
Nonlinear Dynamics and Systems Theory, 10 (1) (2010) 29–38

Special Solutions to Rotating Stratified Boussinesq

Equations

B.S. Desale
∗
and V. Sharma

School of Mathematical Sciences,

North Maharashtra University,

Jalgaon 425001, India.

Received: January 27, 2009; Revised: January 15, 2010
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fied Boussinesq equations and reduced these equations into the system of six coupled
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1 Introduction

The stratified Boussinesq equations form a system of PDEs modelling the movements of
planetary atmospheres. It may be noted that the Boussinesq approximation in the litera-
ture is also referred to as the Oberbeck–Boussinesq approximation for which, the reader is
referred to an interesting article of Rajagopal et al [1] providing a rigorous mathematical
justification as perturbations of the Navier–Stokes equations. Majda & Shefter [2] have
chosen certain special solutions of this system of PDEs to demonstrate onset of instability
when the Richardson number is less than 1/4. In their study of instability in stratified
fluids at large Richardson number, Majda & Shefter [2] have obtained the exact solutions
to stratified Boussinesq equations neglecting the effects of rotations and viscosity. In his
monograph Majda [3] has obtained the special solution of rotating stratified Boussinesq
equations excluding the effects of viscosity and finite rotation. Whereas, in this paper we
include the effect of rotation. And then we systematically deploy the procedure of Majda
& Shefter [2] (as well as the procedure applied by Craik & Criminale in their paper [4])
to obtain the exact solutions of rotating stratified Boussinesq equations and derive the
system of six coupled ODEs. Further, in the absence of strain field we proved that the
reduced system of ODEs is completely integrable and admits the similar results obtained
by Srinivasan et all [5]. For the similar kind of work reader may refer Maas [8, 9].
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2 Nondimensional Rotating Stratified Boussinesq Equations

We consider the motion of an incompressible flow of fluid in the atmosphere and in the
ocean where the flow velocities are too slow to account for compressible effects, the flow
of fluid is governed by the following rotating Boussinesq equations (we ignore the effects
of viscosity and heat dissipation) that involves the interaction of gravity with density
stratification about the reference state.

Dv

Dt
+ f(ê3 × v) = −∇

p̃

ρb
−

gρ

ρb
ê3,

divv = 0,

Dρ̃

Dt
= 0,

(2.1)

where D/Dt = ∂/∂t + v · ∇, the unit vector in vertical direction is ê3 = (0, 0, 1), the
space variable x = (x1, x2, x3) and fluid velocity is given by v = (v1, v2, v3). For the
local behavior of incompressible fluid the density ρ̃ is the sum of mean density ρb and
perturbations ρ about the mean density, that is ρ̃(x, t) = ρb + ρ(x, t). The pressure is
denoted by p̃ and f is a rotation frequency.

Now we nondimensionalize the Boussinesq equations (2.1) with the following scales
for length, time, velocity, density, and pressure:

L : horizontal length scale,
v∗ : mean advective velocity,
Te =

L
v∗

: eddy turnover time,
TR = f−1 : rotation time,
TN = N−1 : buoyancy time,
ρb : mean density,
p : mean pressure,
N : buoyancy frequency.

(2.2)

In this scale of nondimensionalization we introduce the following nondimensional vari-
ables

x′ =
x

L
, t′ =

t

Te

, v′ =
v

v∗
, ρ̃′ =

ρ̃

ρbB
, p′ =

p̃

p
. (2.3)

The numerical factor B in the density equation is positive. Applying equations (2.3)
to equations (2.1) and dropping the primes finally we get the nondimensional rotating
stratified Boussinesq equations

Dv

Dt
+

1

R0
u = −P∇p− Γρê3,

divv = 0,

Dρ̃

Dt
= 0.

(2.4)

Here, we have u = (u1, u2, u3) = ê3 × v, Γ = BgL
v∗2 the nondimensional number, R0 = v∗

Lf

the Rossby number and P = p
ρbv∗2 the Euler number. Nondimensional density function

is ρ̃(x, t) = ρb+ρ(x, t). The more elaborate discussion about the nondimensional analysis
of rotating stratified Boussinesq equations is given by Majda in his monograph [3]. In
the following section we have obtained the special solutions to (2.4).
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3 Special Solutions

In this section we investigate the special solutions to (2.4) in large scale part. We are
looking for the local behavior of an incompressible fluid, and we expand the smooth
velocity field and density function in a Taylor’s series about some point x0:

v(x, t) = v(x0, t) +∇v|(x0,t)(x − x0) +O(|x − x0|
2),

ρ̃(x, t) = ρb +∇ρ̃|(x0,t)(x− x0) +O(|x− x0|
2),

(3.1)

where ∇v is a 3 × 3 matrix whose (i, j)th entry is ∂vi

∂xj
, i = 1, 2, 3, j = 1, 2, 3. The

following equation (3.2) is the decomposition of the matrix ∇v as a sum of symmetric
and skew-symmetric matrices and such kind of decomposition is unique:

∇v|(x0,t) =
(

∇v+(∇v)T

2

)

+
(

∇v−(∇v)T

2

)

= D(x0, t) + Ω(x0, t),
(3.2)

where D is the symmetric part of ∇v and is called the deformation matrix, it has the
property that the trace of matrix D is equal to the divergence of vector field v. Whereas,
Ω is a skew symmetric part of matrix ∇v and satisfy the following equation (3.3).

Ωh =
1

2
w × h, (3.3)

for any vector h ∈ R
3. The vector w is vorticity vector that is w = ∇×v = (w1, w2, w3).

Hence, from equation (3.2) we get

∇v|(x0,t)h = D(x0, t)h+
1

2
w(x0, t)× h. (3.4)

The decomposition of a vector v as in equations (3.1) by mean of equation (3.4) has a sim-
ple physical interpretation namely, every incompressible velocity field is a sum of trans-
lation, stretching and rotation. We may deprive the translation part by a Galilean trans-
formation, for this one may refer to Majda & Bertozzi [10]. We assume that v(x0, t) = 0.

We take advantage of the local representation to determine certain special solutions to
the rotating stratified Boussinesq equation (2.4). We derive now an equation for gradient
of velocity

(vixk
)t +

∑

j

vj(vixk
)xj

+
∑

j

∂vj

∂xk

∂vi

∂xj

+
1

R0
(ui

xk
) = −P (pxi

)xj
− Γ

∂ρ

∂xk

δk3, (3.5)

where δ is the Kronecker delta. Then, we introduce the notations V = (vixk
) and P̂ =

P (pxi
)xk

for the Hessian matrix of the pressure P̂ . With this notation we can rewrite
equation (3.5) in the matrix form as follows

DV

Dt
+ V 2 +

1

R0
(ui

xk
) = −P̂ − Γê3(∇ρ)T . (3.6)

A matrix (ui
xk
) can uniquely be expressed as (ui

xk
) = S+Q, where the symmetric matrix
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S and skew symmetric matrix Q are as given below

S =
1

2











−2 ∂v1

∂x1

∂v1

∂x1

− ∂v2

∂x2

− ∂v2

∂x3

∂v1

∂x1

− ∂v2

∂x2

2 ∂v1

∂x2

∂v1

∂x3

− ∂v2

∂x3

∂v1

∂x3

0











, Q =
1

2











0 − ∂v2

∂x2

− ∂v1

∂x1

− ∂v2

∂x3

∂v2

∂x2

+ ∂v1

∂x1

0 ∂v1

∂x3

∂v2

∂x3

− ∂v1

∂x3

0











.

(3.7)
For any h ∈ R

3, a skew symmetric matrix Q satisfies the equation

Qh = −
1

2

∂v

∂x3
× h. (3.8)

From equation (2.4), we have the density function ρ̃ = ρb+ ρ and Dρ̃
Dt

= 0. Therefore, we
have ∇ρ̃ = ∇ρ. Now differentiating the density equation partially with respect to xk we
get

∂

∂t
(ρ̃xk

) +
∑

j

∂vj

∂xk

∂ρ̃

∂xj

+
∑

j

vj
∂2ρ̃

∂xk∂xj

= 0 (3.9)

which may be recast as
D

Dt
(∇ρ̃) + V T (∇ρ̃) = 0. (3.10)

Since D and Ω are symmetric and skew symmetric parts of ∇v a simple calculation gives

V 2 = D2 +Ω2 +DΩ + ΩD. (3.11)

The symmetric part of V 2 is D2 + Ω2 and DΩ + ΩD is the skew-symmetric part. We
proceed to decompose equation (3.6) into symmetric and skew symmetric parts. The
symmetric part is easily seen to be

DD

Dt
+D2 +Ω2 +

1

R0
S = −P̂ −

Γ

2

[

ê3(∇ρ̃)T + (∇ρ̃)ê3
T
]

. (3.12)

The skew symmetric part of equation (3.6) is discussed in the following Proposition 3.1.
Before proceeding to the proposition here we insert a simple lemma and one may find
the proof of this lemma in the monograph of Majda [3].

Lemma 3.1 w · ∇v = w · (∇v)T .

Proof For any h ∈ R
3, we have by identification (3.3)

0 =
1

2
w · (w × h) =

1

2
w ·

(

((∇v) − (∇v)T )h
)

=
1

2
w ·

(

(∇v) − (∇v)T
)

h

from which the result follows since h is arbitrary. 2

Proposition 3.1 The evolution of the vorticity w = ∇×v is governed by the equation

Dw

Dt
= w · ∇v + Γ









− ∂ρ̃
∂x2

∂ρ̃
∂x1

0









+
1

R0

∂v

∂x3
. (3.13)
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Proof Equating the skew symmetric part of equation (3.6) we get

DΩ

Dt
+DΩ + ΩD +

1

R0
Q = −

Γ

2









0 0 − ∂ρ̃
∂x1

0 0 − ∂ρ̃
∂x2

∂ρ̃
∂x1

∂ρ̃
∂x2

0









. (3.14)

So that for arbitrary h ∈ R
3

1

2

Dw

Dt
× h+ (DΩ + ΩD)h−

1

2R0

∂v

∂x3
× h =

Γ

2





− ∂ρ̃
∂x2

∂ρ̃
∂x1

0



× h. (3.15)

Here, Ω and D are given by

Ω =
1

2





0 −w3 w2

w3 0 −w1

−w2 w1 0



 , D =





d11 d12 d13
d12 d22 d23
d13 d23 d33





and the elements dij of matrix D are expressible in terms of partial derivatives ∂kv
l with

the relation d11 + d22 + d33 = 0. A simple calculation gives

DΩ+ ΩD =
1

2





0 −c12 c13
c12 0 −c23
−c13 c23 0



,

c =





c23
c13
c12



 =





−w1d11 − w2d12 − w3d33
−w1d12 − w2d22 − w3d23
−w1d13 − w2d23 − w3d33



 = −Dw = −w · D.

Therefore,

(DΩ + ΩD)h =
1

2





0 −c12 c13
c12 0 −c23
−c13 c23 0



h =
1

2





c23
c13
c12



× h.

Hence, we can recast equation (3.15) as

1

2

Dw

Dt
× h−

1

2
w · D × h−

1

2R0

∂v

∂x3
× h =

Γ

2









− ∂ρ̃
∂x2

∂ρ̃
∂x1

0









× h. (3.16)

Now w · D = 1
2 (w · (∇v) + w · (∇v)T ) = w · ∇v, substituting this into (3.16) and

simplifying we get (3.13). Hence the proof of the proposition. 2

Remark 3.1 From equation (3.13) we see that the infinitesimal vorticity elements
are advected with the fluid and get amplified with interaction of velocity gradients and
density gradients and also with addition term of rate of change of fluid velocity in vertical
direction, which causes the effects of rotation. Due to this additional term caused by
effect of rotation we have proved in the following Theorem 3.1 the component of vorticity
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along with the density gradient advected with fluid is increased according to the rate of
change of velocity in vertical direction and get amplified with density gradient. This is
the extension of Ertel’s theorem allowing the forcing term due to the rotation effect and
neglecting the dissipation. One may refer to Majda ([3], p. 14) for the details of Ertel’s
theorem.

Theorem 3.1 The advective rate of change of vorticity component along with density
gradient is given by

D

Dt
(w · ∇ρ̃) =

1

R0

∂v

∂x3
· ∇ρ̃. (3.17)

Proof Consider the advective rate of change of vorticity along with density gradient.
We get

D

Dt
(w · ∇ρ̃) =

Dw

Dt
· ∇ρ̃+w ·

D(∇ρ̃)

Dt
. (3.18)

Applying equations (3.10), (3.13) and lemma (3.1) to equation (3.18) we get the result.
2

As we claim earlier we have obtained the special solutions to (2.4), these solutions
are given in the form of the following Theorem 3.2. The more interesting part of these
solutions is that it reduces the PDEs of rotating stratified Boussinesq equations (2.4)
into the system of six coupled nonlinear ODEs.

Theorem 3.2 The rotating stratified Boussinesq equations (2.4) admit the special
solutions of the form

v(x, t) = D(t)x + 1
2w(t)× x,

ρ̃ = ρb + b(t) · x,

Pp = 1
2 P̂ (t)x · x,



















(3.19)

where P is a nondimensional number as defined in (2.4), D(t) is a symmetric matrix
with zero trace; when w(t) = ∇× v and b(t) = ∇ρ̃ satisfy the ODEs

dw

dt
= D(t)[w(t) + 1

R0

ê3] + Γê3 × b(t)− 1
2R0

ê3 ×w(t),

db

dt
= −D(t)b(t) + 1

2w(t)× b(t),











(3.20)

and matrix P̂ (t) is given by

−P̂ =
dD

dt
+D2 +Ω2 +

1

R0
S +

Γ

2
(ê3b

T + bê3
T ), (3.21)

where the matrix Ω is as defined in (3.2) through the linear map given by (3.3) and the
matrix S is given by (3.7).

Proof We proceed to show that the Ansatz (3.19), (3.20) does indeed furnish so-
lutions to (2.4). The condition divv = 0 follows from the fact that matrix D has zero
trace. To verify that the momentum equation, note that v is linear in x say v = V x,
where V = D+Ω is a function of time alone. Therefore, ∇ρ̃ = ∇ρ = b(t) and advection
term is

(v · ∇)v = (V x · ∇)V x = V (x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
)V x = V 2x,
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so that Dv

Dt
= dD

dt
x+ dΩ

dt
x+ V 2x. Also, equation (3.12) can be recast as

dD

dt
+D2 +Ω2 +

1

R0
S = −P̂ −

Γ

2
(ê3b

T + bê3
T ) (3.22)

and equation (3.13) that is equation for vorticity is equivalent to the first equation in
(3.20). The equation for skew symmetric part equivalent to (3.14) is as given below

dΩ

dt
+DΩ + ΩD +

1

R0
Q = −

Γ

2





0 0 −b1
0 0 −b2
b1 b2 0



 , (3.23)

where Q is skew symmetric matrix as defined in (3.7). Inserting (3.23) and eliminating
dD
dt

using (3.21) we find that

Dv

Dt
= −P̂x−D2x− Ω2x− Γ

2





0 0 b1
0 0 b2
b1 b2 2b3



x− 1
R0

Sx

−(DΩ+ ΩD)x + Γ
2





0 0 b1
0 0 b2

−b1 −b2 0



x− 1
R0

Qx+ V 2x.

(3.24)

Since the term (V 2 −D2 − Ω2 −DΩ− ΩD)x vanishes, (3.24) simplifies as

Dv

Dt
= −P̂x− Γ





0
0

b · x



−
1

R0
(S +Q)x. (3.25)

As the fluid velocity is defined by (3.19), then we see that

1

R0
(S +Q)x =

1

R0
(ê3 × v).

The pressure term in (3.19) enables us to write (3.25) as

Dv

Dt
+

1

R0
u = −P∇p− Γρê3.

Finally we verify the Boussinesq equation for density

Dρ̃

Dt
=

D

Dt
(b · x)

=
db

dt
· x+ (v · ∇)(b · x)

=
db

dt
· x+ v · b.

(3.26)

Using (3.20), we substitute db
dt

and v = (D +Ω)x into (3.26), we get

Dρ̃

Dt
= −(Db) · x+

1

2
(w × b) · x+ [(D +Ω)x] · b

= −(Db) · x+
1

2
(w × b) · x+ (Dx) · b+

1

2
(w × x) · b

= 0

(3.27)
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completing the proof of the theorem. 2

Following are the examples of special solutions of rotating stratified Boussinesq equa-
tions (2.4) in the form of (3.19).

Example 3.1 Consider a two dimensional time independent flow for which the con-
stant vorticity vector w = (0, 0, w0), density gradient vector b = (0, 0, b0) and deforma-
tion matrix is given by

D =





λ 0 0
0 −λ 0
0 0 0



 .

Then, we see that vectors w and b satisfy the system of ODEs (3.20) and a solution of
the system of PDEs (2.4) is given below.

v(x, t) = (λx1 −
w0

2 x2,
w0

2 x1 − λx2, 0),

ρ̃ = ρb + b0x3,

Pp = 1
2

[

(−λ2 +
w2

0

4 + w0

2R0

)(x2
1 + x2

2) + Γb0x
2
3 −

2λ
R0

x1x2

]

.

Example 3.2 Now we consider a two dimensional time dependent flow; let

the vorticity vector be w(t) =
(

w10 cos(t/R0) + w20 sin(t/R0), −w10 sin(t/R0) +

w20 cos(t/R0), 0
)

= (−a2(t), a1(t), 0) with the initial condition w(0) = (w10, w20, 0) and

the density gradient vector be b(t) = (0, 0, b0), where b0 is an arbitrary constant. The
deformation matrix D is

D =





0 0 a1(t)
0 0 a2(t)

a1(t) a2(t) 0



 .

Then, we see that the vectors w, b satisfy the system of ODEs (3.20) with ini-
tial conditions w(0), b(0). The velocity and density are then given by v(x, t) =
(a1(t)x3, a2(t)x3, 0), ρ̃ = ρb + b0x3. The pressure p will be computed by using equa-
tions (3.19) and (3.21).

4 Integrable System

In the above section we see that the rotating stratified Boussinesq equations (2.4) admit
the special solutions in the form of (3.19) provided that w and b satisfy the system of
ODEs (3.20). Further, in the absence of strain field D = 0 we have the following reduced
system of six coupled nonlinear ODEs

ẇ = Γê3 × b− 1
2R0

ê3 ×w,

ḃ = 1
2w × b.

}

(4.1)

We see the system of equations (4.1) is divergence free and admits the following four
functionally independent first integrals

|b|2 = c1, ê3 ·w = c2, |w|2 + 4Γ(ê3 · b) = c3, w · b+
1

R0
ê3 · b = c4. (4.2)
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Hence, by Liouville’s theorem on integral invariant and theorem of Jacobi [11] there
exists an additional first integral. That is an autonomous system of six coupled ODEs
admitting the five global functionally independent first integrals proving the complete
integrability of the system (4.1). Also, we see from (4.2) that |b| and |w| remain bounded
so that the invariant surface (4.2) is compact and flow of vector field (w,b) is complete.
It is easy to verify that the system (4.1) admits all the similar kind of results obtained
by Srinivasan et all in their paper [5]. Also, we find that the system of equations (4.1)
is similar to the system discussed by Desale [6]. For the bifurcation analysis near the
degenerate critical point one may refer to [7].

5 Conclusion

In Section 1, we gave a brief introduction to the work and put up a literature survey.
Then in Section 2, we present the rotating stratified Boussinesq equations (2.1) and
consequently we put it into the nondimensional form (2.4). In Section 3, we obtained the
special solutions to the system (2.4) in the form of (3.19). Due to the inclusion of rotating
term in the equations (2.4), the special solutions obtained here are the improvement of
the solutions obtained by Majda & Shefter [2]. In this link we present the Proposition
3.1, Theorem 3.1 and in Theorem 3.2, we present special solutions provided that the
vorticity and density gradients satisfy the system of ODEs (3.20). Also, in that section
we gave the examples of two dimensional flows. In the last Section 4, we proved that the
system of six coupled nonlinear ODEs (4.1), which is obtained by neglecting the strain
field is an integrable system.

References

[1] Rajagopal, K. R., Ruzicka, M. and A. R. Srinivasa. On the Oberbeck-Boussinesq
Approximation. Mathematical Models and Methods in Applied Sciences 6 (1996)
1157–1167.

[2] Majda, A. J. and Shefter, M. G. Elementary stratified flows with instability at large
Richardson number. J. Fluid Mechanics 376 (1998) 319–350.

[3] Majda, A. J. Introduction to PDEs and Waves for the Atmosphere and Ocean,
Courant Lecture Notes in Mathematics 9, American Mathematical Society, Provi-
dence, Rhode Island, 2003.

[4] Craik, A. D. D. and Criminale, W. O. Evolution of wavelike disturbances in shear
flows: a class of exact solutions of the Navier-Stokes equations. Proc. R. Soc. Lond.
A 406 (1986) 13–26.

[5] Srinivasan, G. K., Sharma, V. D. and Desale, B. S. An integrable system of ODE
reductions of the stratified Boussinesq equations. Computers and Mathematics with
Applications 53(2) (2007) 296–304.

[6] Desale, B.S. Complete Analysis of an Ideal Rotating Uniformly Stratified System of
ODEs. Nonlinear Dynamics and Systems Theory 9(3) (2009) 263–275.

[7] Scarpello, G.M. and Ritelli, D. Nonlinear Dynamics of a Two-Degrees of Freedom
Hamiltonian System: Bifurcations and Integration. Nonlinear Dynamics and Sys-
tems Theory 8(1) (2008) 97–108.



38 B.S. DESALE AND V. SHARMA

[8] Leo R. M. Maas. Theory of Basin Scale Dynamics of a Stratified Rotating Fluid.
Surveys in Geophysics 25 (2004) 249–279.

[9] Leo R. M. Maas. A Simple Model for the Three-dimensional, Thermally and Wind-
driven Ocean Circulation. Tellus 46A(5) (1994) 671–680.

[10] Majda, A. J. and Bertozzi, A. L. Vorticity and Incompressible Flow. Cambridge
University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2002.

[11] Jacobi, C. G. J. Vorlesungen über Dynamik. Gesammelte werke, Druck and Verlag
von Reimer, Berlin, 1842.


