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Abstract: This paper proposes a trajectory planning and tracking approach for
bilinear systems that approximate weakly nonlinear systems, based on orthogonal
functions and especially the use of operational integration and product matrices.
These operational tools allow the conversion of a bilinear differential state equation
into an algebraic one depending on initial and final conditions. Arranging and solving
the obtained algebraic equation lead to an open loop control law that allows the
planning of a system trajectory. The parameters setting of the tracking state feedback
closed loop control is yielded by considering a reference model characterizing the
desired performances.
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1 Introduction

Trajectory planning and tracking are linked subjects. Indeed, trajectory planning is
finding an open loop control that permits to reach a final fixed state from a known initial
state, and tracking is designing a closed loop control that ensures stability of system round
its planned trajectory. These subjects have been considered by different approaches for
stationary linear systems and particular classes of nonlinear systems [1]–[4]. Orthogonal
functions were used as a powerful tool for systems study, identification [5, 6] and control
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[7, 8]. For this purpose, different orthogonal functions were used as Walsh [9] and Block-
pulse [10] functions as well as Laguerre [11], Chebychev [12], Hermite [13] and Legendre
polynomials [14]. The projection of the system differential equation on an orthogonal
basis leads to an algebraic system representation that turns out to be more convenient
for equation resolution especially for bilinear systems. In this work, we start by pointing
out that a weakly nonlinear systems can be approximated by a bilinear system [15], and
then we propose to use orthogonal functions properties with the aim to turn away the
integration difficulty caused by trajectory planning and tracking for bilinear systems.
We will point out that the algebraic form of system obtained by the orthogonal basis
approximation and the use of tools offered by orthogonal functions such as operational
matrix of integration and of product makes possible the characterization of a planned
system trajectory and the synthesis of tracking state feedback control.

2 Bilinear Approximation of Weakly Nonlinear Systems

Consider a nonlinear system described by the following state equation

ẋ(t) = f(x(t)) +Bu(t),

y(t) = Cx(t),
(1)

where f ∈ R
n → R

n is a nonlinear function with initial condition x(0) = x0,u(t) ∈ R,
y(t) ∈ R and B,C ∈ R

n are constant vectors.

The system (1) can be linearized around an operating point (uop, xop, yop) as

˙̃x(t) = Ax̃(t) +Bũ(t),

ỹ(t) = Cx̃(t),
(2)

where x̃ = x− xop, ũ = u− uop, ỹ = y− yop and A = ∂f
∂u

|x=x̃. The matrix A can be also
approached by means of an identification method [16].

The main inconvenience of the obtained linear model that describes the original non-
linear plant is its availability in a limited domain around the operating point. In order
to simplify the nonlinear model in a large region, one may look for a bilinear model. In
fact, the bilinear structure of dynamical system constitutes a medium structure between
the complex nonlinear model and the simple linear one. It represents a good compromise
between the simplicity and complexity of dynamical models. It is complex enough to
preserve the nonlinear properties of the original system and it is simple enough to recall
the linear representation. The bilinear model can be written in the following form:

ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t).
(3)

The bilinearization of a nonlinear plant can be led by different techniques as the de-
termination of A, B, N and C matrices by identification method [16]. Another known
technique is the Carlemen bilinearization [15]. This technique is based on the develop-
ment of the analytic function f(.) in a polynomial form:

f(x) = A1x
[1] +A2x

[2] +A3x
[3] + · · · +Arx

[r], (4)
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where x[i] is the i-th Kronecker power of the vector x. Then the nonlinear system (1)
with the polynomial approximation (4) can be bilinearized as

˙̂x(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

y(t) = Ĉx̂(t),
(5)

where x̂(t) =
[

x(1)T x(2)T · · · x(r)T
]T

and Â, B̂, N̂ , Ĉ are constant matrices, which

can be expressed by An, B and C. Â and N̂ are square matrices of dimension n+ n2 +
· · · + nk. x̂, B̂ and Ĉ are vectors with n+ n2 + · · · + nk components.

As example, in particular case where r = 3 and n = 1 one has

Â =





Â11 Â12 Â13

0 Â22 Â23

0 0 Â33



 , (6)

where Â11 = A1, Â12 = A2, Â13 = A3, Â22 = A1⊗In +In⊗A1, Â23 = A2⊗In +In⊗A2,
Â33 = A1 ⊗ In2 + In ⊗A1 ⊗ In + In2 ⊗A1,

B̂ =





B̂1

0
0



 with B̂1 = B, (7)

N̂ =





0 0 0

N̂21 0 0

0 N̂32 0



 , (8)

where N̂21 = B ⊗ In + In ⊗B, N̂22 = B ⊗ In2 + In ⊗B ⊗ In + In2 ⊗B.
In the next section we will consider the class of bilinear system having the same

representation as (5) for trajectory planning.

3 Proposed Approach for Trajectory Planning

3.1 Orthogonal functions

Consider a set of orthogonal functions Φ = {ϕi(t), i ∈ N} defined on [a, b] ⊂ R. The key
idea is that all analytical function f(t) absolutely integrable can be developed as follows

f(t) =

∞
∑

i=0

fiϕi(t), ∀t ∈ [a, b], (9)

where the coefficients fi are constant and given by

fi =
1

ri

∫ b

a

w(x)ϕi(x)f(x)dx, ∀i ∈ N. (10)

To obtain practice function approximation, the projection (9) is shorten to an order N ,
such that:

f(t) ∼=

N−1
∑

i=0

fiϕi(t) = FT
NΦN (t), (11)



298 H.SAYEM, N.BENHADJ BRAIEK AND H.HAMMOURI

where FN =
[

f0 f1 · · · fT
n−1

]

is a constant coefficient vector and ΦN (t) =
[

ϕ0(t) ϕ1(t) · · · ϕn−1(t)
T
]

is the vector composed by N orthogonal functions. The
projection of a matrix A(t) = [aij(t)] on the basis of the orthogonal functions is given by

A(t) ∼=

N−1
∑

i=0

ANiϕi(t), (12)

where ANi ∈ R
n×m are constant matrices. More than approximation (12), orthogonal

functions offers different operational tools like the operational matrix of integration and
the operational matrix of product which are used for solving differential equations. The
operational matrix of integration is the constant matrix PN ∈ R

N×N verifying:

∫ t

0

ΦN (t)dt ∼= PNΦN (t), (13)

and the operational matrix of product MiN is defined such that one has

ϕi(t)ΦN (t) ∼= MiN (V )ΦN (t) (14)

with
MiN =

[

K0i K1i · · · fn−1,i

]

, (15)

where ∀i, j ∈ {0, 1, · · ·, N − 1}, ϕi(t)ϕj(t) ∼= KT
ijΦN (t) Thus the following operational

relation holds for any constant vector V ∈ R
n [16]:

ΦN (t)ΦT
N (t) ∼= MN(V )ΦN (t), (16)

where MN (V ) =
[

M0NV
... M1NV

... · · ·
... M(N−1)NV

]

.

3.2 Proposed trajectory planning approach

Consider a bilinear system having the following state representation

ẋ = Ax+Bu+
m
∑

i=0

Aixui,

y = Cx,
(17)

where A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n. We intend to determine, using orthogonal

functions as approximation tool, an open loop control that permits system (17) going
to fixed final state x(T ) starting from known initial state x(0). The projection of state
variables of system (17) on a set of orthogonal functions {ϕi(t), i = 0, · · ·, N − 1} with a
truncation of order N allows to write:

x(t) = xNΦN (t), (18)

ui(t) = uiNΦN(t), (19)

u(t) = uNΦN (t), (20)

and the state representation (17) can be put in the following approximated form

ẋ = AxNΦN (t) +BuNΦN (t) +

m
∑

i=0

AixNuiNΦN(t). (21)
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On the other hand, substituting the initial state x(0) by its projection on the orthogonal
basis ΦN (t):

x(0) = xN,0ΦN (t), (22)

where xN,0 =
[

x(0)
... 0

... · · ·
... 0

]

and integrating equation (21) between an ini-

tial time (t0 = 0) and a time t and making use of the operational integration and product
proprieties(13) and (14) one obtains

(xN − xN,0) = AxNPN +BuNPN +

m
∑

i=0

AixNMN (uiN )PN . (23)

By using the V ec operator and its main following property [17]

V ec(ABC) = (CT ⊗A)V ec(B), (24)

the equation (23) yields the following relation

V ec(xN ) =

[

InN − (PT
N ⊗A) −

m
∑

i=0
PT

NM
T
N(uiN ) ⊗Ai

]

−1

[

(PT
N ⊗B)V ec(uN) + V ec(xN,0)

]

.

(25)

Integrating again relation (21) between instant t and final time T and replacing x(T )
by its projection on the orthogonal basis:

x(T ) = xN,T ΦN (t) (26)

with xN,T =
[

x(T )
... 0

... · · ·
... 0

]

and using the fact that the orthogonal basis

vector at final instant T verifies: ΦN (t) = KNΦN (t) one obtains

(xN,T −xN ) = AxNPN (KN−IN )+BuNPN (KN−IN )+

m
∑

i=0

AixNMN (uiN )PN (KN−IN ),

(27)
putting ΠN = PN (KN − IN ) and applying V ec operator yield:

V ec(xN ) =
[

InN + (ΠT
N ⊗A) +

∑m
i=0 ΠT

NM
T
N(uiN ) ⊗Ai

]

−1

[

V ec(xN,T ) − (ΠT
N ⊗B)V ec(uN)

]

.
(28)

By equalizing (25) and (28) one obtains the following relation

H−1
N

[

(PT
N ⊗B)V ec(uN) + V ec(xN,0

]

= G−1
N

[

V ec(xN,T − (ΠT
N ⊗B)

]

, (29)

where
HN = HN (uN ) = InN −Ru, (30)

Ru = (PT
N ⊗A) +

m
∑

i=0

PT
NM

T
N(uiN ) ⊗Ai, (31)

GN = InN + (ΠT
N ⊗A) +

m
∑

i=0

ΠT
NM

T
N(uiN ) ⊗Ai, (32)
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By substitution of ΠN by its expression ΠN = PN (KN − IN ), one has

GN = HN + (KT
N ⊗ IN )Ru, (33)

and the relation (29) becomes:

[

InN − (KT
N ⊗ IN )

] [

(PT
N ⊗B)V ec(uN) + V ec(xN,0)

]

+

(KT
N ⊗ IN )H−1

N

[

(PT
N ⊗B)V ec(uN) + V ec(xN,0

]

= (InN −KT
N ⊗ IN )

[

(PT
N ⊗B)V ec(uN )

]

+ V ec(xN,T )

(34)

Let’s put
Z(uN ) = H−1

N (uN)
[

(PT
N ⊗B)V ec(uN ) + V ec(xN,0)

]

, (35)

Γ(xN,0, xN,T ) = (KT
N ⊗ InN )V ec(xN,0) + V ec(xN,T ), (36)

the relation (34) yields

(KT
N ⊗ IN )Z(uN ) = Γ(xN,0, xN,T ). (37)

The planning open loop control is then derived by minimizing with respect to uN the
norm of the difference between the two parts of equality (37):

ζ = ‖(KT
N ⊗ IN )Z(uN ) − Γ(xN,0, xN,T )‖. (38)

This minimization can be led using the Matlab optimization toolbox.

4 Trajectory Tracking: Closed Loop Control

Consider the difference variables

δx = x(t) − xp(t), δu = u(t) − up(t) (39)

between the trajectory of system (17) and a planned trajectory (xp(t), up(t)) verifying
the system equation

ẋp = Axp +Bup +
m

∑

i=0

Aixpuip, (40)

the state equation of difference system can be written as

δẋ = (A+
m

∑

i=0

Aiuip)δx(t) + (B +
m

∑

i=0

Aixp)δu(t) +
m

∑

i=0

Aiδxδui, (41)

by neglecting the product term δxδui compared with δx and δui, the state equation (41)
can be simplified into a linear time variant state equation

δẋ = A(t)δx(t) + B(t)δu(t), (42)

where

A(t) = A+

m
∑

i=0

Aiuip(t), B(t) = B +

m
∑

i=0

Aixp(t). (43)
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Our purpose is then to characterize a state feedback control law δu(t) = −Kδx(t) which
confers to a controlled LTV (Linear Time Variant) system

δẋ = (A(t) − B(t)K)δx(t), (44)

desired performances. Such performances can be defined in a convenient linear reference
model [18]

δẋ = Eδx(t). (45)

The expansion of the time variant matrices A(t), B(t) and the state vector δx(t) into a
basis of orthogonal functions as follows

A(t) =
N−1
∑

i=0

ANiϕi(t), (46)

B(t) =

N−1
∑

i=0

BNiϕi(t), (47)

δx(t) = δxNΦN (t), (48)

yields the following differential relation

δẋ =
[

∑N−1
i=0 ANiϕ(t) −K

∑N−1
i=0 BNiϕ(t)

]

δxNΦN (t). (49)

Integrating equation (49) and making use of operational matrices of integration and
product and the V ec operator one obtains:

V ec(δxN ) − V ec(δxNp) = (

N−1
∑

i=0

(MiNPN )T ⊗ANi − k(

N−1
∑

i=0

(MiNPN )T ⊗ BNi)V ec(δxN ).

(50)
A similar development for the reference model (45) yields:

V ec(δxN,r) − V ec(δxN,0) = (PT
N ⊗ E)V ec(δxN ). (51)

The equalization of V ec(δxN ) coming from (49) and V ec(δxN,r) derived from (50) allows
to have the following linear algebraic equation where unknown is the feedback control
gain K:

φK = ψ (52)

with

φ =

N−1
∑

i=0

(MiNPN )T ⊗ BNi, ψ =

N−1
∑

i=0

(MiNPN )T ⊗ANi − (PT
N ⊗ E). (53)

Solving equation (52) by using least squares method leads to a closed loop control feed-
back law δu(t) = −Kδx(t) that ensures trajectory tracking for bilinear system (17).
Note that the development (44) until (51) can be easily extended to look for a time
variant feedback control law δu(t) = −K(t)δx(t) where the time variant gain K(t) can

be determined as an expansion of orthogonal functions: K(t) =
∑N−1

i=0 KNiϕi(t).
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5 Illustrating Example

In this section we present the implementation of the proposed approach for trajectory
planning and tracking of the bilinear system described by the following equations

ẋ1 = x1 − x2u+ u, ẋ2 = −x2 − x1u− u,

y = x2.
(54)

A state representation of this system is the following

ẋ = Ax+Nxu+Bu,

y = Cx,
(55)

with x =
[

x1 x2

]T
, A =

[

1 0
0 −1

]

, N =

[

0 −1
−1 0

]

, B =

[

1
−1

]

, C =
[

0 1
]

.

The application of the proposed planning approach based on modified Legendre orthog-
onal functions with a truncation order N = 16, for system (55) starting from an initial

state x0 =
[

1 2
]T

at initial time t0 = 0s to the final state xT =
[

0 0
]T

at final
time T = 10s, yields the planned trajectories x1p(t) and x2p(t) and planning input up(t)
presented in Figure 1.

0 2 4 6 8 10
0

1

2

Time en (S)

planned trajectory of x1

0 2 4 6 8 10
0

1

2
planned trajectory of x2

0 2 4 6 8 10
0

0.5

1

1.5
planning input up

Figure 1: Trajectory planning and planning input.

These simulations show that the use of orthogonal approximation method yields an
open loop control that allows to the bilinear system (55) to reach the fixed final state
xT starting from a chosen initial state x0. Note that initial and final conditions can
be modified and one obtains then an open loop control that yields another trajectory
planning. The tracking of the obtained trajectory (xp(t), up(t)) is given by the application
of the orthogonal approximation to the following LTV system

δẋ = A(t)δx(t) + B(t)δu(t) (56)
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with A(t) = A + Nup(t) and B(t) = B + Nxp(t) derived from the linearization of the
bilinear system round the planned trajectory.

The synthesis of the closed loop control δu(t) = −Kδx(t) that ensures the tracking
of the planned trajectory is based on the following linear reference system that confers
to the state feedback controlled LTV system the desired performances corresponding to
the linear reference model:

δẋ = Eδx(t), (57)

where E =

[

−1 1
0 −1

]

. Figure 2 shows the effect of the obtained control law on the

tracking of the planned trajectory affected by two instantenous disturbances at t1 = 3s
and t2 = 15s.

0 5 10 15 20
−0.5

0

0.5
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1.5

Time en (S)

planned trajectory of x1
closed loop trajectory of x1

0 5 10 15 20
0

0.5

1

1.5

2
planned trajectory of x2
closed loop trajectory of x2

Figure 2: Trajectory tracking.

It appears that the designed control law ensures stability of the system around its planned
trajectory. Note that the performances of the closed loop controlled system can be
modified by choosing another linear reference model.

6 Conclusion

In this paper, a new approach has been introduced for trajectory planning and tracking
of bilinear systems, which approximate weakly nonlinear systems, by using orthogonal
functions as a tool of approximation. The presented method was applied to a class of
bilinear invariant systems. The use of operational matrices of integration and product in
planning problem has allowed the transformation of the system differential equation into
an algebraic one depending on the control variable and the initial and final states. For
trajectory tracking, this technique has allowed the synthesis of a closed feedback control
which ensures for the considered system the performances of a prespecified reference
model. Note that the proposed approach can be extended to other classes of systems
such as time variant bilinear systems and affine control nonlinear systems.
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