
Nonlinear Dynamics and Systems Theory, 10 (4) (2010) 349–361
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Abstract: In this paper we investigate the complete integrability of the system of

six coupled nonlinear ODEs, which arises in the ODE reduction of rotating stratified

Boussinesq equations. We use Painlevé test to investigate the complete integrability

of the system. And we conclude that the system is completely integrable only if the

Rayleigh number Ra = 0. The singular solution of the system admits the movable

pole type singularity in complex domain.
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1 Introduction

We undertake the Painlevé analysis of the system of six coupled nonlinear ODEs arising as
a reduction of rotating stratified Boussinesq equations. The rotating stratified Boussinesq
equations form a system of partial differential equations modelling the movement of
planetary atmosphere. In their study of instability in stratified fluids at large Richardson
number, Majda and Shefter [1] analyzed certain system of ODE reduction of stratified
Boussinesq equations. Srinivasan et al [2] gave the complete analysis of reduced system
of ODEs and discussed the stability of degenerate critical point. In their paper Desale
and Srinivasan [3] examine the same system in the light of the ARS (Ablowitz, Ramani
and Segur [4]) conjecture. Ablowitz, Ramani and Segur have conjectured that a system
of PDEs is completely integrable if all its ODE reductions are of Painlevé type. The
conjecture has been tested on large class of differential equations and has since been
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employed as a popular test of integrability. Whereas in the basin scale dynamics Maas
[5], has considered the flow of fluid contained in rectangular basin of dimension L×L×H ,
which is temperature stratified with the fixed zeroth order moments of mass and heat.
The container is assumed to be steady, uniformly rotating on an f -plane. With this
assumption Maas [5] reduces the rotating stratified Boussinesq equations to an interesting
six coupled system of ODEs. Further, Desale [6] has given the complete analysis of the
system and also tested the system for complete integrability by determining the four first
integrals and uses the Jacobi’s theorem. In their recent paper Desale and Sharma [7] have
reduced the rotating stratified Boussinesq equations into the system of six coupled ODEs
that are also in similar nature with the system which we are looking in this paper.

In this paper we have tested the system of six coupled nonlinear ODEs for its complete
integrability via Painlevé analysis. Here we state that our analysis follows similar kind of
techniques as used by Desale and Srinivasan in their paper [3]. But our system includes
additional terms due to the effects of rotation so that in calculations we are far apart
from Desale and Srinivasan [3].

This paper is organized as follows. Section 2 gives the ODE reduction of rotating
stratified Boussinesq equations. We implement the Painlevé test to determine the singu-
lar solution of the system in Section 3. In Section 4, we illustrate two systems that also
exhibit the similar kind of solutions. Finally, we conclude the results in Section 5.

2 Reduced System of Nonlinear ODEs

We now begin by describing the rotating stratified Boussinesq equations (see Majda [8],
p. 1)

Dv

Dt
+ f(ê3 × v) = −∇p+ ν(∆v) − gρ̃

ρb
ê3,

divv = 0,
Dρ̃

Dt
= κ∆ρ̃,

(1)

where v denotes the velocity field, ρ is the density of fluid which is the sum of constant
reference density ρb and perturb density ρ̃, p is the pressure, g is the acceleration due
to gravity that points in −ê3 direction, f is the rotation frequency of earth, ν is the
coefficient of viscosity, κ the coefficient of heat conduction and D

Dt
= ∂

∂t
+ (v · ∇) is a

convective derivative. For more about rotating stratified Boussinesq equations one may
consult with Majda [8].

In the frame of reference of an uniformly stratified fluid contained in rotating rect-
angular box of dimension L × L ×H , which is temperature stratified with fixed zeroth
order moments of mass and heat (so that there is no net evaporation or precipitation,
nor any net river input or output, and neither a heating nor cooling). The container is
assumed to be in steady uniform rotation on an f -plane. Maas [5] reduces the system of
equations (1) into the following system of six coupled ODEs:

Pr−1 dw

dt
+ f ′ê3 ×w = ê3 × b− (w1, w2, rw3) + T̂T,

db

dt
+ b×w = −(b1, b2, µb3) +RaF.

(2)

In these equations, b = (b1, b2, b3) is the center of mass, w = (w1, w2, w3) is the basin’s
averaged angular momentum vector, T is the differential momentum, F are buoyancy
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fluxes, f ′ = f/2rh is the earth’s rotation, r = rv/rh is the friction (rv,h are the Rayleigh
damping coefficients), Ra is the Rayleigh number, Pr is the Prandtl number, µ the
diffusion coefficient and T̂ is the magnitude of the wind stress torque.

Neglecting diffusive and viscous terms, Maas [5] consider the dynamics of an ideal
rotating, uniformly stratified fluid in response to forcing. He assumes this to be due
solely to differential heating in the meridional (y) direction F = (0, 1, 0); the wind effect
is neglected i.e. T = 0. For Prandtl number, Pr, equal to one the system of equations (2)
reduces to the following ideal rotating, uniformly stratified system of six coupled ODEs

dw

dt
= −f ′ê3 ×w + ê3 × b,

db

dt
= −b×w +RaF.

(3)

In his paper Desale [6] has demonstrated the complete integrability of the system (3) for
Ra = 0. Our approach to discuss the integrability of above system is quite different than
Desale has used in his paper [6]. In the following section we deploy the Painlevé test for
complete integrability of the system (3).

3 Singular Solution of the System

We can write the system of six coupled ODEs (3) component-wise as:

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1, ẇ3 = 0,

ḃ1 = w2b3 − w3b2, ḃ2 = w3b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(4)

Since ẇ3 = 0, hence we get w3 = constant = k1 say and consequently we have the system
of five ODEs

ẇ1 = f ′w2 − b2, ẇ2 = −f ′w1 + b1,

ḃ1 = w2b3 − k1b2, ḃ2 = k1b1 − w1b3 +Ra, ḃ3 = w1b2 − w2b1.
(5)

We are looking for the solution of system (5) in the form of power series as given below

w1(t) =

∞
∑

j=0

w1jτ
j+m1 , w2(t) =

∞
∑

j=0

w2jτ
j+m2 ,

b1(t) =

∞
∑

j=0

b1jτ
j+n1 , b2(t) =

∞
∑

j=0

b2jτ
j+n2 , b3(t) =

∞
∑

j=0

b3jτ
j+n3 ,

(6)

where τ = t − t0 and t0 is the arbitrary position of singularity. As per the Painlevé
algorithm there are three main steps in determination of singular solution. These steps
are:

1. Determination of dominant behavior.

2. Determination of resonances.

3. Examining the compatibility conditions at the resonances.

It is natural that the algorithm may stop at the first step, second step or third step.
For more details about this algorithm one may consult with Ablowitz et al [4]. The
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convergence of the series solution by use of this algorithm is guaranteed by Kichenassamy
and Littman [9, 10].

Now we proceed for implementation of algorithm so in the first step we determine
dominant behavior of the system (5). There are the several possible cases for dominant
balance but the system of ODEs (5) admits the singular solution only in the following
case of principle dominant balance

ẇ1 = −b2, ẇ2 = b1, ḃ1 = w2b3, ḃ2 = −w1b3, ḃ3 = w1b2 − w2b1. (7)

In the following subsection we determine exponents and leading order coefficients.

3.1 Determination of exponents

To determine the singular exponents m1, m2, n1, n2 &n3, which appear in (6), it is
sufficient to truncate the expansions up to the leading order and then substituting these
truncated expansions into (7) we obtain the following system of equations

m1w10τ
m1−1 = −b20τ

n2 , m2w20τ
m2−1 = b10τ

n1 ,
n1b10τ

n1−1 = w20b30τ
m2+n3 , n2b20τ

n2−1 = −w10b30τ
m1+n3 ,

n3b30τ
n3−1 =

(

w10b20τ
m1+n2 − w20b10τ

m2+n1

)

.
(8)

Equating the powers of τ so that equations (8) get satisfied we have the following linear
equations

m1 − 1 = n2, m2 − 1 = n1, n1 − 1 = m2 + n3,
n2 − 1 = m1 + n3, n3 − 1 = m1 + n2 = m2 + n1.

(9)

From equations (9) the exponents can be uniquely determined as given below.

m1 = m2 = −1, n1 = n2 = n3 = −2. (10)

Substituting the values of m1, m2, n1, n2 &n3 into equations (8) and then equating the
coefficients of like powers of τ on both sides of each equation, we get the following system
of equations to determine the leading order coefficients

w10 = b20, w20 = −b10,

b10 = − 1
2w20b30, b20 = 1

2w10b30,

b30 = − 1
2 (w10b20 − w20b10).

(11)

Solving these equations we find that there are two possible branches of leading order
involving one leading order coefficient to be an arbitrary constant. Suppose that w20 = k2
is an arbitrary constant. The possible branches of leading order are as given below

w10 = ±
√

−4− k22 , w20 = k2, b10 = −k2, b20 = ±
√

−4− k22 , b30 = 2. (12)

Here we notice that there are two possible branches of leading order. Hence, we will get
two different singular solutions in complex domain. The next step of Painlevé algorithm
is to determine the resonances. In the following section we proceed to determine the
resonances.
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3.2 Determination of resonances

As per the Painlevé algorithm this is the second step. Here we determine the resonances.
So we rewrite the equations (6) by substituting the values of exponents

w1(t) = w10τ
−1 +

∞
∑

j=1

w1jτ
j−1, w2(t) = w20τ

−1 +
∞
∑

j=1

w2jτ
j−1,

b1(t) = b10τ
−2 +

∞
∑

j=1

b1jτ
j−2, b2(t) = b20τ

−2 +

∞
∑

j=1

b2jτ
j−2,

b3(t) = b30τ
−2 +

∞
∑

j=1

b3jτ
j−2.

(13)

Substituting the above equations into the system (5) we obtained the following recursion
relations for determining the coefficients of different powers of τ in the equations (13),
which are valid for j ≥ 2,













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2

























w1j

w2j

b1j
b2j
b3j













=













Aj

Bj

Cj

Dj

Ej













, (14)

where

Aj = f ′w2(j−1), Bj = −f ′w1(j−1), Cj = −k1b2(j−1) +

j−1
∑

k=1

w2kb3(j−k),

Dj = k1b1(j−1) −
j−1
∑

k=1

w1kb3(j−k), Ej =

j−1
∑

k=1

w1kb2(j−k) −
j−1
∑

k=1

w2kb1(j−k).

(15)

Now we denote by M(j) the matrix

M(j) =













j − 1 0 0 1 0
0 j − 1 −1 0 0
0 −b30 j − 2 0 −w20

b30 0 0 j − 2 w10

−b20 b10 w20 −w10 j − 2













. (16)

The above recursion relations (14) determine the unknown expansion coefficients uniquely
unless the determinant of matrixM(j) is zero. Those values of j at which the determinant
det(M(j)) vanishes are called resonances. Here we see that for both possible branches
of leading orders given in equations (12) the determinant of matrix M(j) is

det(M(j)) = (j + 1)j(j − 2)(j − 3)(j − 4). (17)

Hence, the resonances are
j = −1, 0, 2, 3, 4. (18)

Here j = −1 is a usual resonance and j = 0 is corresponding to the arbitrariness of w20

in leading order behavior.
For the next step in the algorithm we check the compatibility conditions at non

negative resonances given in equation (18).



354 B.S. DESALE AND K.D. PATIL

3.3 Compatibility conditions

In this section we check whether the compatibility conditions hold at positive resonances
which are determined in previous section. The recursion relations (14) will be valid if and
only if the vector appearing on the right hand side of (14) must be annihilated by every left
null vector of M(j) (when j is a resonance) resulting in a set of compatibility conditions
to be satisfied by the previously determined coefficients. When these conditions hold, the
j-th coefficient vector enters as an arbitrary coefficient vector in the expansion (13). On
the other hand if the compatibility condition fails at a resonant level, logarithms need
to be introduced in the expansion (see [9, 10] for details). We investigate this in each
case of possible branches of leading order coefficients given by (12) and we determine the
expansion coefficients in each case up to the last resonant level.
• Case 1: Consider the leading order coefficients

w10 =
√

−4− k21 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 =
√

−4− k21 , b30 = 2.
(19)

• Compatibility condition at j = 1. Since the recursion relations (14) come into
force when j ≥ 2, hence, we have directly substituted equations (19) into (13) and then
into the equations (5). After simplifying we equate the like powers of τ on both sides
of the resulting expansion thereby obtaining the following system of linear equations for
w11, w21, b11, b21 and b31












0 0 0 1 0
0 0 −1 0 0
0 −2 −1 0 −k2
2 0 0 −1

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 −1

























w11

w21

b11
b21
b31













=













f ′k2
−f ′

√

−4− k22
−k1

√

−4− k22
−k1k2

0













.

(20)
The system of linear equations (20) has a unique solution, hence w11, w21, b11, b21 and
b31 are uniquely determined and these are given below

w11 = 1
2 (f

′k2 − k1k2), w21 = 1
2 (−f ′ + k1)

√

−4− k22 ,

b11 = f ′

√

−4− k22 , b21 = f ′k2, b31 = 0.
(21)

• Compatibility condition at the resonance j = 2. Now substituting the values of
wij and bij for i = 1, 2, 3 and j = 0, 1 into the recursion relations (14) for j = 2, we get
the following set of linear equations













1 0 0 1 0
0 1 −1 0 0
0 −2 0 0 −k2
2 0 0 0

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 0

























w12

w22

b12
b22
b32













=













A2

B2

C2

D2

E2













, (22)

where

A2 = f ′

2 (k1 − f ′)
√

−4− k22 , B2 = − f ′k2

2 (f ′ − k1), C2 = −f ′k1k2,

D2 = k1f
′

√

−4− k22 , E2 = (f ′
−k1)
2 (f ′k22 − k22 − 4).

(23)

Since j = 2 is a resonance, the coefficient matrix to the left hand side of equation (22)
vanishes. Hence, we have infinitely many solutions to above system of linear equations
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with one arbitrary constant say b32 = k3. Solving the system (22) with the help of (23)
we get the following set of values of w12, w22, b12, b22 and b32.

w12 = 1
2 (f

′k1 − k3)
√

−4− k22 , w22 = k2

2 (f ′k1 − k3),

b12 = k2

2

[

(f ′)2 − k3
]

, b22 = 1
2

[

k3 − (f ′)2
]
√

−4− k22 , b32 = k3.
(24)

• Compatibility condition at the resonance j = 3. Now we check the compatibility
condition at the resonant level j = 3. At this resonance level we observe that recurrence
relations fail to collect the additional term Ra, which is one of the terms involved in the
equations (3) due to the effects of rotation. So we substitute the equations (13) into the
system of differential equations (5), then equating the like powers of τ with j = 3 we get
the following system of nonhomogeneous linear equations













2 0 0 1 0
0 2 −1 0 0
0 −2 1 0 −k2
2 0 0 1

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 1

























w13

w23

b13
b23
b33













=













A3

B3

C3

D3

E3













, (25)

where

A3 = f ′w22, B2 = −f ′w12, C2 = w21b32 − k1b22,
D2 = k1b12 − w11b32 +Ra, E2 = w11b22 + w12b21 − w21b12 − w22b11.

(26)

After substituting the values of wij and bij for i = 1, 2, 3 and j = 0, 1, 2 in above equation
and simplifying we see that the rank of coefficient matrix is 4, whereas the rank of
augmented matrix is 5. This shows the inconsistency of the system (25). This is because
of the term Ra, the Rayleigh number. Hence, we reduce the augmented matrix to its
triangular form by use of elementary row transformation, which is given below





















2 0 0 1 0 f ′k2(−k3+f ′k1)
2

0 1 0 − 1
2k2

√

−4− k22
1
k1

f ′

4 (k3 − f ′k1)
√

−4− k22

0 0 1 − 1
k2

√

−4− k22
2
k2

0

0 0 0 0 1 0

0 0 0 0 0 Ra





















.

From the above triangular matrix we notice that the system (25) is consistent if and only
if Ra = 0. Hence, the compatibility condition at resonance level j = 3 will hold only if
Ra = 0. Now we assume that Ra = 0 (Note that with this assumption we have one more
term in equations (3) due to the effect of rotation), so that the linear equations (25)
can be solved and we see that there are infinitely many solutions with one independent
variable. We found that the variable b23 to be independent. We assign the arbitrary
value k4 to b23 that is to say b23 = k4. The solutions of system (25) are given below

w13 = −k4

2 + f ′k2

4 (−k3 + f ′k1), w23 =
(

k4

2k2

+ f ′k3

4 − (f ′)2k1

)

√

−4− k22 ,

b13 = k4

k2

√

−4− k22 , b23 = k4, b33 = 0.
(27)

• Compatibility condition at the resonance j = 4. At the resonant level j = 3
we notice that compatibility conditions hold only if Ra = 0 and there we assume that
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Ra = 0. Now we proceed to check the compatibility conditions at the resonance j = 4.
We substitute the equations (27), (24), (21) and (19) into the recurrence relations given
by (14) for j = 4; and then equating the like powers of τ with j = 3 we get the following
system of linear equations













3 0 0 1 0
0 3 −1 0 0
0 −2 2 0 −k2
2 0 0 2

√

−4− k22
−
√

−4− k22 −k2 k2 −
√

−4− k22 2

























w14

w24

b14
b24
b34













=













A4

B4

C4

D4

E4













, (28)

where

A4 = f ′

4k2

(

2k4 + f ′k2[k3 − f ′k1]
)

√

−4− k22 ,

B4 = − f ′

4

(

− 2k4 − f ′k2k3 + (f ′)2k1k2
)

,

C4 = −k1k4 +
k2k3

2 (−k3 + f ′k1),

D4 = 1
2k2

(

2k1k4 + k2k
2
3 − f ′k1k2k3

)
√

−4− k22 ,

E4 = 1
2k4
(

f ′k2 − k1k2
)

− 1
4k

2
2

(

(f ′)2 − k3
)(

− k3 + f ′k1
)

+ f ′k2

4

(

− 2k4 − f ′k2k3 + (f ′)2k1k2
)

+ 1
4 (4 + k22)

[

k4(f
′ + k1)− [(f ′)2 + k3](−k3 + f ′k1)

+ f ′

k2

(

2k4 + f ′k2k3 − [f ′]2k1k2
)

]

.

(29)

We see that the linear system (28) is consistent and admits infinitely many solutions with
one independent variable. Reducing the augmented matrix to its upper triangular form
we found the variable b24 to be an independent variable. Let b24 = k5 be an arbitrary
constant. Solving the system (28) with this independent variable we get the following
solutions

w14 = −k5

3 −
√

−4−k2

2

12k2

[

− (f ′)2k2k3 − 2f ′k4 + (f ′)3k1k2
]

,

w24 = − k2k5

3
√

−4− k22
+

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
12

,

b14 =
k2k5
4 + k22

, b24 = k5,

b34 = − 4k5

3
√

−4− k22
− (f ′)2k2k3 − 3k2k

2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1
.

(30)
• Compatibility condition for j ≥ 5. From the equation (16) we observe that the
matrix M(j) for j ≥ 5 is nonsingular matrix in this case of leading order coefficients
as given by equations (19). So the system (14) with (15) in this case of leading order
coefficients possesses unique solution. For the calculations of wij and bij for i = 1, 2, 3
and j ≥ 5, we substitute (30), (27), (24), (21) into the recursion relations (14) and
(15) for passing successively j = 5, 6, . . .. In this fashion we find all the coefficients are
uniquely determined for j ≥ 5.

As we notice the compatibility conditions hold provided that Ra = 0. Hence, the
system (4) passes the Painlevé test implying the complete integrability of the system.
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So we can write the general solution of the system (4). In that respect we substitute
all these coefficients into the Laurent’s series expansions as given in equations (13). The
general solution of system (4) in this case of leading order coefficients consists of five
arbitrary constants k1, k2, k3, k4, k5 and an arbitrary position of t0 singularity and the
required solution is as given below

w1(t) =
√

−4− k22τ
−1 + 1

2 (f
′k2 − k1k2) +

[

1
2 (f

′k1 − k3)
√

−4− k22
]

τ

+
[

− k4

2 + f ′k2

4 (−k3 + f ′k1)
]

τ2

+
[

− k5

3 −
√

−4−k2

2

12k2

(

− (f ′)2k2k3 − 2f ′k4 + (f ′)3k1k2
)]

τ3

+

∞
∑

j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

[

1
2 (−f ′ + k1)

√

−4− k22
]

+
[

k2

2 (f ′k1 − k3)
]

τ

+
[

(

k4

2k2
+ f ′k3

4 − (f ′)2k1

)

√

−4− k22
]

τ2

+
[

−
k2k5

3
√

−4− k22
+

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
12

]

τ3

+
∞
∑

j=5

w2jτ
j−1,

w3(t) = k1 (arbitrary constant),

b1(t) = −k2τ
−2 +

[

f ′

√

−4− k22
]

τ−1 + k2

2

[

(f ′)2 − k3
]

+
[

k4

k2

√

−4− k22
]

τ1

+
[ k2k5
4 + k22

]

τ2 +

∞
∑

j=5

b1jτ
j−2,

b2(t) =
√

−4− k21τ
−2 + f ′k2τ

−1 +
[

1
2

(

(k3 − (f ′)2
)
√

−4− k22
]

+ k4τ

+k5τ
2 +

∞
∑

j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 +
[

− 4k5

3
√

−4−k2

2

− (f ′)2k2k3 − 3k2k
2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1

]

τ2

+

∞
∑

j=1

b3jτ
j−2.

(31)

Equations (31) contain five arbitrary constants k1, k2, k3, k4, k5 and arbitrary position
of t0; these equations satisfy the system of differential equations (3) for Ra = 0. Hence, in
the present case of leading order coefficient, equations (31) represent the general solution
of (3). The convergence of such series solutions is guaranteed by Kichenassamy and
Littman [9, 10]. And it seems that the solution contains the movable pole type singularity.
Similar kind of steps are involved for another branch of leading order coefficients. In the
following subparagraphs we listed these calculations.
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• Case 2: Consider the leading order coefficients

w10 = −
√

−4− k22 , w20 = k2 (arbitrary constant),

b10 = −k2, b20 = −
√

−4− k22 , b30 = 2.
(32)

Using the same approach as in the previous case we have determined the expansion
coefficients of (13) for j = 1, j = 2, j = 3, and j = 4 which are listed below.

• Leading order coefficients at j = 1 :
As we notice already j = 1 is not a resonance and hence, in this branch of leading order
coefficients for j = 1 we can determine wij and bij uniquely for i = 1, 2, 3 j = 1 as
given below.

w11 =
f ′k2 − k1k2

2
, w21 =

f ′ − k1
2

√

−4− k22 ,

b11 = −f ′

√

−4− k22 , b21 = f ′k2, b31 = 0.
(33)

• At the resonance j = 2 : At this resonant level j = 2, we find that one of the
coefficients is independent. Let b32 be independent. Assign the value to b32 = k3 and
consequently other expansion coefficients for j = 2 are given below

w12 =
k3 − f ′k1

2

√

−4− k22 , w22 =
k2
2
(k1f

′ − k3),

b12 =
k2
2
[(f ′)2 − k3], b22 =

((f ′)2 − k3)

2

√

−4− k22 , b32 = k3.

(34)

• At the resonance j = 3 : As we noticed in previous case at this resonant level j = 3
is that system of linear equations (25) is inconsistent unless Ra = 0. Similarly in this
case we also notice that a system of linear equations is inconsistent unless Ra = 0. Again
assuming that Ra = 0, we determine the expansion coefficients with one independent
variable. Let b23 be independent. Assign b23 = k4 and other expansion coefficients for
j = 3 are given below

w13 =
1

4
[−2k4 + f ′k2(f

′k1 − k3)], w23 =

√

−4− k22
4

[−2k4
k2

− f ′k3 + (f ′)2k1
]

,

b13 =
−k4

√

−4− k22
k2

, b23 = k4, b33 = 0.

(35)

At the resonance j = 4 : Also, at this resonant level j = 4 we found that one of the
expansion coefficients is independent. Let b24 be independent and assign the arbitrary
value say b24 = k5. Other expansion coefficients are as listed below

w14 =
−k4
3

−
√

−4− k22
12k2

[

(f ′)2k2k3 + 2f ′k4 − (f ′)3k1k2
]

,

w24 =
k2k5

3
√

−4− k22
+

f ′

12
[2k4 + f ′k2k3 − (f ′)2k1k2],

b14 =
k2k5

√

−4− k22
,

b24 = k5,

b34 =
4k5

3
√

−4− k22
− 1

6k2

[

k2k3
(

(f ′)2 − 3k3
)

+ 2k4(f
′ − 3k1) + f ′k1k2(3k3 − f ′2)

]

.

(36)
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For j ≥ 5: Plugging the equations (36), (35), (34), (33) and (32) into the recursion
relations (14), we can uniquely determine the expansion coefficients wij and bij for j ≥ 5.
The general solution of system (4) in this case of leading order is as given below

w1(t) = −
√

−4− k22τ
−1 +

f ′k2 − k2k1
2

+

√

−4− k22
2

(k3 − f ′k1)τ

+

(

−k4
2

+
f ′k2
4

[

− k3 + f ′k1
]

)

τ2

−

(

k5
3

+
f ′

√

−4− k22
12k1

[

f ′k2k3 + 2k4 − (f ′)2k2k1
]

)

τ3

+

∞
∑

j=5

w1jτ
j−1,

w2(t) = k2τ
−1 +

(

√

−4− k22
2

[

f ′ − k1
]

)

+
−k2k3 + f ′k1k2

2
τ

+

√

−4− k22
4

(

−2k4
k2

− k3f
′ + (f ′)2k1

)

τ2

+

(

k2k5

3
√

−4− k22
+

f ′

12

[

f ′k2k3 + 2k4 − (f ′)2k2k1
]

)

τ3 +

∞
∑

j=5

w1jτ
j−1,

w3(t) = k1,

b1(t) = −k2τ
−2 −

(

f ′

√

−4− k22

)

τ−1 − k2k3 − (f ′)2k2
2

− k4
√

−4− k22
k2

τ

+
k2k5

√

−4− k22
τ2 +

∞
∑

j=5

b1jτ
j−2,

b2(t) = −
√

−4− k22τ
−2 + f ′k2τ

−1 +

√

−4− k22
2

(

−k3 + (f ′)2
)

+ k4τ + k5τ
2

+

∞
∑

j=5

b2jτ
j−2,

b3(t) = 2τ−2 + k3 +
[ 4k5

3
√

−4− k22

− (f ′)2k2k3 − 3k2k
2
3 + 2f ′k4 − (f ′)3k1k2 + 3f ′k1k2k3 − k1k4

6k1

]

τ2

+

∞
∑

j=1

b3jτ
j−2.

(37)

4 Examples

In this section we present two systems of ODEs that are in similar analog with our system
(3) for Ra = 0. Hence, these systems will have the singular solutions and these solutions
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will be in similar nature as we have obtained so far.
Now consider the equations for the motion under gravity of a rigid body about a fixed

point
dl

dt
= l× ω + c× g,

dg

dt
= g× ω; l = Iω.

(38)

In the above equations, l and ω are respectively the angular momentum and angular
velocity of the body, g is the gravitational acceleration with respective the moving frame.
The vector c is the center of mass and inertia tensor I are both constants. The explicit
details about the system (38) have been discussed by Andrew Hone [11]. This system
will be as similar to our system (3) for Ra = 0 and assigning the value f ′ = 0. So that
the singular solutions of a system (38) will be obtained in similar fashion as we discussed
above.

In their paper Julien et al [12] employ a multiscale expansion in both time and space.
Specifically, they define the Ekman number E ≡ ν/2Ωd2, where ν is kinematic viscosity,
d is typical length scale, and Ω ≡ Ωẑ (which is equivalent to f ê3 in our equations (1)) is
the rotation vector, and treat E as a small parameter. With these assumptions and in
the absence of stratification the incompressible Navier-Stokes equations then become

Du

Dt
+ Ω̂× u = −∇π + E∇2u+ f ,

∇ · u = 0,

(39)

where f is an unspecified body force and π is the pressure. Further Julien et all [12]
present their results for the specific case of rotating convection for which they took
f = (Ra/σ)E2T ẑ and (39) were supplemented with the energy equation

σ
DT

Dt
= E∇2T. (40)

In equation (40), T is the temperature, Ra is the Rayleigh number, and σ = ν/κ is the
Prandtl number; κ is the thermal diffusivity.

Here we observe that if we take E ≡ 0 and unspecified body forces to be equal to
zero, and going through the local analysis as Desale and Sharma [7] deploy it to a similar
equations. We can have a system of ODEs which is equivalent to system (3). Hence for
Ra = 0 the singular solutions in this case will be in similar nature with the solutions
which we have investigated in Section 3.

5 Conclusion

Now we conclude that the system of ODE reduction of rotating Stratified Boussinesq
Equations (3) is completely integrable (in the light of ARS conjecture). There are several
possible cases of principle dominant balance cases among these the system of ODEs (3)
admits the singular solution only in the case of (7). There are two possible branches of
leading orders and in both cases of leading orders system (3) passes the strong Painlevé
test only if the Rayleigh number Ra = 0. The general solutions are given by(31) and
(37). We found that these solutions are in complex domain and contain the movable
pole type singularity at t = t0. In Section 4 we illustrate the systems which also exhibit
similar kind of solutions so far we obtained in Section 3.
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[11] Hone, Andrew N.W., Painlevé tests, singularity structure and integrability.
ArXiv:nlin.SI/0502017, v. 1 (2005) 1–34.

[12] Julien, K., Knoblock, E. and Werne, J. A New Class of Equations for Rotationally
Constrained Flows. Theoretical and Computational Fluid Dynamics 11 (1998) 251–
261.


	Introduction
	Reduced System of Nonlinear ODEs
	Singular Solution of the System
	Determination of exponents
	Determination of resonances
	Compatibility conditions

	Examples
	Conclusion

