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Abstract: We consider a scalar integral equation

x(t) = a(t)−

∫
t

−∞

C(t, s)g(s, x(s))ds

in which C(t, s) has a singularity at t = s. There are periodic assumptions on a, C,

and g. First we prove a fixed point theorem of the Krasnoselskii–Schaefer type. We
then construct a Liapunov functional which allows us to satisfy the conditions of the
fixed point theorem and to prove that there is a periodic solution.
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1 Introduction

We consider a scalar integral equation

x(t) = a(t)−

∫ t

−∞

C(t, s)g(s, x(s))ds (1)

for which there is a T > 0 so that

a(t+ T ) = a(t), g(t+ T, x) = g(t, x), C(t+ T, s+ T ) = C(t, s) (2)
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for all t ∈ ℜ and s < t with a and g continuous. We denote by (PT , ‖ · ‖) the Banach
space of continuous T -periodic functions.

If g is Lipschitz and if C is small enough then a contraction mapping will yield a pe-
riodic solution. If C is convex then Liapunov arguments will produce a priori bounds.
Under compactness conditions, Schaefer’s fixed point theorem will yield a periodic solu-
tion. A collection of such results are found in Burton [7]. A recent n-dimensional result
is given in [17].

In this paper we ask that g satisfies

|g(t, x)− g(t, y)| ≤ K|x− y| (3)

for all x, y ∈ ℜ and some K > 0, while C satisfies a truncated convexity condition,
but has a significant singularity at t = s. We derive a set of conditions measuring the
magnitude of the singularity that will still permit proof of the existence of a periodic
solution using a combination Krasnoselskii–Schaefer fixed point theorem which we will
prove in Section 2.

2 A Fixed Point Theorem

In this section, we will prove a fixed point theorem of Krasnoselskii-Schaefer type in
which the mapping function has the form Px = Bx + Ax with A being compact and
(I − B)−1 continuous on an appropriate subset M of a Banach space S. The theorem
resembles that of Burton–Kirk [6] without having a λ term in B. See [8, 10, 11, 13, 14, 15]
for work on Krasnoselskii and Schaefer theorems and their extended forms.

Since P is the sum of two operators, it is in general a non-self map; that is, P may
not necessarily map a closed convex subset M of S into itself. To prove the existence
of a fixed point of P , we apply topological degree theory or transversality method by
constructing a homotopy Uλ on M with U1 = P . It is assumed that Uλ(φ) = U(λ, φ) is
a continuous mapping of [0, 1] × M into a compact subset of S. In many applications,
U0 is a constant map sending M to a point p ∈ M/∂M . In this case, U0 is an “essential”
map. If Uλ(φ) is fixed point free on ∂M for all λ ∈ (0, 1), then U1(φ) is essential having
a fixed point property in M (Granas and Dugundji [9, p.120-123]). This fact is often
written in the form of Leray–Schauder principle or its nonlinear alternatives which states
that either

(A1) U1 has a fixed point in M or

(A2) there exists x ∈ ∂M and λ ∈ (0, 1) with x = Uλ(x)

(see [1, p. 48], [9, p. 123], [15, p. 28], [16]).

Theorem 2.1 Let (S, ‖·‖) be a Banach space, A,B : S → S such that A is continuous
with A mapping bounded sets into compact sets, (I − B)−1 exists and is continuous on
(I − B)S with λA(M) ⊂ (I − B)S for each closed convex subset M ⊂ S and λ ∈ [0, 1].
Then either

(i) x = Bx+ λAx has a solution in S for λ = 1, or

(ii) the set of all such solutions, 0 < λ < 1, is unbounded.
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Proof Since λA(M) ⊂ (I−B)S, we have 0 ∈ (I−B)S. If x∗ = (I−B)−1(0), then x∗

is the unique fixed point of B. For each positive integer n, define a closed and bounded
set

Mn = {x ∈ S : ‖x‖ ≤ n}.

We choose n sufficiently large so that x∗ ∈ Mn/∂Mn. Now (I − B)−1 exists and is
continuous on (I −B)S. Since A is continuous with A mapping Mn into a compact set,
so is (I −B)−1(λA) for each λ ∈ [0, 1]. Define U : [0, 1]×Mn → S by

U(λ, φ) = (I −B)−1(λAφ).

Then Uλ(φ) = U(λ, φ) is a continuous mapping of [0, 1] × Mn into a compact subset
of S. Indeed, set Γ = {λAφ : λ ∈ [0, 1], φ ∈ Mn} and let {(λk, φk)} be a sequence in
[0, 1]×Mn. We may assume that λk → λ0 ∈ [0, 1] as k → ∞. Since AMn is contained
in a compact subset of S, there exists a convergent subsequence {Aφkj

} of {Aφk}. Now
{λkj

Aφkj
} converges in S. This implies that Γ is pre-compact, and so is (I − B)−1Γ.

Observe that for all φ ∈ Mn,

U0(φ) = (I −B)−1(0) = x∗

is a constant map. Moreover, x∗ ∈ Mn/∂Mn. By the statement of nonlinear alternatives
(A1) and (A2) above, either U1 has a fixed point in Mn or there exists xn ∈ ∂Mn such
that xn = Uλ(xn) for some λ ∈ (0, 1). This implies that either x = Bx + Ax has a
solution in Mn or there exists xn ∈ ∂Mn with xn = Bxn + λAxn for some λ ∈ (0, 1). In
the later case, we have ‖xn‖ = n. Thus, if (i) does not hold, then ‖xn‖ → ∞ as n → ∞
and (ii) must hold. This completes the proof.

Remark 2.1 It is clear that if B is a contraction mapping with contraction constant
0 < α < 1, then (I −B)−1 exists and is continuous on S. Many generalized or nonlinear
contractions satisfy this condition (see [2, 3, 8, 11, 12, 13]).

3 Technical Conditions

We now introduce the conditions which will produce the a priori bound needed in the
fixed point theorem, as well as the required compactness. The kernel, C(t, s), can have
a singularity at t = s, but we ask that there exists a fixed ǫ > 0 so that

C(t, s) ≥ 0, Cs(t, s) ≥ 0, Ct(t, s) ≤ 0, Cst(t, s) ≤ 0 (4)

provided that
−∞ < s ≤ t− ǫ, t < ∞. (5)

Moreover, if x ∈ PT , then

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds and

∫ t

t−ǫ

C(t, s)g(s, x(s))ds are continuous. (6)

The ǫ will play a central role. First, assume that there is a η < 1 with

K

∫ t

t−ǫ

|C(t, s)|ds ≤ η, t ∈ ℜ. (7)
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Next, there are positive constants α and β with 2α+ β < 2 so that both

∫ s+ǫ

s

[ǫCs(u, u− ǫ) + C(u, u− ǫ) + |C(u, s)|]du < α, s ∈ ℜ (8)

and

C(t, t− ǫ)ǫ +

∫ t

t−ǫ

|C(t, s)|ds < β, t ∈ ℜ. (9)

The work here is motivated by and is an extension of [4]. Relations (7)–(9) specify
the strength of the singularity. For a “mild” singularity such as C(t, s) = [t − s]−p,
0 < p < 1, then (4), (5), (7)–(9) are satisfied for any K > 0 when it is allowed that ǫ can
be taken sufficiently small. But (6) would fail. The following function satisfies (4)-(9)
with 0 < ǫ ≤ 1 and an appropriate constant k > 0

C(t, s) =
k

(t− s)(1 + | ln(t− s)− ln ǫ|)2
.

We now define for 0 ≤ λ ≤ 1 a companion equation to (1)

x(t)= λ

[

a(t)−

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

]

−

∫ t

t−ǫ

C(t, s)g(s, x(s))ds. (1λ)

The mappings A,B : PT → PT mentioned in the theorem are defined by φ ∈ PT which
implies that

(Aφ)(t) := a(t)−

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds (10)

and

(Bφ)(t) := −

∫ t

t−ǫ

C(t, s)g(s, φ(s))ds. (11)

By (6), if φ ∈ PT then φ is continuous so these integrals are continuous functions. To
see that Aφ,Bφ ∈ PT we note that

(Aφ)(t + T ) = a(t+ T )−

∫ t+T−ǫ

−∞

C(t+ T, s)g(s, φ(s))ds

= a(t)−

∫ t−ǫ

−∞

C(t+T, s+T )g(s+T, φ(s+T ))ds=(Aφ)(t)

while

(Bφ)(t + T ) = −

∫ t+T

t+T−ǫ

C(t+ T, s)g(s, φ(s))ds

= −

∫ t

t−ǫ

C(t+ T, s+ T )g(s+ T, φ(s+ T ))ds = (Bφ)(t).

Moreover, by (3) and (7), B is a contraction.
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4 A Liapunov Functional

We begin with the assumption that there is an L > 0 with

xg(t, x) ≥ 0 for |x| ≥ L (12)

and that
lim

s→−∞
(t− s)C(t, s) = 0 for fixed t. (13)

Then define a Liapunov functional by

V (t, ǫ) = λ

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(v, x(v))dv

)2

ds. (14)

This Liapunov functional in the continuous case with finite delay was recently discussed
in [5].

Lemma 4.1 If x ∈ PT solves (1λ) then V ′(t, ǫ) satisfies

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2g(t, x)

[

λC(t, t− ǫ)

∫ t

t−ǫ

g(v, x(v))dv −

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

]

+ 2g(t, x)[λa(t) − x(t)]. (15)

Proof Taking into account that Cst ≤ 0 we have

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(v, x(v))dvds.

If we integrate the last term by parts and use (13) in the lower limiting evaluation,
keeping in mind that x is bounded, we obtain

V ′(t, ǫ) ≤ λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

[

C(t, s)

∫ t

s

g(v, x(v))dv

∣

∣

∣

∣

t−ǫ

−∞

+

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

]

= λCs(t, t− ǫ)

(
∫ t

t−ǫ

g(v, x(v))dv

)2

+ 2λg(t, x)

[

C(t, t− ǫ)

∫ t

t−ǫ

g(v, x(v))dv

]

+ 2g(t, x)

[

λ

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds +

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

]

− 2g(t, x)

∫ t

t−ǫ

C(t, s)g(s, x(s))ds.
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Using (1λ) in the next-to-last term yields (15).
We will integrate (15) to relate g(t, x(t)) to a(t) and then use that relation in a lower

bound on the Liapunov functional to obtain the a priori bound. We now obtain that
lower bound.

Lemma 4.2 For any q > 0, if x ∈ PT solves (1λ), then

(x(t) − λa(t))2 ≤ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds V (t, ǫ)

+ 2(1 + q−1)ǫC2(t, t− ǫ)

∫ t

t−ǫ

g2(s, x(s))ds

+ (1 + q)

(
∫ t

t−ǫ

|C(t, s)|ds

)2(

K‖x‖+ sup
0≤u≤T

|g(u, 0)|

)2

. (16)

Proof Let q > 0 be fixed and define H = (1+λq)

(
∫ t

t−ǫ

C(t, s)g(s, x(s))ds

)2

so that

from (1λ) we obtain

(x(t)− λa(t))2 =

(

λ

∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds +

∫ t

t−ǫ

C(t, s)g(s, x(s))ds

)2

≤ λ(1 + q−1)

(
∫ t−ǫ

−∞

C(t, s)g(s, x(s))ds

)2

+H

= λ(1 + q−1)

(

− C(t, s)

∫ t

s

g(u, x(u))du

∣

∣

∣

∣

t−ǫ

−∞

+

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

(using (13) and x ∈ PT )

= λ(1 + q−1)

(

− C(t, t− ǫ)

∫ t

t−ǫ

g(u, x(u))du

+

∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

≤ 2λ(1 + q−1)C2(t, t− ǫ)

(
∫ t

t−ǫ

g(u, x(u))du

)2

+ 2(1 + q−1)

(
∫ t−ǫ

−∞

Cs(t, s)

∫ t

s

g(u, x(u))duds

)2

+H

≤ 2λ(1 + q−1)C2(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(u, x(u))du +H

+ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds

≤ 2λ(1 + q−1)C2(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(u, x(u))du

+ 2(1 + q−1)

∫ t−ǫ

−∞

Cs(t, s)ds V (t, ǫ)
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+ (1 + q)

(
∫ t

t−ǫ

|C(t, s)|ds

)2 (

K‖x‖+ sup
0≤u≤T

|g(u, 0)‖

)2

,

as required.

Lemma 4.3 If
|g(t, x)| ≤ |x| for |x| ≥ L, (17)

where L is defined in (12), then for any γ > 0 there is an M > 0 such that for any
solution of (1λ) in PT we have

V ′(t, ǫ) ≤ Ma2(t) + [γ + β − 2]g2(t, x(t)) +M

+

∫ t

t−ǫ

[|C(t, s)| + ǫCs(t, t− ǫ) + C(t, t− ǫ)]g2(s, x(s))ds. (18)

Proof By Cauchy inequality, for any γ > 0, there is an M > 0 such that

2g(t, x)a(t) ≤ γg2(t, x) +Ma2(t).

By (17), we may choose M so large that

−2g(t, x)x ≤ −2g2(t, x) +M

for all t ≥ 0 and x ∈ ℜ. Now from (15) we have

V ′(t, ǫ) ≤ γg2(t, x) +Ma2(t)

− 2g2(t, x) +M + Cs(t, t− ǫ)ǫ

∫ t

t−ǫ

g2(v, x(v))dv

+ C(t, t− ǫ)

∫ t

t−ǫ

[g2(t, x(t)) + g2(v, x(v))]dv

+

∫ t

t−ǫ

|C(t, s)|[g2(t, x(t)) + g2(s, x(s))]ds

= Ma2(t) + g2(t, x)

[

γ − 2 + ǫC(t, t− ǫ) +

∫ t

t−ǫ

|C(t, s)|ds

]

+M

+

∫ t

t−ǫ

[ǫCs(t, t− ǫ) + C(t, t− ǫ) + |C(t, s)|]g2(s, x(s))ds

by (9)

≤ Ma2(t) + g2(t, x)[γ + β − 2] +M

+

∫ t

t−ǫ

[ǫCs(t, t− ǫ) + C(t, t− ǫ) + |C(t, s)|]g2(s, x(s))ds,

as required.

Lemma 4.4 If (17) holds, if ǫ ≤ T , and if γ is small enough then there is a µ > 0
so that if x solves (1λ) and x ∈ PT then

∫ T

0

g2(s, x(s))ds ≤ (M/µ)

∫ T

0

a2(s)ds+ TM/µ. (19)
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Proof We are going to integrate (18) from 0 to T and note that 0 = V (T, ǫ)−V (0, ǫ).
First, we estimate the integral of the last term in (18) as follows. We have

∫ T

0

∫ t

t−ǫ

[|C(t, s)|+ ǫCs(t, t− ǫ) + C(t, t− ǫ)]g2(s, x(s))dsdt

≤

∫ T

−ǫ

∫ s+ǫ

s

[|C(t, s)|+ ǫCs(t, t− ǫ) + C(t, t− ǫ)]dtg2(s, x(s))ds

≤ α

∫ T

−ǫ

g2(s, x(s))ds ≤ 2α

∫ T

0

g2(s, x(s))ds.

With this information we now integrate (18) and obtain

0 = V (T, ǫ)− V (0, ǫ) ≤ M

∫ T

0

a2(s)ds+ TM

+

∫ T

0

[γ − 2 + β + 2α]g2(s, x(s))ds

≤ M

∫ T

0

a2(s)ds− µ

∫ T

0

g2(s, x(s))ds + TM

since β + 2α < 2 and γ can be made as small as we please.

Lemma 4.5 Let the conditions of Lemma 4.4 hold and suppose there is a Q > 0 with

∫ t−ǫ

−∞

Cs(t, s))(t+ T − s)2ds ≤ Q. (20)

Then there is a Q∗ > 0 with V (t, ǫ) ≤ Q∗.

Proof We have

V (t, ǫ) =

∫ t−ǫ

−∞

Cs(t, s)

(
∫ t

s

g(u, x(u))du

)2

ds

≤

∫ t−ǫ

−∞

Cs(t, s)(t− s)

∫ t

s

g2(u, x(u))duds

≤

∫ t−ǫ

−∞

Cs(t, s)(t− s)

[
∫ t+T

s

(M/µ)a2(u)du+ (t− s+ T )TM/µ

]

ds

≤

∫ t−ǫ

−∞

Cs(t, s)(t+ T − s)2ds[(M/µ)‖a2‖+ TM/µ]

from which the result follows.

Lemma 4.6 Let the conditions of Lemma 4.5 hold. Then there exists a constant
J > 0 such that ‖x‖ < J whenever x is T -periodic solution of (1λ) for 0 < λ ≤ 1.

Proof By (9) and (13), we have

∫ t−ǫ

−∞

Cs(t, s)ds = C(t, t− ǫ) ≤ β/ǫ.
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If x ∈ PT solves (1λ), then (19) holds, and by Lemma 4.5, V (t, ǫ) ≤ Q∗. Now taking into
account that (7) holds with η < 1, we obtain from (16) that

(x(t)−λa(t))2 ≤ 2(1+q−1)(β/ǫ)Q∗+2(1+q−1)(β2/ǫ)TM(‖a2‖+1)/µ+(1+q)(η‖x‖+βg∗)2,

where g∗ = ‖g(t, 0)‖. Since η < 1, we may choose q > 0 small enough so that (1+ q)η2 <
1, and hence, there exists J > 0 such that ‖x‖ < J . The proof is complete.

5 Continuity and Compactness

We select part of (10) and define the mapping U : PT → PT by φ ∈ PT which implies
that

(Uφ)(t) =

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds. (21)

Then U is well defined on PT by (6). By a change of variable we have

(Uφ)(t) =

∫ t

−∞

C(t, s− ǫ)g(s− ǫ, φ(s− ǫ))ds

with a fully convex kernel.

Lemma 5.1 Suppose that
∫ t−ǫ

−∞
[|C(t, s)|+ |Ct(t, s)|]ds is bounded for all t ∈ ℜ. Then

U is continuous on PT and for each J > 0, Γ = {U(φ) : φ ∈ PT |, ‖φ‖ ≤ J} is uniformly
bounded and equicontinuous.

Proof First, there is a J∗ such that φ ∈ Γ implies that |g(t, φ(t))| ≤ J∗ and there is
a C∗ with

∫ t−ǫ

−∞

[|C(t, s)| + |Ct(t, s)|]ds ≤ C∗, t ∈ ℜ. (22)

It is clear that Uφ ∈ PT by (6) and the argument following (10). We now show that U
is continuous on PT . If φ̃, φ ∈ PT , then

|U(φ)(t) − U(φ̃)(t)| =

∣

∣

∣

∣

∫ t−ǫ

−∞

C(t, s)g(s, φ(s))ds −

∫ t−ǫ

−∞

C(t, s)g(s, φ̃(s))ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t−s

−∞

C(t, s)
[

g(s, φ(s))− g(s, φ̃(s))
]

ds

∣

∣

∣

∣

. (23)

Since g is uniformly continuous on [0, T ]× {x ∈ R : |x| ≤ ‖φ̃‖+ 1}, for any ǫ > 0,

there exists 0 < δ < 1 such that ‖φ − φ̃‖ < δ implies |g(s, φ(s)) − g(s, φ̃(s))| < ε for all
s ∈ [0, T ]. It follows from (23) that ‖U(φ)−U(φ̃)‖ ≤ ǫC∗. Thus, F is continuous on PT .

Next, for an arbitrary φ ∈ Γ we have

d

dt
(Uφ)(t) = C(t, t− ǫ)g(t− ǫ, φ(t− ǫ)) +

∫ t−ǫ

−∞

Ct(t, s)g(s, x(s))ds.

and this derivative is bounded by

C(t, t− ǫ)J∗ + J∗

∫ t−ǫ

−∞

|Ct(t, s)|ds ≤ J∗ sup
0≤t≤T

‖C(t, t− ǫ)‖+ J∗C∗.
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This implies that Γ is equicontinuous. The uniform boundedness of Γ follows from the
inequality

|U(φ)(t)| ≤

∫ t−ǫ

−∞

|C(t, s)||g(s, φ(s))|ds ≤ J∗C∗.

6 Periodic Solutions

We will show the existence of T -periodic solutions of (1) by applying Theorem 2.1. By
(10) and (11), we see that x ∈ PT is a solution of (1λ) if and only if it is a fixed point of
B + λA.

Theorem 6.1 If (2)-(9), (12), (13), (17), (20), and (22) hold with ǫ ≤ T , then (1)
has a T -periodic solution.

Proof Let the mappings A and B be defined in (10) and (11) with S = PT . Then
B is a contraction mapping with contraction constant η, and hence, (I − B)−1 exists
and is continuous on (I − B)S = S. By Lemma 5.1 and the Ascoli–Arzela theorem, we
see that A is continuous and maps bounded sets into compact sets. It is also clear that
λA(M) ⊂ (I −B)S for each closed convex subset M ⊂ S and λ ∈ [0, 1]. Now by Lemma
4.6, the set of solutions to x = Bx + λAx is bounded. Therefore, the alternative (i) of
Theorem 2.1 must hold; that is, B + A has a fixed point in PT which is a T -periodic
solution of (1).

Remark 6.1 Observe that the continuity of C(t, s) with respect to s for t−ǫ < s < t
is not required for fixed t. One may readily verify that the function C(t, s) defined by
C(t, s) = k(t− s)−p for t− s ≥ ǫ and C(t, s) = (t− s)−q for 0 < t− s < ǫ with p > 2, 0 <
q < 1, 0 < ǫ ≤ 1, k > 0 satisfy all conditions of Theorem 6.1 for an appropriately chosen
constant k.
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