Nonlinear Dynamics and Systems Theory, 11 (2) (2011) 113-123

Periodic Solutions of Singular Integral Equations

T.A. Burton 1* and B. Zhang 2

 ¹ Northwest Research Institute, 732 Caroline St., Port Angeles, WA 98362 USA
 ² Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville, NC 28301 USA

Received: October 27, 2010; Revised: March 29, 2011

Abstract: We consider a scalar integral equation

$$x(t) = a(t) - \int_{-\infty}^{t} C(t,s)g(s,x(s))ds$$

in which C(t, s) has a singularity at t = s. There are periodic assumptions on a, C, and g. First we prove a fixed point theorem of the Krasnoselskii–Schaefer type. We then construct a Liapunov functional which allows us to satisfy the conditions of the fixed point theorem and to prove that there is a periodic solution.

Keywords: *integral equations; fixed point theorems; periodic solutions; Liapunov functionals.*

Mathematics Subject Classification (2000): 45D05, 45D20, 45M15.

1 Introduction

We consider a scalar integral equation

$$x(t) = a(t) - \int_{-\infty}^{t} C(t,s)g(s,x(s))ds$$

$$\tag{1}$$

for which there is a T > 0 so that

$$a(t+T) = a(t), \ g(t+T,x) = g(t,x), \ C(t+T,s+T) = C(t,s)$$
(2)

^{*} Corresponding author: mailto:taburton@olypen.com

^{© 2011} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 113

for all $t \in \Re$ and s < t with a and g continuous. We denote by $(\mathcal{P}_T, \|\cdot\|)$ the Banach space of continuous T-periodic functions.

If g is Lipschitz and if C is small enough then a contraction mapping will yield a periodic solution. If C is convex then Liapunov arguments will produce a priori bounds. Under compactness conditions, Schaefer's fixed point theorem will yield a periodic solution. A collection of such results are found in Burton [7]. A recent n-dimensional result is given in [17].

In this paper we ask that g satisfies

$$|g(t,x) - g(t,y)| \le K|x - y| \tag{3}$$

for all $x, y \in \Re$ and some K > 0, while C satisfies a truncated convexity condition, but has a significant singularity at t = s. We derive a set of conditions measuring the magnitude of the singularity that will still permit proof of the existence of a periodic solution using a combination Krasnoselskii–Schaefer fixed point theorem which we will prove in Section 2.

2 A Fixed Point Theorem

In this section, we will prove a fixed point theorem of Krasnoselskii-Schaefer type in which the mapping function has the form Px = Bx + Ax with A being compact and $(I - B)^{-1}$ continuous on an appropriate subset M of a Banach space S. The theorem resembles that of Burton–Kirk [6] without having a λ term in B. See [8, 10, 11, 13, 14, 15] for work on Krasnoselskii and Schaefer theorems and their extended forms.

Since P is the sum of two operators, it is in general a non-self map; that is, P may not necessarily map a closed convex subset M of S into itself. To prove the existence of a fixed point of P, we apply topological degree theory or transversality method by constructing a homotopy U_{λ} on M with $U_1 = P$. It is assumed that $U_{\lambda}(\phi) = U(\lambda, \phi)$ is a continuous mapping of $[0, 1] \times M$ into a compact subset of S. In many applications, U_0 is a constant map sending M to a point $p \in M/\partial M$. In this case, U_0 is an "essential" map. If $U_{\lambda}(\phi)$ is fixed point free on ∂M for all $\lambda \in (0, 1)$, then $U_1(\phi)$ is essential having a fixed point property in M (Granas and Dugundji [9, p.120-123]). This fact is often written in the form of Leray–Schauder principle or its nonlinear alternatives which states that either

(A₁) U_1 has a fixed point in M or

(A₂) there exists $x \in \partial M$ and $\lambda \in (0, 1)$ with $x = U_{\lambda}(x)$

(see [1, p. 48], [9, p. 123], [15, p. 28], [16]).

Theorem 2.1 Let $(S, \|\cdot\|)$ be a Banach space, $A, B : S \to S$ such that A is continuous with A mapping bounded sets into compact sets, $(I - B)^{-1}$ exists and is continuous on (I - B)S with $\lambda A(M) \subset (I - B)S$ for each closed convex subset $M \subset S$ and $\lambda \in [0, 1]$. Then either

- (i) $x = Bx + \lambda Ax$ has a solution in S for $\lambda = 1$, or
- (ii) the set of all such solutions, $0 < \lambda < 1$, is unbounded.

Proof Since $\lambda A(M) \subset (I-B)S$, we have $0 \in (I-B)S$. If $x^* = (I-B)^{-1}(0)$, then x^* is the unique fixed point of B. For each positive integer n, define a closed and bounded set

$$M_n = \{ x \in S : ||x|| \le n \}.$$

We choose *n* sufficiently large so that $x^* \in M_n/\partial M_n$. Now $(I - B)^{-1}$ exists and is continuous on (I - B)S. Since *A* is continuous with *A* mapping M_n into a compact set, so is $(I - B)^{-1}(\lambda A)$ for each $\lambda \in [0, 1]$. Define $U : [0, 1] \times M_n \to S$ by

$$U(\lambda,\phi) = (I-B)^{-1}(\lambda A\phi)$$

Then $U_{\lambda}(\phi) = U(\lambda, \phi)$ is a continuous mapping of $[0, 1] \times M_n$ into a compact subset of S. Indeed, set $\Gamma = \{\lambda A \phi : \lambda \in [0, 1], \phi \in M_n\}$ and let $\{(\lambda_k, \phi_k)\}$ be a sequence in $[0, 1] \times M_n$. We may assume that $\lambda_k \to \lambda_0 \in [0, 1]$ as $k \to \infty$. Since AM_n is contained in a compact subset of S, there exists a convergent subsequence $\{A\phi_{k_j}\}$ of $\{A\phi_k\}$. Now $\{\lambda_{k_j}A\phi_{k_j}\}$ converges in S. This implies that Γ is pre-compact, and so is $(I - B)^{-1}\Gamma$. Observe that for all $\phi \in M_n$,

$$U_0(\phi) = (I - B)^{-1}(0) = x^*$$

is a constant map. Moreover, $x^* \in M_n/\partial M_n$. By the statement of nonlinear alternatives (A_1) and (A_2) above, either U_1 has a fixed point in M_n or there exists $x_n \in \partial M_n$ such that $x_n = U_\lambda(x_n)$ for some $\lambda \in (0, 1)$. This implies that either x = Bx + Ax has a solution in M_n or there exists $x_n \in \partial M_n$ with $x_n = Bx_n + \lambda Ax_n$ for some $\lambda \in (0, 1)$. In the later case, we have $||x_n|| = n$. Thus, if (i) does not hold, then $||x_n|| \to \infty$ as $n \to \infty$ and (ii) must hold. This completes the proof.

Remark 2.1 It is clear that if B is a contraction mapping with contraction constant $0 < \alpha < 1$, then $(I - B)^{-1}$ exists and is continuous on S. Many generalized or nonlinear contractions satisfy this condition (see [2, 3, 8, 11, 12, 13]).

3 Technical Conditions

We now introduce the conditions which will produce the *a priori* bound needed in the fixed point theorem, as well as the required compactness. The kernel, C(t, s), can have a singularity at t = s, but we ask that there exists a fixed $\epsilon > 0$ so that

$$C(t,s) \ge 0, C_s(t,s) \ge 0, C_t(t,s) \le 0, C_{st}(t,s) \le 0$$
(4)

provided that

$$-\infty < s \le t - \epsilon, \ t < \infty.$$
⁽⁵⁾

Moreover, if $x \in \mathcal{P}_T$, then

$$\int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds \quad \text{and} \quad \int_{t-\epsilon}^{t} C(t,s)g(s,x(s))ds \quad \text{are continuous.}$$
(6)

The ϵ will play a central role. First, assume that there is a $\eta < 1$ with

$$K \int_{t-\epsilon}^{t} |C(t,s)| ds \le \eta, \ t \in \Re.$$
(7)

Next, there are positive constants α and β with $2\alpha + \beta < 2$ so that both

$$\int_{s}^{s+\epsilon} [\epsilon C_s(u, u-\epsilon) + C(u, u-\epsilon) + |C(u, s)|] du < \alpha, \ s \in \Re$$
(8)

and

116

$$C(t,t-\epsilon)\epsilon + \int_{t-\epsilon}^{t} |C(t,s)| ds < \beta, \ t \in \Re.$$
(9)

The work here is motivated by and is an extension of [4]. Relations (7)–(9) specify the strength of the singularity. For a "mild" singularity such as $C(t,s) = [t-s]^{-p}$, 0 , then (4), (5), (7)–(9) are satisfied for any <math>K > 0 when it is allowed that ϵ can be taken sufficiently small. But (6) would fail. The following function satisfies (4)-(9) with $0 < \epsilon \leq 1$ and an appropriate constant k > 0

$$C(t,s) = \frac{k}{(t-s)(1+|\ln(t-s)-\ln\epsilon|)^2}.$$

We now define for $0 \le \lambda \le 1$ a companion equation to (1)

$$x(t) = \lambda \left[a(t) - \int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds \right] - \int_{t-\epsilon}^{t} C(t,s)g(s,x(s))ds.$$
(1_{\lambda})

The mappings $A, B : \mathcal{P}_T \to \mathcal{P}_T$ mentioned in the theorem are defined by $\phi \in \mathcal{P}_T$ which implies that

$$(A\phi)(t) := a(t) - \int_{-\infty}^{t-\epsilon} C(t,s)g(s,\phi(s))ds$$
(10)

and

$$(B\phi)(t) := -\int_{t-\epsilon}^{t} C(t,s)g(s,\phi(s))ds.$$
(11)

By (6), if $\phi \in \mathcal{P}_T$ then ϕ is continuous so these integrals are continuous functions. To see that $A\phi, B\phi \in \mathcal{P}_T$ we note that

$$\begin{aligned} (A\phi)(t+T) &= a(t+T) - \int_{-\infty}^{t+T-\epsilon} C(t+T,s)g(s,\phi(s))ds \\ &= a(t) - \int_{-\infty}^{t-\epsilon} C(t+T,s+T)g(s+T,\phi(s+T))ds = (A\phi)(t) \end{aligned}$$

while

$$(B\phi)(t+T) = -\int_{t+T-\epsilon}^{t+T} C(t+T,s)g(s,\phi(s))ds = -\int_{t-\epsilon}^{t} C(t+T,s+T)g(s+T,\phi(s+T))ds = (B\phi)(t).$$

Moreover, by (3) and (7), B is a contraction.

4 A Liapunov Functional

We begin with the assumption that there is an L > 0 with

$$xg(t,x) \ge 0 \text{ for } |x| \ge L \tag{12}$$

and that

$$\lim_{s \to -\infty} (t - s)C(t, s) = 0 \text{ for fixed } t.$$
(13)

Then define a Liapunov functional by

$$V(t,\epsilon) = \lambda \int_{-\infty}^{t-\epsilon} C_s(t,s) \left(\int_s^t g(v,x(v)) dv \right)^2 ds.$$
(14)

This Liapunov functional in the continuous case with finite delay was recently discussed in [5].

Lemma 4.1 If $x \in \mathcal{P}_T$ solves (1_{λ}) then $V'(t, \epsilon)$ satisfies

$$V'(t,\epsilon) \leq \lambda C_s(t,t-\epsilon) \left(\int_{t-\epsilon}^t g(v,x(v))dv \right)^2 + 2g(t,x) \left[\lambda C(t,t-\epsilon) \int_{t-\epsilon}^t g(v,x(v))dv - \int_{t-\epsilon}^t C(t,s)g(s,x(s))ds \right] + 2g(t,x) [\lambda a(t) - x(t)].$$
(15)

Proof Taking into account that $C_{st} \leq 0$ we have

$$\begin{aligned} V'(t,\epsilon) &\leq \lambda C_s(t,t-\epsilon) \bigg(\int_{t-\epsilon}^t g(v,x(v)) dv \bigg)^2 \\ &+ 2\lambda g(t,x) \int_{-\infty}^{t-\epsilon} C_s(t,s) \int_s^t g(v,x(v)) dv ds. \end{aligned}$$

If we integrate the last term by parts and use (13) in the lower limiting evaluation, keeping in mind that x is bounded, we obtain

$$\begin{split} V'(t,\epsilon) &\leq \lambda C_s(t,t-\epsilon) \bigg(\int_{t-\epsilon}^t g(v,x(v))dv \bigg)^2 \\ &+ 2\lambda g(t,x) \bigg[C(t,s) \int_s^t g(v,x(v))dv \bigg|_{-\infty}^{t-\epsilon} + \int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds \bigg] \\ &= \lambda C_s(t,t-\epsilon) \bigg(\int_{t-\epsilon}^t g(v,x(v))dv \bigg)^2 \\ &+ 2\lambda g(t,x) \bigg[C(t,t-\epsilon) \int_{t-\epsilon}^t g(v,x(v))dv \bigg] \\ &+ 2g(t,x) \bigg[\lambda \int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds + \int_{t-\epsilon}^t C(t,s)g(s,x(s))ds \bigg] \\ &- 2g(t,x) \int_{t-\epsilon}^t C(t,s)g(s,x(s))ds. \end{split}$$

Using (1_{λ}) in the next-to-last term yields (15).

We will integrate (15) to relate g(t, x(t)) to a(t) and then use that relation in a lower bound on the Liapunov functional to obtain the *a priori* bound. We now obtain that lower bound.

Lemma 4.2 For any q > 0, if $x \in \mathcal{P}_T$ solves (1_{λ}) , then

$$(x(t) - \lambda a(t))^{2} \leq 2(1 + q^{-1}) \int_{-\infty}^{t-\epsilon} C_{s}(t,s) ds V(t,\epsilon) + 2(1 + q^{-1})\epsilon C^{2}(t,t-\epsilon) \int_{t-\epsilon}^{t} g^{2}(s,x(s)) ds + (1 + q) \left(\int_{t-\epsilon}^{t} |C(t,s)| ds \right)^{2} \left(K ||x|| + \sup_{0 \leq u \leq T} |g(u,0)| \right)^{2}.$$
(16)

Proof Let q > 0 be fixed and define $H = (1 + \lambda q) \left(\int_{t-\epsilon}^{t} C(t,s)g(s,x(s))ds \right)^2$ so that from (1_{λ}) we obtain

$$\begin{aligned} (x(t) - \lambda a(t))^2 &= \left(\lambda \int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds + \int_{t-\epsilon}^t C(t,s)g(s,x(s))ds\right)^2 \\ &\leq \lambda (1+q^{-1}) \left(\int_{-\infty}^{t-\epsilon} C(t,s)g(s,x(s))ds\right)^2 + H \\ &= \lambda (1+q^{-1}) \left(-C(t,s)\int_s^t g(u,x(u))du\right|_{-\infty}^{t-\epsilon} \\ &+ \int_{-\infty}^{t-\epsilon} C_s(t,s)\int_s^t g(u,x(u))duds\right)^2 + H \end{aligned}$$
(using (13) and $x \in \mathcal{P}_T$)

(using (13) and
$$x \in \mathcal{P}_T$$
)
= $\lambda(1 + a^{-1}) \left(-C(t, t - \epsilon) \int_{-\infty}^{t} a(u, x(u)) du \right)$

$$\begin{split} &= \lambda (1+q^{-1}) \left(-C(t,t-\epsilon) \int_{t-\epsilon}^{t} g(u,x(u)) du \right. \\ &+ \int_{-\infty}^{t-\epsilon} C_s(t,s) \int_s^t g(u,x(u)) du ds \right)^2 + H \\ &\leq 2\lambda (1+q^{-1}) C^2(t,t-\epsilon) \left(\int_{t-\epsilon}^t g(u,x(u)) du \right)^2 \\ &+ 2(1+q^{-1}) \left(\int_{-\infty}^{t-\epsilon} C_s(t,s) \int_s^t g(u,x(u)) du ds \right)^2 + H \\ &\leq 2\lambda (1+q^{-1}) C^2(t,t-\epsilon) \epsilon \int_{t-\epsilon}^t g^2(u,x(u)) du + H \\ &+ 2(1+q^{-1}) \int_{-\infty}^{t-\epsilon} C_s(t,s) ds \int_{-\infty}^{t-\epsilon} C_s(t,s) \left(\int_s^t g(u,x(u)) du \right)^2 ds \\ &\leq 2\lambda (1+q^{-1}) C^2(t,t-\epsilon) \epsilon \int_{t-\epsilon}^t g^2(u,x(u)) du \\ &+ 2(1+q^{-1}) \int_{-\infty}^{t-\epsilon} C_s(t,s) ds V(t,\epsilon) \end{split}$$

$$+ (1+q) \left(\int_{t-\epsilon}^{t} |C(t,s)| ds \right)^2 \left(K \|x\| + \sup_{0 \le u \le T} |g(u,0)| \right)^2,$$

as required.

Lemma 4.3 If

$$|g(t,x)| \le |x| \quad \text{for} \quad |x| \ge L,\tag{17}$$

where L is defined in (12), then for any $\gamma > 0$ there is an M > 0 such that for any solution of (1_{λ}) in \mathcal{P}_{T} we have

$$V'(t,\epsilon) \le Ma^2(t) + [\gamma + \beta - 2]g^2(t,x(t)) + M$$

+
$$\int_{t-\epsilon}^t [|C(t,s)| + \epsilon C_s(t,t-\epsilon) + C(t,t-\epsilon)]g^2(s,x(s))ds.$$
(18)

Proof By Cauchy inequality, for any $\gamma > 0$, there is an M > 0 such that

$$2g(t,x)a(t) \le \gamma g^2(t,x) + Ma^2(t).$$

By (17), we may choose M so large that

$$-2g(t,x)x \le -2g^2(t,x) + M$$

for all $t \ge 0$ and $x \in \Re$. Now from (15) we have

$$\begin{split} V'(t,\epsilon) &\leq \gamma g^2(t,x) + Ma^2(t) \\ &- 2g^2(t,x) + M + C_s(t,t-\epsilon)\epsilon \int_{t-\epsilon}^t g^2(v,x(v))dv \\ &+ C(t,t-\epsilon) \int_{t-\epsilon}^t [g^2(t,x(t)) + g^2(v,x(v))]dv \\ &+ \int_{t-\epsilon}^t |C(t,s)| [g^2(t,x(t)) + g^2(s,x(s))]ds \\ &= Ma^2(t) + g^2(t,x) \left[\gamma - 2 + \epsilon C(t,t-\epsilon) + \int_{t-\epsilon}^t |C(t,s)|ds\right] + M \\ &+ \int_{t-\epsilon}^t [\epsilon C_s(t,t-\epsilon) + C(t,t-\epsilon) + |C(t,s)|]g^2(s,x(s))ds \\ &\text{by (9)} \\ &\leq Ma^2(t) + g^2(t,x) [\gamma + \beta - 2] + M \\ &+ \int_{t-\epsilon}^t [\epsilon C_s(t,t-\epsilon) + C(t,t-\epsilon) + |C(t,s)|]g^2(s,x(s))ds, \end{split}$$

as required.

Lemma 4.4 If (17) holds, if $\epsilon \leq T$, and if γ is small enough then there is a $\mu > 0$ so that if x solves (1_{λ}) and $x \in \mathcal{P}_T$ then

$$\int_{0}^{T} g^{2}(s, x(s)) ds \leq (M/\mu) \int_{0}^{T} a^{2}(s) ds + TM/\mu.$$
(19)

Proof We are going to integrate (18) from 0 to T and note that $0 = V(T, \epsilon) - V(0, \epsilon)$. First, we estimate the integral of the last term in (18) as follows. We have

$$\begin{split} &\int_0^T \int_{t-\epsilon}^t [|C(t,s)| + \epsilon C_s(t,t-\epsilon) + C(t,t-\epsilon)]g^2(s,x(s))dsdt \\ &\leq \int_{-\epsilon}^T \int_s^{s+\epsilon} [|C(t,s)| + \epsilon C_s(t,t-\epsilon) + C(t,t-\epsilon)]dtg^2(s,x(s))ds \\ &\leq \alpha \int_{-\epsilon}^T g^2(s,x(s))ds \leq 2\alpha \int_0^T g^2(s,x(s))ds. \end{split}$$

With this information we now integrate (18) and obtain

$$\begin{split} 0 &= V(T,\epsilon) - V(0,\epsilon) \leq M \int_0^T a^2(s) ds + TM \\ &+ \int_0^T [\gamma - 2 + \beta + 2\alpha] g^2(s,x(s)) ds \\ &\leq M \int_0^T a^2(s) ds - \mu \int_0^T g^2(s,x(s)) ds + TM \end{split}$$

since $\beta + 2\alpha < 2$ and γ can be made as small as we please.

Lemma 4.5 Let the conditions of Lemma 4.4 hold and suppose there is a Q > 0 with

$$\int_{-\infty}^{t-\epsilon} C_s(t,s))(t+T-s)^2 ds \le Q.$$
(20)

Then there is a $Q^* > 0$ with $V(t, \epsilon) \leq Q^*$.

 ${\it Proof}$ We have

$$\begin{split} V(t,\epsilon) &= \int_{-\infty}^{t-\epsilon} C_s(t,s) \bigg(\int_s^t g(u,x(u)) du \bigg)^2 ds \\ &\leq \int_{-\infty}^{t-\epsilon} C_s(t,s)(t-s) \int_s^t g^2(u,x(u)) du ds \\ &\leq \int_{-\infty}^{t-\epsilon} C_s(t,s)(t-s) \bigg[\int_s^{t+T} (M/\mu) a^2(u) du + (t-s+T)TM/\mu \bigg] ds \\ &\leq \int_{-\infty}^{t-\epsilon} C_s(t,s)(t+T-s)^2 ds [(M/\mu) \|a^2\| + TM/\mu] \end{split}$$

from which the result follows.

Lemma 4.6 Let the conditions of Lemma 4.5 hold. Then there exists a constant J > 0 such that ||x|| < J whenever x is T-periodic solution of (1_{λ}) for $0 < \lambda \leq 1$.

Proof By (9) and (13), we have

$$\int_{-\infty}^{t-\epsilon} C_s(t,s)ds = C(t,t-\epsilon) \le \beta/\epsilon.$$

If $x \in \mathcal{P}_T$ solves (1_{λ}) , then (19) holds, and by Lemma 4.5, $V(t, \epsilon) \leq Q^*$. Now taking into account that (7) holds with $\eta < 1$, we obtain from (16) that

$$(x(t) - \lambda a(t))^2 \le 2(1 + q^{-1})(\beta/\epsilon)Q^* + 2(1 + q^{-1})(\beta^2/\epsilon)TM(||a^2|| + 1)/\mu + (1 + q)(\eta||x|| + \beta g^*)^2,$$

where $g^* = ||g(t,0)||$. Since $\eta < 1$, we may choose q > 0 small enough so that $(1+q)\eta^2 < 1$, and hence, there exists J > 0 such that ||x|| < J. The proof is complete.

5 Continuity and Compactness

We select part of (10) and define the mapping $U : \mathcal{P}_T \to \mathcal{P}_T$ by $\phi \in \mathcal{P}_T$ which implies that

$$(U\phi)(t) = \int_{-\infty}^{t-\epsilon} C(t,s)g(s,\phi(s))ds.$$
(21)

Then U is well defined on P_T by (6). By a change of variable we have

$$(U\phi)(t) = \int_{-\infty}^{t} C(t, s-\epsilon)g(s-\epsilon, \phi(s-\epsilon))ds$$

with a fully convex kernel.

Lemma 5.1 Suppose that $\int_{-\infty}^{t-\epsilon} [|C(t,s)| + |C_t(t,s)|] ds$ is bounded for all $t \in \Re$. Then U is continuous on P_T and for each J > 0, $\Gamma = \{U(\phi) : \phi \in \mathcal{P}_T |, \|\phi\| \leq J\}$ is uniformly bounded and equicontinuous.

Proof First, there is a J^* such that $\phi \in \Gamma$ implies that $|g(t, \phi(t))| \leq J^*$ and there is a C^* with

$$\int_{-\infty}^{t-\epsilon} [|C(t,s)| + |C_t(t,s)|] ds \le C^*, \ t \in \Re.$$
(22)

It is clear that $U\phi \in P_T$ by (6) and the argument following (10). We now show that U is continuous on P_T . If $\tilde{\phi}, \phi \in P_T$, then

$$|U(\phi)(t) - U(\tilde{\phi})(t)| = \left| \int_{-\infty}^{t-\epsilon} C(t,s)g(s,\phi(s))ds - \int_{-\infty}^{t-\epsilon} C(t,s)g(s,\tilde{\phi}(s))ds \right|$$
$$= \left| \int_{-\infty}^{t-s} C(t,s) \left[g(s,\phi(s)) - g(s,\tilde{\phi}(s)) \right] ds \right|.$$
(23)

Since g is uniformly continuous on $[0,T] \times \{x \in R : |x| \leq \|\tilde{\phi}\| + 1\}$, for any $\epsilon > 0$, there exists $0 < \delta < 1$ such that $\|\phi - \tilde{\phi}\| < \delta$ implies $|g(s,\phi(s)) - g(s,\tilde{\phi}(s))| < \varepsilon$ for all $s \in [0,T]$. It follows from (23) that $\|U(\phi) - U(\tilde{\phi})\| \leq \epsilon C^*$. Thus, F is continuous on P_T .

Next, for an arbitrary $\phi \in \Gamma$ we have

$$\frac{d}{dt}(U\phi)(t) = C(t, t-\epsilon)g(t-\epsilon, \phi(t-\epsilon)) + \int_{-\infty}^{t-\epsilon} C_t(t, s)g(s, x(s))ds$$

and this derivative is bounded by

$$C(t,t-\epsilon)J^* + J^* \int_{-\infty}^{t-\epsilon} |C_t(t,s)| ds \le J^* \sup_{0 \le t \le T} \|C(t,t-\epsilon)\| + J^*C^*.$$

This implies that Γ is equicontinuous. The uniform boundedness of Γ follows from the inequality

$$|U(\phi)(t)| \le \int_{-\infty}^{t-\epsilon} |C(t,s)| |g(s,\phi(s))| ds \le J^* C^*.$$

6 Periodic Solutions

We will show the existence of *T*-periodic solutions of (1) by applying Theorem 2.1. By (10) and (11), we see that $x \in P_T$ is a solution of (1_{λ}) if and only if it is a fixed point of $B + \lambda A$.

Theorem 6.1 If (2)-(9), (12), (13), (17), (20), and (22) hold with $\epsilon \leq T$, then (1) has a *T*-periodic solution.

Proof Let the mappings A and B be defined in (10) and (11) with $S = P_T$. Then B is a contraction mapping with contraction constant η , and hence, $(I - B)^{-1}$ exists and is continuous on (I - B)S = S. By Lemma 5.1 and the Ascoli–Arzela theorem, we see that A is continuous and maps bounded sets into compact sets. It is also clear that $\lambda A(M) \subset (I - B)S$ for each closed convex subset $M \subset S$ and $\lambda \in [0, 1]$. Now by Lemma 4.6, the set of solutions to $x = Bx + \lambda Ax$ is bounded. Therefore, the alternative (i) of Theorem 2.1 must hold; that is, B + A has a fixed point in P_T which is a T-periodic solution of (1).

Remark 6.1 Observe that the continuity of C(t, s) with respect to s for $t - \epsilon < s < t$ is not required for fixed t. One may readily verify that the function C(t, s) defined by $C(t, s) = k(t-s)^{-p}$ for $t-s \ge \epsilon$ and $C(t, s) = (t-s)^{-q}$ for $0 < t-s < \epsilon$ with $p > 2, 0 < q < 1, 0 < \epsilon \le 1, k > 0$ satisfy all conditions of Theorem 6.1 for an appropriately chosen constant k.

References

- Agarwal, R., Meehan, M. and O'Regan, D. Fixed Point Theory and Applications. Cambridge University Press, 2001.
- [2] Boyd, D. W. and Wong, J. S. W. On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969) 458-464.
- [3] Burton, T. A. Integral equations, implicit functions, and fixed points. Proc. Amer. Math. Soc. 124 (1996) 2383–2389.
- Burton, T. A. A Liapunov functional for a singular integral equation. Nonlinear Analysis 73 (2010) 3873–3882.
- [5] Burton, T. A. Liapunov functionals, convex kernels, and strategy. Nonlinear Dynamics and Systems Theory 10 (4)(2010) 325–337.
- [6] Burton, T. A. and Kirk, C. A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 189 (1998) 23–31.
- Burton, T. A. Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, Mineola, New York, 2006.
- [8] Gao, H., Li, Y., Zhang, B. A fixed point theorem of Krasnoselskii-Schaefer type and its applications in control and periodicity of integral equations. *Fixed Point Theory* **12** (2011) 91–112.

- [9] Granas, A. and Dugundji, J. Fixed Point Theory. Springer-Verlag, New York, 2003.
- [10] Krasnoselskii, M. A. Some problems of nonlinear analysis. Amer. Math. Soc. Transl. 10 (1958) 345–409.
- [11] Liu, Y. and Li, Z. Schaefer type theorem and periodic solutions of evolution equations. J. Math. Anal. Appl. 316 (2006) 237–255.
- [12] Meir, A. and Keeler, E. A theorem on contractive mappings. J. Math. Anal. Appl. 28 (1969) 326–329.
- [13] Park, S. Generalizations of the Krasnoselkii fixed point theorem. Nonlinear Analysis 67 (2007) 3401–3410.
- [14] Schaefer, H. Über Die Methode Der a Priori Schranken. Math. Ann. 129 (1955) 415-416.
- [15] Smart, D. R. Fixed Point Theorems. Cambridge University Press, Cambridge, 1980.
- [16] Wu, J., Xia, H. and B. Zhang. Topological transversality and periodic solutions of neutral functional differential equations. *Proceedings of the Royal Society of Edinburgh* **129A** (1999) 199–220.
- [17] Zhang, B. Liapunov functionals and periodicity in a system of nonlinear integral equations. Electronic Journal of Qualitative Theory of Differential Equations (1) (2009) 1–15.