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Abstract: We establish an oscillation criteria for a class of second-order linear dif-
ferential equations
(p(t)2'(8))" + q(t)z(t) = 0, t € [0, 00),

via Levin’s comparison theorem. We employ an interval oscillation technique for
oscillation of the above equation. This approach depends only on the behavior of ¢
in certain interval. In this study, we allow the sign-changing nature of ¢. Using this
approach, we also ascertain to answer the oscillatory behavior of a number of linear
differential equations.
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1 Introduction

We consider the second-order linear differential equations of the form

(p()2'(t))" + q(t)a(t) =0, (1)

where p, ¢ € C([0,00), R), p(t) > 0 and pa’ € C'([0, o), R). When p(t) = 1, )
reduces to
2" (t) + q(t)z(t) = 0. (2)

There is an extensive literature for the oscillation/non-oscillation of () and () (see [1-
12]). Most of these results require the integral of the function ¢ on the entire half interval
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[0, 00). Also, it is well-known that if ¢(¢) is of mean value zero and ¢(t) # 0, then (2)
is oscillatory, (cf. [I]). We emphasize that the behavior of nonoscillatory solutions to
certain second-order functional differential equations can be ascertained in terms of the
oscillatory behavior of (2] (see [9]). Assuming the nonoscillation of (Il), Tunc obtained
some nonoscillation theorem for third-order nonlinear differential equations (see [7]). Let
us recall the definition of interval oscillation.

If for each given solution of (), we find a sequence of intervals [, N, 70 — 00, N <
Tn+1 such that the given solution has at least one zero in (7, 7,,), for each n € N, then
the solution is oscillatory.

By the above approach El-Sayed [2], gave some interval oscillation criteria for forced
second-order linear differential equations. In the present study, the ideas of [2] are used
to establish an interval oscillation criteria for (). This approach depends only on the
behavior of ¢ in certain interval. Also, we do not restrict the sign of q. By this approach,
we ascertain to answer the oscillatory behavior of a number of linear differential equations.
Section 2 contains the preliminaries. Section 3 is devoted to the main result and its
applications.

2 Preliminaries

We need the following lemmas for the proof of our main result. We consider

3)

(p1(t)’ (1)) + q(t)z(t) =
" a<t<p, (4)

1
(p2(t)y'(t))
where P1, P2, 4, T S C([aa ﬁ]v R)v pl(t) > 07 P2(t) >0 and plxla p?x/ S Cl([a7 ﬁ]a R)

0,
0,

Lemma 2.1 Let pa(t) > p1(t) > 0, Vit € o, B]. Let & and y be nontrivial solutions
of @) and @), respectively such that z(t) does not vanish on [, 8], y(a) # 0 and the

inequality

—pi(@)a’ (@) /t ‘—Pz(a)y'(a) /t
_ 4+ s)ds > | ————=——+ r(s)ds|, )
(@) i q(s) (o) i (s) ()

holds for all t € [a, B]. Then y(t) does not vanish on |a, f] and

p(®)2'(#) _ |p2(t)y'(t) ‘

- > , a<t< .

o) () ’
Proof Since x(t) does not vanish on [a, 3], so w(t) = —%f)/(t) on [«, (] transforms

@) to

which is equivalent to the integral equation

K ! (w(s))?
w(t)zw(u)—i—/ q(s)ds+/ (pl((g ds.

Since y(a) # 0, so with the substitution z(t) = —%@’;(0 on some interval [a, 7], a <

~ < 8 and using the hypothesis that p2(t) > p1(t) > 0, the proof of Lemma 2.1 is similar
to the proof of Theorem 1.35 [6]. We omit the proof for the sake of brevity.
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Lemma 2.2 Let pa(t) > p1(t) > 0, Vt € [, f]. Let « and y be nontrivial solutions
of @) and (@), respectively such that x(¢) does not vanish on [, 8], y(8) # 0 and the

inequality
p(B)a’ () 2B B) [T s
=(5) e MOk

holds for all ¢ € [a, 3]. Then y(¢) does not vanish on [a, 8] and

B
+/t q(s)ds > , (6)

p2()y' (1)
y(t)

p1(D)7 (1)
o

, a<t<g.

Proof The proof of this lemma is similar to the proof of Theorem 1.36 [6]. For
convenience, we give a brief sketch. We define new functions x1, y1, g1, 1, p} and p3 on

[, B] by

zi(t) =z(a+B—1t), ) =yla+B-1).
at)=qgla+8—1t), m{t)=r(a+p-1).
pi(t) =pi(a+B—1t), p3(t) =paa+pB—1).

Then x1(t) does not vanish on [«, f], y1(a) = y(B) # 0 and

*( o x/ a a+p[—t x/ B
_pl( )21 ( )_,_/ QI(S)d5:M+/t q(s)ds,

z1(@) x(B
i) U @By e, [
(@) +/a rils)ds === 05 */t (5)ds.

It is easy to observe that inequality (@]) is equivalent to inequality (B]) of Lemma 2.1 and
using the fact that ¢t € [a, 8] & a+ f —t € |«, f], the required conclusion follows from
Lemma 2.1.

Lemma 2.3 Let y be a nontrivial solution of (@l) satisfying the conditions y(a) =
0=yB) =v'(v), a<y<p. Let p2(t) > p1(t) > 0, Vt € [a, B]. If the inequalities

[ atsias= | [ s
/ yfs)ds > / r(s)ds

hold for all t € [, 7] and [y, B] respectively, then every solution of (Bl) has at least one
zero on [a, B].

)

Proof The proof of this lemma is similar to the proof of Theorem 1.37 [6] with the
account of Lemmas 2.1 and 2.2. We omit the details.

3 Main Result

In this section, we prove the main result on oscillation for second-order linear differential
equations.
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Theorem 3.1 Let there exist a monotonic sequence {T,} C RT such that 7, — o0,
as n — oo and a sequence {k,} of positive numbers such that

Tnt =
2y/kn T s
ds 2 kn (o + 5= —t |, VL€ |Tn,Tn + 5=, 7
[T stk (st g7 ) e [ ] v
K T us us
ds 2 kn (t=Tn == ), Vl€ |Tn+ 7=, T + =1, (8
/‘rn+ Q(S) v ( i 2 kn) [T +2 kn, et kn:| ()

Tr
2kn

Vn eN. Also, let 0 < p(t) <1, Vt € [T, Tn Then (@) is oscillatory.

s
+ 7

Proof We prove this theorem by contradiction. Let x be a nontrivial solution of
(). Suppose x has finitely many zeros on [0, 00), so there exists a 79 > 0 such that
x(t) # 0, Vt > 79. We consider

y"(t) + kny(t) =0, t € [T, T + |, T > 70 for some n € N. 9)

o
Vkn
@) has a solution y(t) = sin vky(t — 7,) which has two consecutive zeros at t = 7, and
at t = 7, + —=. Also, yt)=0att=m1,+ 37— From @) and (), it is easy to observe
that the hypotheses of Lemma 2.3 are fulfilled. An application of Lemma 2.3 yields that
x has at least one zero on |1, T, + \/ka], which leads to a contradiction. Hence the proof
is complete.

Remark 3.1 We introduce Liouville’s transformation z(t) = Vty(s), s = logt,
which converts (@) to

y"(s) + Qs)y(s) =0, (10)
where Q(s) = q(e®)e** — 1. Let g € C([0, oo}, R) and satisfies (@) and (&) Vn € N, then
(@) is oscillatory.

Remark 3.2 Let P € C2([0, ¢), (0, 00)). The substitution z(t) = y(t)Pz(t) con-
verts ([2)) to
(P()y'(1) + Q)y(t) =0, (11)

where Q(t) = # +P(t)q(t) — %. An oscillation criteria for (2)) gives an oscillation

criteria for (I and conversely.

Remark 3.3 Consider the equation

2 (t) + tizm(t) =0. (12)

Let {7,} C RT be any monotonic, divergent sequence. We choose

1
kn = —~ —, n €N,
(n+ 576 + 75

or after simplifying we have k, = % V2416 With this choice of 7, and ky, it is
easy to satisfy the hypotheses of Theorem 3.1. So, an application of Theorem 3.1 implies
that ([I2)) is oscillatory, while none of the known criteria (see [4, 5 [12]) can be applied to

@.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (1) (2011) 97

Example 3.1 Consider the differential equation

(1 —asin®t)2'(t)) + (1 +2cost)z(t) =0, 0< a < 1. (13)
(@3) can be viewed as (@) with p(t) =1 — asin®t, ¢(t) = 14 2cost. With the choice of
Tn = 207, kn = 1%, inequalities () and (§) are converted to
15t 1
2sint 4+ 1—% < 1—2(2’n71’ +27), Vt € 2nm, (n+ 1)27], (14)
) 15t _ 15
2sint 4+ 16 > E(2n7r +27), Vt € [(n+1)27, (n+ 2)27]. (15)

By simple calculus, it is easy to verify the inequalities (Id]) and ([IH). An application of
Theorem 3.1 implies that (3] is oscillatory.

Remark 3.4 In ([I3)), ¢(t) = 1 + 2 cost, which mean value is non-zero and therefore
the result given in [I] cannot apply to (I3)).
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