, a] × R → R, 0 < a < +∞ are given
functions, continuous in (0, a)× R.

We introduce the following definition of a solution for (1).

Definition 3.1 Let C∗ [0, a] be the class of continuous column vector U (t) =
(u1 (t) , u2 (t) , · · ·un (t)) whose components u1 (t) , u2 (t) , · · ·un (t) ∈ C [0, a] the class
of continuous functions on the interval [0, a] . The norm of U ∈ C∗ [0, a] is given by

‖U‖ = max
1≤i≤n

{

sup
0≤x≤a

u (x)

}

.

Definition 3.2 By a solution of the fractional differential equations (1) we mean a
column vector U ∈ C∗ [0, a]. This vector satisfies (1).
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Remark 3.1 We may apply the results of Section 2, in particular Proposition 2.1
and the subsequent remarks, to reduce(1) to integral equations. In fact, if U (t) =
(u1 (t) , u2 (t) , · · ·un (t)) ∈ C∗ [0, a] or more generally U ∈ C∗

r [0, a] , with r < 1 − s

,where s = min
1≤i≤n

{si} , and further assumptions guarantee fi (t, u1 (t) , u2 (t) , · · ·un (t)) ∈

C [0, a] ∩ L1 [0, a] , then equations (1) are equivalent to the integral equations






























u1 (t) = 0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
ui (t) = 0D

−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
un (t) = 0D

−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t)) .

(2)

Such a reduction will be systematically used in this section. We first present Schauder
fixed point theorem. It can be easily proved [25].

Theorem 3.1 Let E be a closed bounded convex subset of a normed space X. If
f : E → E is a compact map such that f (E) is contained in E, then there is an x in E

such that f (x) = x.

Then, we give a local existence theorem.

Theorem 3.2 Let 0 < si < 1, i = 1, · · · , n,s = min
1≤i≤n

{si}, 0 ≤ σ < s < 1 and

fi (t, u1 (t) , u2 (t) , · · · , un (t)) ∈ C (0, 1] . Assume that tσfi (t, u1 (t) , u2 (t) , · · · , un (t)) ∈
C (0, 1] tσfi (t, u1 (t) , u2 (t) , · · ·un (t)) ∈ C (0, 1] . Then the fractional differential equa-
tions































0D
s1
t u1 (t) = f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
si
t u1 (t) = fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...

0D
sn
t u1 (t) = fn (t, u1 (t) , u2 (t) , · · · , un (t)) ,

(3)

have a least continuous solution U ∈ C∗ [0, 1], for a suitable δ ≤ 1.

Proof According to Remark 3.1, we are reduced to consider the following nonlinear
integral equations































u1 (t) = 0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
ui (t) = 0D

−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t)) ,

...
un (t) = 0D

−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t)) .

Let T : C∗ [0, 1] → C∗ [0, 1] be the operator defined as

(TU) (t) =

















0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t))

















T

.
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We claim that the operator T is compact. Indeed, the operator is the composition of
two simple operators in this way

T = A ◦N,

where

(NU) (t) =

















tσf1 (t, U (t))
...

tσfi (t, U (t))
...

tσfn (t, U (t))

















T

is a continuous and bounded operator (Nemytskii operator) and

(AV ) (t) =



















1
Γ(s1)

∫ t

0 (t− τ )
s1−1

τ−σv1 (τ, U (τ)) dτ
...

1
Γ(si)

∫ t

0
(t− τ )

si−1
τ−σvi (τ, U (τ)) d
...

1
Γ(sn)

∫ t

0
(t− τ )

sn−1
τ−σvn (τ, U (τ)) d



















T

is a compact operator, since s− σ > 0 as for example in [5].
Moreover, from Section 2, we have for 0 < t ≤ δ ≤ 1.

(AV ) (t) ≺

















|Av1 (t, U (t))|
...

|Avi (t, U (t))|
...

|Avn (t, U (t))|

















T

≺

























sup
0≤t≤δ

|v1 (t, U (t))| 1
Γ(s1)

∫ t

0
(t− τ )

s1−1
τ−σv1 (τ, U (τ)) dτ

...

sup
0≤t≤δ

|vi (t, U (t))| 1
Γ(si)

∫ t

0
(t− τ )si−1

τ−σvi (τ, U (τ)) dτ

...

sup
0≤t≤δ

|vn (t, U (t))| 1
Γ(sn)

∫ t

0 (t− τ )
sn−1

τ−σvn (τ, U (τ)) dτ

























T

≺

























Γ(1−σ)
Γ(1−σ+s1)

δs1−σ sup
0≤t≤δ

|v1 (t, U (t))|

...
Γ(1−σ)

Γ(1−σ+si)
δsi−σ sup

0≤t≤δ

|vi (t, U (t))|

...
Γ(1−σ)

Γ(1−σ+sn)
δsn−σ sup

0≤t≤δ

|vn (t, U (t))| τ

























T

.
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Let

ε = max
1≤i≤n

{

Γ(1−σ)
Γ(1−σ+si)

δsi−σ
}

,

therefore, taking the norms in C∗ [0, δ],

‖AV ‖ ≤ ε ‖V ‖,

where we may assume ε > 0 as small as we want by shrinking δ > 0.
Now fix Br as a domain of the operator T, where Br = {V ∈ C∗ [0, δ] : ‖V ‖ < r},

which is a convex, bounded, and closed subset of the Banach space C∗ [0, δ].
For δ sufficiently small, we have T (Br) ⊆ Br The Schauder fixed point theorem as-

sures that operator T has at least one fixed point and then (3) has at least one continuous
solution. U defined on C∗ [0, δ], where δ ≤ 1.

Example 3.1 Observe that we cannot expect uniqueness for such solutions, in gen-
eral. Consider for example the equations

{

0D
1/2
t u1 = 3T(3/4)

Γ(1/4) u
1/2
2 ,

0D
1/4
t u2 = 2T(1/2)

Γ(1/4) u
1/3
1 ,

which admit the two solutions (0, 0) and
(

x3/4, x1/2
)

.
The following theorem shows that uniqueness and global existence can be obtained

under an uniform Lipschitz-type assumption.

Theorem 3.3 Let 0 < si < 1, i = 1, · · · , n, s = min
1≤i≤n

{si}, 0 ≤ σ < s < 1 and

F (t, U) = (f1 (t, U) , f2 (t) , · · · fn (t)) ∈ C∗
σ [0, 1] . Assume further

‖F (t, U)− F (t, V )‖ ≤
L

tσ
‖U − V ‖ (4)

for some positive constant L independent of U, V ∈ R
n, t ∈ (0, 1] . Then the fractional

differential equations (3) have a unique solution U ∈ C∗ [0, 1].

Proof As in the proof of Theorem 3.3, we are reduced to studying the operator

(TU) (t) =

















0D
−s1
t f1 (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−si
t fi (t, u1 (t) , u2 (t) , · · · , un (t))

...

0D
−sn
t fn (t, u1 (t) , u2 (t) , · · · , un (t))

















T

which is well defined and continuous as a map T : C∗ [0, 1] → C∗ [0, 1], in the view of the
assumption of continuity on tσfi (t). Let us define the k iterates of the operator T as is
standard

T 1 = T, TK = T ◦ TK−1.
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It will be sufficient to prove that TK is a contraction operator for K being sufficiently
larger. Actually, we have for U, V ∈ C∗ [0, 1].

∥

∥T kU (t)− T kV (t)
∥

∥ ≤
(HL)K

Γ (k (s∗ − σ) + 1)
xk(s∗−σ) ‖U − V ‖ , (5)

where the constant H depends only on s∗ ∈ {si} and σ, in fact

TU (t)−TV (t) =

















0D
−s1
t (f1 (t, U)− v1 (t, U))

...

0D
−si
t (fi (t, U)− vi (t, U))

...

0D
−sn
t (fn (t, U)− vn (t, U))

















T

≺





















Γ(1−σ)
Γ(1−σ+s1)

xs1−σ ‖U − V ‖
...

Γ(1−σ)
Γ(1−σ+si)

xsi−σ ‖U − V ‖
...

Γ(1−σ)
Γ(1−σ+sn)x

sn−σ ‖U − V ‖





















T

.

Let
Γ (1− σ)

Γ (1− σ + s∗)
xs∗−σ = max

1≤i≤n

{

sup
0≤x≤1

∣

∣

∣

∣

Γ (1− σ)

Γ (1− σ + si)
xsi−σ

∣

∣

∣

∣

}

,

therefore (5) is proved for k = 1, if H ≥ Γ (1− σ). Assuming by induction that(5) is
valid for k, we obtain similarly

T k+1U (t)− T k+1V (t)

≺





















(HL)K

Γ(k(s∗−σ)+1)T(s1)
‖U − V ‖

∫ t

a
(t− τ )

s1 τk(s1−σ)−σdτ

...
(HL)K

Γ(k(s∗−σ)+1)Γ(si)
‖U − V ‖

∫ t

a
(t− τ )

si τk(si−σ)−σdτ

...
(HL)K

Γ(k(s∗−σ)+1)T(sn)
‖U − V ‖

∫ t

a
(t− τ )sn τk(sn−σ)−σdτ





















T

≺





















Γ(k(s1−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(s1−σ)+1) ‖U − V ‖ t(k+1)(s1−σ)

...
Γ(k(si−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(si−σ)+1) ‖U − V ‖ t(k+1)(si−σ)

...
Γ(k(sn−σ)−σ)HkLk+1

Γ(k(s∗−σ)+1)T((k+1)(sn−σ)+1) ‖U − V ‖ t(k+1)(sn−σ)





















T

and then (5) is proved for k + 1, if H is given by

H = max
k

Hk, Hk = max
1≤i≤n

{

Γ (k (si − σ)− σ)

T (k (si − σ) + 1)

}

. (6)

Note that (6) defines actually a finite H , since Hk ≤ 1, for k ≥ (1 + σ)/(s− σ),

Taking k sufficiently large in (6), we have, say, (HL)
k
/

Γ (k (s∗ − σ) + 1) ≤ 1/2. and

therefore
∥

∥T kU (t)− T kV (t)
∥

∥ ≤ 1
2 ‖U − V ‖ which gives the proof.

Similarly, the existence and uniqueness for initial value problem of nonlinear multi-
variables fractional differential equations also can be proved. In particular, for one-
dimensional case 0D

s
tu (t) = f (t, u), we obtain identical results in [8].
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Example 3.2 Consider for example the equations

{

0D
1/2
t u1 = u2,

0D
1/4
t u2 = u1,

which admit a unique solution (0, 0), defined on [0, 1]. Since it suffices (4) for L = 2, σ =
1/5.

Example 3.3 Consider he following general nonlinear system

aD
α
t y(t) +N(y(t)) = g(t), t ∈ [0, 1] ,

where N represents a nonlinear operator with N(0) = 0, g(t) is a function with respect
to t.

For L = max
y

(N ′(y)), σ = 0, where F (t, U) = g(t)−N(U), we have

‖F (t, U)− F (t, V )‖ = |N(U)−N(V )| ≤
L

tσ
‖U − V ‖ ,

i.e. the system admits a unique solution (0, 0) defined on [0, 1].

4 Conclusion

In this paper, we prove existence and uniqueness theorems for some classes of nonlinear
multi-variables fractional differential equations. It extends the original results for frac-
tional differential equations and provides convenience for our further work on nonlinear
multi-variable fractional equations.
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