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Abstract: We consider a scalar integral equation

t
o) =alt)~ [ Clt.s)g(s,a(5)ds

in which C(t, s) has a singularity at ¢ = s. There are periodic assumptions on a, C,

and g. First we prove a fixed point theorem of the Krasnoselskii—-Schaefer type. We

then construct a Liapunov functional which allows us to satisfy the conditions of the
fixed point theorem and to prove that there is a periodic solution.

Keywords: integral equations; fized point theorems; periodic solutions; Liapunov
functionals.

Mathematics Subject Classification (2000): 45D05, 45D20, 45M15.

1 Introduction

We consider a scalar integral equation

for which there is a T' > 0 so that

alt+T)=a(t), gt +T,z)=g(t,x), Ct+T,s+T)=C(t,s) (2)
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for all t € ® and s < ¢ with a and g continuous. We denote by (Pr, || - ||) the Banach
space of continuous T-periodic functions.

If g is Lipschitz and if C' is small enough then a contraction mapping will yield a pe-
riodic solution. If C'is convex then Liapunov arguments will produce a priori bounds.
Under compactness conditions, Schaefer’s fixed point theorem will yield a periodic solu-
tion. A collection of such results are found in Burton [7]. A recent n-dimensional result
is given in [I7].

In this paper we ask that g satisfies

lg(t,z) —g(t,y)| < K|z -yl (3)

for all z,y € RN and some K > 0, while C satisfies a truncated convexity condition,
but has a significant singularity at ¢t = s. We derive a set of conditions measuring the
magnitude of the singularity that will still permit proof of the existence of a periodic
solution using a combination Krasnoselskii-Schaefer fixed point theorem which we will
prove in Section 2.

2 A Fixed Point Theorem

In this section, we will prove a fixed point theorem of Krasnoselskii-Schaefer type in
which the mapping function has the form Px = Bz + Ax with A being compact and
(I — B)~! continuous on an appropriate subset M of a Banach space S. The theorem
resembles that of Burton—Kirk [6] without having a A term in B. See [8], 10, 111 T3] 14} [15]
for work on Krasnoselskii and Schaefer theorems and their extended forms.

Since P is the sum of two operators, it is in general a non-self map; that is, P may
not necessarily map a closed convex subset M of S into itself. To prove the existence
of a fixed point of P, we apply topological degree theory or transversality method by
constructing a homotopy Uy on M with Uy = P. Tt is assumed that Ux(¢) = U(\, @) is
a continuous mapping of [0,1] x M into a compact subset of S. In many applications,
Uy is a constant map sending M to a point p € M/IM. In this case, Uy is an “essential”
map. If Ux(¢) is fixed point free on OM for all A € (0,1), then U;(¢) is essential having
a fixed point property in M (Granas and Dugundji [9, p.120-123]). This fact is often
written in the form of Leray—Schauder principle or its nonlinear alternatives which states
that either

(A1) U; has a fixed point in M or
(Ag) there exists x € OM and A € (0,1) with = Uy (x)
(see [T, p. 48], [, p. 123], [I5, p. 28], [16]).

Theorem 2.1 Let (S,]]|) be a Banach space, A, B : S — S such that A is continuous
with A mapping bounded sets into compact sets, (I — B)~! exists and is continuous on
(I — B)S with NA(M) C (I — B)S for each closed convex subset M C S and A € [0,1].
Then either

(i) x = Bx + AAx has a solution in S for A =1, or

(i) the set of all such solutions, 0 < X < 1, is unbounded.
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Proof Since NA(M) C (I —B)S, we have 0 € (I —B)S. If * = (I—B)~*(0), then z*
is the unique fixed point of B. For each positive integer n, define a closed and bounded
set

M, ={x € S:|z| <n}.

We choose n sufficiently large so that =* € M, /OM,. Now (I — B)~! exists and is
continuous on (I — B)S. Since A is continuous with A mapping M,, into a compact set,
so is (I — B)~1(\A) for each X € [0, 1]. Define U : [0,1] x M,, — S by

U(A¢) = (I = B)"'(\Ag).

Then Uy(¢) = U(A, ¢) is a continuous mapping of [0,1] x M,, into a compact subset
of S. Indeed, set T' = {AA¢ : XA € [0,1], ¢ € M,,} and let {(A\x, ¢x)} be a sequence in
[0,1] x M,. We may assume that A, — Ao € [0,1] as kK — oco. Since AM,, is contained
in a compact subset of S, there exists a convergent subsequence { A¢y, } of {A¢y}. Now
{Ar; Agy, } converges in S. This implies that I' is pre-compact, and so is (I — B)~TI.
Observe that for all ¢ € M,

Uo(¢) = (I = B)~'(0) = o

is a constant map. Moreover, x* € M,,/OM,,. By the statement of nonlinear alternatives
(A1) and (As) above, either U; has a fixed point in M, or there exists =, € dM, such
that x,, = Ux(xy,) for some A € (0,1). This implies that either + = Bx + Az has a
solution in M, or there exists x, € OM,, with x,, = Bx,, + AAx,, for some X € (0,1). In
the later case, we have ||z,,|| = n. Thus, if (i) does not hold, then ||z, || = co as n — oo
and (ii) must hold. This completes the proof.

Remark 2.1 It is clear that if B is a contraction mapping with contraction constant
0 < a < 1, then (I — B)~! exists and is continuous on S. Many generalized or nonlinear
contractions satisfy this condition (see [2] [3, [8] 1T} 12} [13]).

3 Technical Conditions

We now introduce the conditions which will produce the a priori bound needed in the
fixed point theorem, as well as the required compactness. The kernel, C(t, s), can have
a singularity at t = s, but we ask that there exists a fixed € > 0 so that

C(t,s) >0, Cs(t,s) >0, Ci(t,s) <0, Car(t,s) <0 (4)

provided that
—0<s<t—e¢t<o0. (5)

Moreover, if € Pp, then
t—e t
/ C(t,s)g(s,x(s))ds and / C(t, s)g(s,x(s))ds are continuous. (6)
—00 t—e

The € will play a central role. First, assume that there is a n < 1 with

t
K |C(t,s)|ds <mn, t € R. (7)

t—e
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Next, there are positive constants « and § with 2a 4+ 8 < 2 so that both

/s+€[eCs(u,u —€)+C(u,u—e)+|C(u,s)|]du < o, s € R (8)
and
t
Cltt— e)e +/ C(t,8)|ds < B, t € R. )
t—e

The work here is motivated by and is an extension of [4]. Relations (7)—(9) specify
the strength of the singularity. For a “mild” singularity such as C(¢t,s) = [t — s] 7P,
0 < p < 1, then (4), (5), (7)—(9) are satisfied for any K > 0 when it is allowed that € can
be taken sufficiently small. But (6) would fail. The following function satisfies (4)-(9)
with 0 < € <1 and an appropriate constant k£ > 0

k

) = T =) P

We now define for 0 < A < 1 a companion equation to (1)
t—e t
)= 2att) - [ Cltog(s.oo)as| - [ Clesiglennts 1)
— 00 t—e

The mappings A, B : Pr — Pr mentioned in the theorem are defined by ¢ € Pr which
implies that

M@uw:awf[f%wsw@¢@Ms (10)
and ,
(BoO) =~ [ Clt9)g(s.0(s))ds. ()

By (6), if ¢ € Pr then ¢ is continuous so these integrals are continuous functions. To
see that A¢, B¢ € Pr we note that

t+T—e
(AG)(t +T) = alt+ T) — / Clt+T,5)g(s, b(s))ds

— 00

= a(t) —/_ %C(t—i—T, s+T)g(s+T,d(s+T))ds=(Ap)(t)

while
t+T

(Bo)(t+T) = —/ Ct+T,s)g(s,d(s))ds

t+T—e

= /tt C(t+T,s+T)g(s+T,é(s + T))ds = (B§)(¢).

Moreover, by (3) and (7), B is a contraction.
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4 A Liapunov Functional
We begin with the assumption that there is an L > 0 with
xzg(t,x) > 0 for x| > L (12)

and that
lim (¢t —s)C(t,s) =0 for fixed ¢. (13)

S——00

Then define a Liapunov functional by

V(t,e) = A/_: oo, s)(/stg(v,x(v))dv)st. (14)

This Liapunov functional in the continuous case with finite delay was recently discussed
in [5].

Lemma 4.1 If x € Py solves (1)) then V'(t,€) satisfies

2

V'(t,e) < NCs(t,t —€) < /t: g(v, x(v))dv)
+29(t,) {Ac(t, - e)/tt g(v, 2(v))dv [ C(t, 8)g(s, z(s))ds

€ €

+ 2g(t, z)[Aa(t) — z(t)]. (15)
Proof Taking into account that Cy; < 0 we have

t

VI(t,€) < ACs(tt — 6)(/16 9(v, w(v))dv) 2

—€
t—e

+2Xg(t, x) Cs(t,s)/ g(v, z(v))dvds.

— 00

If we integrate the last term by parts and use (13) in the lower limiting evaluation,
keeping in mind that = is bounded, we obtain

t

V'(t,e) < ACs(t,t — e)(/t g(v,z(v))dv)2

—€

+2Xg(t, ) [C(t, s)/st g(v, z(v))dv t_;Jr/_t:C’(t, s)g(s, z(s))ds}

= \Cs(t,t —€) ( /:6 g(v, z(v))dv)
+2)g(t, 7) [C(t, t—e) /tte g(v, x(v))dv]

2

+2¢(t,x) [A /ltE C(t,s)g(s,x(s))ds + /tt6 C(t,s)g(s, x(s))ds]

— 00

—2g(t, x) /F C(t,s)g(s, x(s))ds.
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Using (1)) in the next-to-last term yields (15).

We will integrate (15) to relate g(¢,2(¢)) to a(t) and then use that relation in a lower
bound on the Liapunov functional to obtain the a priori bound. We now obtain that
lower bound.

Lemma 4.2 For any q > 0, if x € Pr solves (1y), then

t—e

(z(t) — Xa(t)® < 2(1 + q_l)/ Cs(t,s)ds V(t,e)

— 00

+2(1+ ¢ HeC?(t,t —¢) / g*(s,x(s))ds

t—e

cava( [ iewsms) (Kl s wwor) . oo

0<u<T

t 2
Proof Let ¢ > 0 be fixed and define H = (1+ Aq) (/ C(t, s)g(s, x(s))ds) so that
t—e

from (1) we obtain

t—e t

(z(t) — Aa(t))? = ()\ C(t, s)g(s,x(s))ds + C(t, s)g(s,x(s))ds)

—o0 t—e

<A1+ q1)</: C(t, s)g(s,x(s))ds>2 H

=A1+q¢h < C(t, s)/: g(u, z(u))du

— 00

2

+ [ to: Cu(t, ) / tg(u,x(u))duds) ‘v H

(using (13) and z € Pr)
—A14+qY (— Cltt—e) /t;g(u, 2(u))du
+/: Ci(t, ) /Stg(u,x(u))duds>2 ‘H

<A1+ ¢ )CR(t,t— e)(/t_ﬁ g(u,x(u))du)2

+2(1+q1)</t6 Cu(t, ) /Stg(u,z(u))duds) VH

t
< 2)\(1+q71)02(t,t76)e/ g*(u, z(u))du + H
t—e

+2(1+q—1)/_: .t s)ds/_: Cs(t,s)(/stg(u,x(u))du)st
<21 +¢ HC?(t,t — e)e/tieg2(u, z(u))du
+2(1+¢7h /H Cy(t,s)ds V(t,€)

— 00
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t 2 2
o ([ 1cwss) (el + sw lowol)
t—e 0<u<T
as required.

Lemma 4.3 If
lg(t, 2)| < |z for |z = L, (17)

where L is defined in (12), then for any v > 0 there is an M > 0 such that for any
solution of (1)) in Pr we have

V'(t,e) < Ma®(t) + [y + B — 2]g*(t, z(t)) + M

+ /t [|C(t,8)| + €Cs(t, t —€) + C(t,t — €)]g*(s, 2(s))ds. (18)

—€

Proof By Cauchy inequality, for any v > 0, there is an M > 0 such that
29(t, z)a(t) < vg*(t,x) + Md(t).
By (17), we may choose M so large that
—2¢g(t,x)r < —2¢*(t,x) + M
for all t > 0 and = € ®. Now from (15) we have
V'(t,€) < 7g°(t, ) + Ma’(t)

—2¢%(t,x) + M + Cy(t,t — €)e /t: *(v, z(v))dv

00 =0 [ 1 0) + 200

# [ 100l 000) + g7

= Ma®(t) + ¢*(t, 2) [7 —2+4€C(t,t —e€) + /tte |C(t, s)|ds] + M

+/t [€Cs(t,t —€) + COt,t —€) +|C(t,9)[]g° (s, 2(s))ds

—€

by (9)
< Ma*(t) + g*(t, x)[y + B — 2] + M
t
+ / [€Cs(t,t — )+ C(t,t — ) +|C(t, 5)||g° (s, 2(s))ds,
t—e
as required.
Lemma 4.4 If (17) holds, if e < T, and if v is small enough then there is a p > 0

so that if © solves (1)) and x € Pr then

T

/0 ¢ (s, 2(s))ds < (M) / @ (s)ds + T M. (19)
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Proof We are going to integrate (18) from 0 to 7" and note that 0 = V(T,€) —V (0, ¢).
First, we estimate the integral of the last term in (18) as follows. We have

T ot
/0 /F [C(t,s)| + eCs(t,t —€) + C(t,t — €)]g*(s, 2(s))dsdt

T frs+e
< /ﬁ/ [|C(t,8)| + €Cs(t,t — €) + CO(t, t — €)]dtg? (s, x(s))ds

S

T T
< a/ g*(s,z(s))ds < 2a/0 g% (s, x(s))ds.

—€

With this information we now integrate (18) and obtain
T
0=V(T,e) =V (0,¢) < M/ a*(s)ds + TM
0
T
+ [ =2 5 20l (s, (s))ds
0

T T
< M/ a’(s)ds — u/ g*(s,x(s))ds + TM
0 0
since 8 + 2a < 2 and y can be made as small as we please.

Lemma 4.5 Let the conditions of Lemma 4.4 hold and suppose there is a QQ > 0 with

o Ci(t,s))(t +T —5)%ds < Q. (20)

Then there is a Q* > 0 with V (t,e) < Q*.
Proof We have

Vit,e) = /: Cs(t,s)</Stg(u,z(u))du)2ds

< /“ Cu(t, 8)(t — ) /St 2 (u, 2(w))duds

— 00

t—e t+T
§/ Cs(t,s)(ts)[/ (M/p)a*(u)du + (t — s +T)TM/u|ds

— 00

< / B Cs(t, s)(t + T — 5)*ds[(M/p)l|a®|| + TM/ ]

— 00

from which the result follows.

Lemma 4.6 Let the conditions of Lemma 4.5 hold. Then there exists a constant
J > 0 such that ||z|| < J whenever x is T-periodic solution of (1)) for 0 < X < 1.

Proof By (9) and (13), we have

/t_ecs(t,s)ds =C(t,t —e) < (/e

— 00
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If © € Pr solves (1y), then (19) holds, and by Lemma 4.5, V(¢,e) < Q*. Now taking into
account that (7) holds with n < 1, we obtain from (16) that

(z(t)=Aa(t))? < 2(1+¢~")(B/€)Q"+2(1+¢~1)(8* /)T M (||a®||+1) /u+(1+q) (nll|+Bg")?

where g* = ||g(¢,0)||. Since n < 1, we may choose g > 0 small enough so that (1+¢q)n* <
1, and hence, there exists J > 0 such that ||z|| < J. The proof is complete.

5 Continuity and Compactness

We select part of (10) and define the mapping U : Pr — Pr by ¢ € Pr which implies
that

Wo0) = [ Ct.9)9(s.0())ds. (21)

Then U is well defined on Pr by (6). By a change of variable we have

U)t) = / Clts — e)gls — e, d(s — €))ds

— 00

with a fully convex kernel.

Lemma 5.1 Suppose that fi;HC(t, s)|+|Ci(t, s)|]ds is bounded for allt € R. Then
U is continuous on Pr and for each J >0, I' ={U(¢) : ¢ € Prl,||¢|| < J} is uniformly
bounded and equicontinuous.

Proof First, there is a J* such that ¢ € T implies that |g(¢, #(¢))| < J* and there is
a C* with .
/ (Ot 8)| + [Co(t, $)|Jds < C*, ¢ € R. (22)
It is clear that U¢ € Pr by (6) and the argument following (10). We now show that U
is continuous on Pr. If ¢, ¢ € Pr, then

t—e

U@)(t) — U@) (1) = \ / Ot 9)g(s, d(s))ds — / C(t, 5)g(s, B(s))ds

- —o00

=| [t [ats.009) - 965,600 - (23)

Since ¢ is uniformly continuous on [0,T] x {z € R : |z| < ||¢|| + 1}, for any € > 0,

there exists 0 < § < 1 such that [|¢ — ¢|| < J implies |g(s, ¢(s)) — g(s,¢(s))| < € for all
s €10,T]. It follows from (23) that |U(¢) — U(¢)|| < eC*. Thus, F is continuous on Pr.
Next, for an arbitrary ¢ € I' we have

GO0 =l = (e - .ot~ ) + [ Cutto)g(s,as)is

and this derivative is bounded by

t—e

Cltt— )T + J*/

— 00

|Cy(t, s)|ds < J* sup ||C(t,t—¢€)| + J*C*.
0<t<T
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This implies that T" is equicontinuous. The uniform boundedness of I" follows from the

inequality
t—e

O / C(t,9)llg(s, B(s))|ds < J*C*.

— 00

6 Periodic Solutions

We will show the existence of T-periodic solutions of (1) by applying Theorem 2.1. By
(10) and (11), we see that « € Pr is a solution of (1,) if and only if it is a fixed point of
B+ )\A.

Theorem 6.1 If (2)-(9), (12), (13), (17), (20), and (22) hold with e < T, then (1)

has a T-periodic solution.

Proof Let the mappings A and B be defined in (10) and (11) with S = Pp. Then
B is a contraction mapping with contraction constant 7, and hence, (I — B)™! exists
and is continuous on (I — B)S = S. By Lemma 5.1 and the Ascoli-Arzela theorem, we
see that A is continuous and maps bounded sets into compact sets. It is also clear that
MA(M) C (I — B)S for each closed convex subset M C S and A € [0, 1]. Now by Lemma
4.6, the set of solutions to x = Bx + AAzx is bounded. Therefore, the alternative (i) of
Theorem 2.1 must hold; that is, B + A has a fixed point in Pp which is a T-periodic
solution of (1).

Remark 6.1 Observe that the continuity of C(¢, s) with respect to s for t—e < s < t
is not required for fixed ¢. One may readily verify that the function C(¢,s) defined by
C(t,s) =k(t—s) Pfort—s>eand C(t,s) = (t—s) 2for 0 <t—s < ewithp>20<
q<1,0 <e<1 k>0 satisfy all conditions of Theorem 6.1 for an appropriately chosen
constant k.
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