Homoclinic Orbits for Superquadratic Hamiltonian Systems with Small Forcing Terms

A. Daouas*

*Corresponding author: mailto:daouas_adal@yahoo.fr

High Institute for Computer Sciences and Telecommunication. Hammam Sousse, 4011, Tunisia.

Received: December 3, 2009; Revised: October 18, 2010

Abstract: In this paper, we prove the existence of homoclinic orbits for the second order Hamiltonian system: \(\ddot{q}(t) + \nabla V(t, q(t)) = f(t) \), where \(V \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}) \), \(V(t, q) = -K(t, q) + W(t, q) \) is \(T \)-periodic in \(t \), \(K \) satisfies the "pinching" condition \(b_1|q|^2 \leq K(t, q) \leq b_2|q|^2 \) and \(W \) is superquadratic at the infinity and needs not satisfy the global Ambrosetti-Rabinowitz condition. A homoclinic orbit is obtained as the limit of \(2kT \)-periodic solutions of a certain sequence of second order differential equations.

Keywords: homoclinic orbit; Hamiltonian system; Mountain Pass Theorem.

Mathematics Subject Classification (2000): 34C37, 37J45, 70H05.

1 Introduction

Let us consider the second order Hamiltonian system

\[\ddot{q}(t) + \nabla V(t, q(t)) = f(t), \quad (HS) \]

where \(V(t, x) = -K(t, x) + W(t, x), \nabla V(t, x) = (\partial V/\partial x)(t, x), \ K, W : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R} \) are \(C^1 \)-maps, \(T \)-periodic with respect to \(t \), \(T > 0 \) and \(f : \mathbb{R} \rightarrow \mathbb{R}^n \) is continuous and bounded. We will say that a solution \(q \) of \((HS) \) is homoclinic (to 0) if \(q(t) \rightarrow 0 \) as \(t \rightarrow \pm \infty \). In addition, if \(q \neq 0 \) then \(q \) is called a nontrivial homoclinic solution.

The problem of finding subharmonic and homoclinic solutions for Hamiltonian systems has been the object of many works under different assumptions on the growth